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Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. Due to

the rise in the incidence rate of RA and the limitations of existing therapies, the

search for new treatment strategies for RA has become a global focus. Ferroptosis

is a novel programmed cell death characterized by iron-dependent lipid

peroxidation, with distinct differences from apoptosis, autophagy, and necrosis.

Under the conditions of iron accumulation and the glutathione peroxidase 4

(GPX4) activity loss, the lethal accumulation of lipid peroxide is the direct cause of

ferroptosis. Ferroptosis mediates inflammation, oxidative stress, and lipid oxidative

damage processes, and also participates in the occurrence and pathological

progression of inflammatory joint diseases including RA. This review provides

insight into the role andmechanismof ferroptosis in RA and discusses the potential

and challenges of ferroptosis as a new therapeutic strategy for RA, with an effort to

provide new targets for RA prevention and treatment.
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1 Introduction

Rheumatoid arthritis (RA) is a multifactorial autoimmune disease of unknown etiology

mainly characterized by synovial hyperplasia, pannus formation, as well as cartilage and bone

destruction, resulting in joint pain, stiffness, and swelling. In RA pathogenesis, activated RA

fibroblast-like synoviocytes (RA-FLSs) exhibit proliferative features similar to tumor cells and

subsequently cause cartilage erosion, which will eventually lead to joint destruction (1, 2). RA

patients initially present with the main complaint of finger and/or wrist joint pain, but as the

disease progresses, RAmay also involve large joints such as the knee, shoulder, and hip joints,

resulting in limited joint activity, irreversible joint deformities, and even disability. Apart

from joint symptoms, RA may also give rise to systemic multi-system injury and extra-

articular manifestations (3). Due to the intensification of population aging, prolongation of

life expectancy, and deterioration of the global environment, the morbidity of RA is

ascending annually. Statistics estimate that approximately 1% of the global population

suffers from RA, and the incidence rate of RA in women is three to four times higher than

that in men (4, 5). The current treatment strategies for RA mainly focus on regulating

immune inflammatory responses to alleviate arthritis symptoms (6). However, these existing
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treatment methods still have insurmountable shortcomings such as

various adverse drug reactions, limited individualized treatment

regimens, significant differences in treatment effectiveness, and

drug resistance. Effective therapies that can delay or reverse the

pathological progression of RA are urgently needed. Therefore,

further elucidating the pathogenesis of RA and identifying new

therapeutic targets will help develop more personalized, effective,

and safe treatment approaches, thereby improving the quality of life

of RA patients and reducing the socioeconomic burden of the disease.

It has been hypothesized that iron is excessively accumulated in

the synovium of RA patients to perpetuate inflammation (7, 8).

Ferroptosis is a type of regulatory cell death that depends on

intracellular iron accumulation. The fundamental features of

ferroptosis, such as iron deposition, lipid peroxidation,

glutathione (GSH) depletion, and glutathione peroxidase 4

(GPX4) inactivation, have been gradually emphasized in the

pathogenesis of RA (9). As a significant regulatory factor in

inflammatory responses, ferroptosis has recently been reported to

be strongly associated with the initiation and progression of various

inflammatory arthritis including RA (10). This review provides an

in-depth study of the role and mechanisms of ferroptosis in RA,

discusses the potential and challenges of ferroptosis as a novel

therapeutic strategy for RA, and highlights the potential of

ferroptosis as a promising treatment target for RA.
2 Overview of ferroptosis

Cell death is a fundamental physiological process in all aspects of

life. In the past, most studies focused on the diverse roles of apoptosis,

pyroptosis, autophagy, and necrosis in diseases. In 2012, Dixon et al.

first reported a novel form of regulated cell death with distinct

morphological, biochemical, and genetic properties from the

aforementioned cell death types, named “ferroptosis” (11).

Ferroptosis morphologically exhibits the same features as necrosis,

including loss of plasma membrane integrity, cytoplasm and

organelle swelling, increased mitochondrial membrane density,

reduced or absent cristae, and outer membrane rupture (12, 13).

The exact pathogenesis of ferroptosis has not yet been clarified.

Current studies indicate iron accumulation, lipid peroxidation, and

redox system dysregulation as central biochemical events leading to

ferroptosis (14). During ferroptosis, excessive accumulation of iron

ions can catalyze the production of reactive oxygen species (ROS)

through the Fenton reaction to promote lipid peroxidation, causing

oxidative damage to the cell membrane (15). Subsequently, oxidative

stress further damages the cell membrane and important intracellular

biomolecules due to the disruption of antioxidant defense

mechanisms, and this imbalance between oxidative damage and

antioxidant defense is a crucial driver of ferroptosis (16, 17). GPX4

inactivation based on GSH depletion is a central regulator in the

antioxidant defense system, and GPX4 can utilize the substrate GSH

to reduce oxidation to scavenge free radicals and other harmful
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substances (18). Therefore, it can be assumed that the core

mechanism of ferroptosis is the insufficient ability of GPX4 to

scavenge peroxides and the excessive accumulation of lipid

peroxides. Since the mechanisms of ferroptosis are exceptionally

complex and involve multiple signaling pathways, an in-depth

study of these mechanisms can provide new ideas and approaches

for the treatment and prevention of ferroptosis-related diseases.
3 Ferroptosis mechanisms

3.1 Iron metabolism

As one of the abundant trace elements in the crust, iron plays an

imperative role in life activities such as DNA synthesis, redox

reactions, enzymatic processes, cellular respiration, and metabolism

(19, 20). Therefore, precise iron metabolism is required for the

homeostasis of intracellular iron ions. Ferroptosis, as a response to

abnormal cellular iron metabolism, typically occurs in a state of iron

overload. After the circulating iron ions (Fe3+) bind to transferrin (Tf)

on the plasma membrane, the complex is transferred into the cell by

binding to the specific transferrin receptor 1 (TfR1) and localized in

the endosome (21). The acidic environment in the endosome

promotes the shedding of Fe3+and reduces it to Fe2+ via the six-

transmembrane epithelial antigen of prostate 3 (STEAP3), which is

then exported to the cytoplasm via divalent metal transporter protein

1 (DMT1) or ZRT/IRT-like protein 8/14 (ZIP8/14). In the cytoplasm,

a majority of Fe2+ is stored in ferritin and a small fraction of Fe2+ is

stored in the labile iron pool (LIP). Excess Fe2+ is oxidized to Fe3+,

which is transported out of the cell and re-entered into the circulation

via ferroportin (FPN). Ferritin, a nanocage composed of ferritin light

chain (FTL) and ferritin heavy chain (FTH), reduces Fe2+ to non-

toxic Fe3+ (22). In response to the autophagic degradation by nuclear

receptor coactivator 4 (NCOA4), ferritin releases active Fe2+ (23, 24)

to catalyze lipid peroxidation through the Fenton reaction

(25) (Figure 1).
3.2 Lipid peroxidation and oxidative stress

Ferroptosis is ultimately driven by ROS-mediated lipid

peroxidation. Polyunsaturated fatty acids (PUFAs), represented by

arachidonic acid (AA) and adrenaline (AdA), are most susceptible

to peroxidation (15). Free intracellular PUFAs form esterification

products through the binding of coenzyme A (CoA) and acyl-

coenzyme A synthase long-chain family member 4 (ACSL4), which

are subsequently transported to phospholipid-like lipids (PL) of the

cell membrane via lysophosphatidylcholine acyltransferase 3

(LPCAT3) (26, 27). In the presence of lipoxygenase (Lox)

peroxidation, PUFA-PL is oxidized, inducing the accumulation of

PL hydrogen peroxide on the plasma membrane and thus affecting

membrane function (28) (Figure 2).
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3.3 Antioxidant defense

Lipid peroxidation can be countered by antioxidant systems, in

which the cystine/glutamate-GSH-GPX4 is the main antioxidant

pathway (29). Cystine/glutamate (also known as the Xc- system) is a

system composed of light chain solute carrier family 7 member 11

(SLC7A11, xCT) and heavy chain solute carrier family 3 member 2

(SLC3A2). Cystine is reduced to cysteine intracellularly via Xc- to

participate in GSH synthesis (30). Glutathione peroxide GPX4 is a

primary factor responsible for the scavenging of lipid peroxides,

which can convert GSH to oxidized glutathione (GSSG) and

simultaneously reduce toxic lipid peroxides to non-toxic alcohols

(31). Moreover, FSP1-CoQ10-NADPH (32) and GTP-BH4 (33) are

two antioxidant systems independent of GPX4 that effectively

protect cells from lipid peroxidation damage.
4 Association between ferroptosis
and RA

Recent studies have found that the basic features of ferroptosis

such as iron deposition, lipid peroxidation, GSH depletion, and

GPX4 inactivation are implicated in RA pathogenesis. Immune

inflammatory dysregulation and intestinal microbial imbalance in

RA are confirmed to be associated with ferroptosis. These findings

suggest that ferroptosis is closely related to the occurrence and

development of RA.
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4.1 Disorders of iron metabolism in RA

Disturbances in iron metabolism lead to the development of RA

through a variety of mechanisms, including promoting oxidative

stress, inducing inflammatory responses, and impairing immune cell

functions. RA patients commonly present with elevated iron

metabolism indicators like serum iron and ferritin, and the

concentration of iron is positively correlated with the severity of

joint inflammation (34, 35). FTL, FTH, and non-characteristic

resistance-associated macrophage proteins such as Nramp2 and

DMT1 can also be detected in fibroblast-like synoviocytes (FLSs)

and macrophages isolated from synovial tissues of RA patients (36).

In addition, animal experiments have also demonstrated that

intravenous iron injection can exacerbate RA synovial

inflammation (37). Iron acts as an important regulatory factor in

immune responses, and its metabolism is of great significance to

autoimmune diseases including RA (38, 39). Iron overload has

profound effects on the immune system, including suppressing the

phagocytosis of monocytes and macrophages, enhancing the number

and viability of suppressor T cells, impairing the proliferative capacity

of Th cells, and altering the distribution of lymphocytes in different

compartments of the immune system (40). Moreover, iron overload

may also trigger immune inflammatory responses by activating the

NF-kB signaling pathway and stimulating the secretion of

inflammatory cytokines such as tumor necrosis factor-a (TNF-a),
interleukin (IL)-6, and IL-b (20). In a recent mouse experiment (41),

the application of iron chelators effectively reduces iron deposition
FIGURE 1

Mechanisms of iron metabolism: FPN1, iron transporter protein; TfR1, transferrin receptor 1; FTL, ferritin light chain; FTH, ferritin heavy chain;
NCOA4, nuclear receptor coactivator 4; LIP, labile iron pool; ROS, reactive oxygen species; STEAP3, six-transmembrane epithelial antigen of the
prostate 3; DMT1, divalent metal transporter protein 1.
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and ameliorates iron overload-induced oxidative damage and

immune dysfunction.
4.2 Lipid peroxidation and oxidative stress
in RA

Oxidative stress as a major pathogenic hallmark of RA

promotes the local microenvironment at the RA lesion sites,

enhances abnormal synoviocytes proliferation, and exacerbates

inflammatory infiltration (42, 43). Oxidative stress is the result of

an imbalance between the generation of reactive oxygen species

(ROS) and the antioxidant defense systems. ROS-mediated

mitochondrial DNA (mtDNA) tends to be recognized as a

pathogen-associated molecular pattern (PAMP) by the innate

immune system, leading to the activation of multiple

inflammatory pathways (44). A higher ROS concentration and a

lower antioxidant potential have been observed in the plasma of

patients with active RA (45). Furthermore, emerging studies have

confirmed that there exists a mutually reinforcing positive feedback

mechanism between oxidative stress and inflammation, where ROS

and mitochondrial damage products are good activators of

inflammatory responses (46, 47).
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In RA, excessive ROS accumulation and sustained

inflammatory activation promote synovial, vascular, and joint

damage. FLSs are the main effector cells of RA inflammation. The

activated FLSs recruit peripheral monocytes/macrophages to

synovial tissues by releasing chemokines and inflammatory

mediators (48). Moreover, RA-FLSs can secrete macrophage

colony-stimulating factor (M-CSF) and receptor activator of

nuclear factor kB ligand (RANKL) to promote bone destruction

(49). Related studies have found (50, 51) that ROS can promote the

abnormal proliferation of RA-FLSs and mediate multiple

pathologica l processes including eros ion, migrat ion,

inflammation, and joint damage. As a second messenger, ROS

can upregulate hypoxia-inducible factor-1a (HIF-1a), activate the
JAK3/STAT4 pathway, and promote RANKL expression (52).

Moreover, Notch-1 is known to be strongly expressed in the

perivascular area of synovial tissues and ROS can also induce the

formation of vascular opacities by upregulating the expression of

vascular endothelial growth factor (VEGF) and Notch-1 (53). Of

note, ROS accumulation underlies RA, and the accumulated ROS

has different effects over different cell types. For example, excessive

ROS is toxic to non-FSLs and triggers ferroptosis in these cells;

however, ROS accumulation has a pro-proliferative and pro-

survival role in FSLs. Several studies have attempted to explore
FIGURE 2

Ferroptosis mechanism: Ferroptosis is mainly caused by iron-dependent lipid peroxidation. It is mainly divided into ferroptosis promotion pathway
(blue) and ferroptosis inhibition pathway (purple) (1). Iron metabolic pathway (2). Cystine/glutamate (also known as Xc-system)-GSH-GPX4 pathway:
Cystine is imported into cells via the Xc-system, where it is oxidized to cysteine (Cys), followed by the synthesis of glutathione (GSH) in the presence
of glutamate-cysteine ligase (GCL) and glutathione synthase (GSS). GSH is a potent reducing agent. GPX4 inhibits ferroptosis by using GSH as a
reducing cofactor to reduce lipid hydroperoxides to lipid alcohols (3). Mevalonate pathway: Acetyl coenzyme A is first converted to HMG-CoA,
which is then reduced to mevalonate by HMGCR, and mevalonate is converted to IPP. Finally, selenocysteine residues are added to the catalytic
center of GPX4 to activate GPX4. At the same time, IPP can also produce coenzyme Q10 and then enter the FSP1 pathway (4). Lipid metabolic
pathway: PUFAs are metabolized by ACSL4 and LPCAT3 and then oxidized by lipoxygenase HMGCR, 3-hydroxy-3-methylglutaryl coenzyme A
reductase; IPP, isopentenyl pyrophosphate; GPX4, glutathione peroxidase 4; SLC1A5, solute carrier family 1 member 5; GLS, glutaminase; SLC3A2,
solute carrier family 3 member 2. SLC7A11, solute carrier family 7 member 11; GSH, glutathione; Xc- system: glutamate reverse transporter protein,
GPX4: glutathione peroxidase 4.
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alternative methods to assess the disease activity and prognosis of

RA by monitoring the levels of ROS, mtDNA, and other markers of

oxidative stress (46, 54, 55). However, further studies and

explorations are still needed to address the use of oxidative stress

markers in the treatment of RA.
4.3 Antioxidant defense in RA

RA patients commonly present with lower levels of antioxidant

markers such as GSH and GSH peroxidase (GSH Px) compared to

healthy individuals and systemic lupus erythematosus (SLE)

patients, and methotrexate treatment can notably alter the

oxidative stress parameters in RA patients (56). The use of

antioxidants, such as vitamin E, vitamin C, and selenium, has

shown promising efficacy in alleviating RA disease conditions

(57–59). These findings suggest that antioxidants and oxidative

stress markers may be potential therapeutic targets for RA.

However, further studies and clinical trials are required to

evaluate the efficacy and safety of these potential targets.
4.4 Immunity and inflammation in RA

Dysregulation of the immune-inflammatory response is

accepted as the predominant pathogenic mechanism of RA (5). A

previous study has summed up (60) the effects of ferroptosis on

immune cells in two aspects. On the one hand, ferroptosis affects the

number and function of immune cells. On the other hand,

ferroptotic cells can be recognized by immune cells and

subsequently trigger a series of inflammatory immune responses.

Thus, we report the association between ferroptosis and immune

cells, especially macrophages, neutrophils, and T cells upstream

of RA.

Macrophages are immune cells with antigen-presenting and

phagocytic properties and have critical functions in the initiation

and perpetuation of RA synovitis. Iron overload promotes the

polarization of M1 macrophages and increases the levels of M1

macrophage markers (IL-6, TNF-a, and IL-1b) (61). Meanwhile,

TNF-a released from M1 macrophages upregulates the expressions

of acyl-CoA synthetases (ACSL3 and ACSL57) (62), promotes L-

ROS accumulation, and eventually triggers ferroptosis. More

significantly, M1 macrophages also elevate the ROS concentration

via the nicotinamide adenine dinucleotide phosphate (NADPH)

oxidase 2 (NOX2) pathway (63). Furthermore, erythrocytes

phagocytized by macrophages are first catabolized to heme and

then to iron under the action of heme oxygenase, and iron is

deposited in RA macrophages to provide suitable conditions and

environment for the occurrence of ferroptosis (64, 65).

As the first line of host defense against invading pathogens,

neutrophils can be the first type of innate immune cells reaching the

RA synovial joints to drive inflammation by producing chemokines,

ROS, and neutrophil extracellular traps (NETs) (66). Neutrophil

ferroptosis prevalently occurs in SLE patients (67), but whether

neutrophil ferroptosis is associated with RA is not yet clear.

Notably, there is an imbalance between oxidative stress and
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antioxidant defense in neutrophils of RA patients (68), which is

exactly the key to driving ferroptosis. Besides, mitochondrial formyl

peptides (mtNFPs) are known to induce the release of ROS from

neutrophils, and significantly elevated levels of mtNFPs have been

found in RA patients (69), suggesting that neutrophil ferroptosis is

most likely present in RA. However, mechanisms regarding

neutrophil ferroptosis in RA still require further scientific studies.

T cells are the leading inflammatory cells in RA synovial tissues.

Ferroptosis is found to regulate the activity of cytotoxic T cells (CD8)

and helper T cells (CD4). T cell activation is dependent on the

production of cysteine (Cys) by antigen-presenting cells. Ferroptosis-

related proteins, Xc- anti-transport proteins, and neutral amino acid

transporter proteins are available to provide T cells with the required

Cys (70). An in vitro experiment has revealed that ferroptosis inhibitor

FSP1 or GPX4 overexpression protects CD8 T cells from ferroptosis,

while the utilization of GPX4 inhibitors significantly enhances the

sensitivity of T cells to ferroptosis (71). Further investigation (72)

suggests that T cells from RA patients can store lipid droplets, leading

to excess fatty acids and thus providing substrates for lipid peroxidation

and ferroptosis.
4.5 Intestinal microorganisms in ferroptosis

With the intensive investigation of the pathogenesis of RA,

there is increasing evidence supporting the association between

intestinal flora and RA. Evidence points out (73) that dysbacteriosis

is likely to initiate hyperactivity of the intestinal mucosal immune

system, activate both innate and adaptive immunity, and then

overtake the synovial joints, a process known as the “gut-joint

axis”. More crucially, the intestinal microbiota also participates in

ferroptosis by facilitating oxidative stress balance and reducing ROS

accumulation. Excessive oral intake of iron causes intestinal iron

accumulation and, in some cases, promotes ROS accumulation and

interferes with intestinal microbiota homeostasis, eventually

triggering RA development (74). Free iron may play a role in

inflammatory diseases such as RA through the mediation of

microbial activation rather than through Fenton response and

oxidative stress mechanisms, implying that iron metabolism is

closely related to the regulation of microbiota and immune

response (75). Further, intestinal microbiota metabolites mediate

ferroptosis by regulating the transferrin-long-chain acyl coenzyme

A synthase 4 (TFR-ACSL4) pathway and inducing subsequent lipid

metabolism disorders and inflammatory responses, while the use of

iron chelators can effectively mitigate this process (76).
5 Potential role of ferroptosis in RA
inflammation and tissue damage

5.1 Ferroptosis products and derivatives
can act as inflammatory mediators

Ferroptosis is an immunogenic form of cell death, and its

metabolites and derivatives can also act as inflammatory

mediators to further exacerbate RA inflammatory responses.
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Ferroptosis can induce the release of damage-associated molecular

patterns (DAMPs), thereby promoting immune cell activation and

enhancing inflammatory responses (77). On the one hand, DAMPs

promote the maturation and antigen presentation of immune cells

such as macrophages and dendritic cells to enhance immune

responses. On the other hand, DAMPs are well-recognized

triggers that result in the elevation of inflammatory cytokine

levels and then initiate inflammatory signaling pathways by

binding to corresponding receptors. The execution of ferroptosis

is driven by lipid peroxidation. The main products of lipid

peroxidation derivatives, such as 4-hydroxynonenal (4-HNE) and

malondialdehyde (MDA), may lead to cartilage degeneration and

subchondral bone remodeling, and 4-HNE has also been

demonstrated to activate inflammatory signaling pathways (78).

PUFAs are responsible for ferroptosis-inducing lipid peroxidation.

PUFA-derived lipid mediators, AA and docosahexaenoic acid (DHA),

serve as inflammatory activators in RA (79). COX-2, an enzyme

involved in the AA oxidation reaction, rapidly induces inflammatory

responses at the site of inflammation and accelerates the inflammatory

process under specific conditions. In the presence of PPARg
(peroxisome proliferator-activated receptor g)-dependent
mechanisms, the expressions of COX-2 and prostaglandin D

synthase 2 (PGD2) is promptly upregulated, resulting in a vicious

cycle that enhances the inflammatory response in a positive feedback

manner (80, 81). Although the role of ferroptosis and associated

inflammatory mediators in RA has been supported to some extent,

further in-depth scientific studies are still necessary to fully understand

this complex process (Figure 3).
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5.2 Ferroptosis regulates RA synovial
inflammation

Synovial inflammation is a central event in the pathogenesis of RA,

as well as a major trigger for bone and cartilage destruction and

vascular opacification formation. Synovium is mainly composed of

FLSs and immune cells. FLSs, the dominant non-immune cells of the

synovium, develop abnormal proliferative capacity and aggressive

characteristics under oxidative stress conditions (82, 83). Immune

cells including macrophages, lymphocytes, and T cells play immune

surveillance and inflammatory regulatory roles in the synovium.

Activated T cells and macrophages in the synovium form an

environment conducive to ferroptosis and inflammation, and also

induce ROS production in a positive feedback manner, thus

promoting the release of pro-inflammatory factors into the synovium

and synovial fluid and further amplifying synovial inflammation (84).

Moreover, compared with osteoarthritis, both RA synovial tissues and

synovial fluids present ferroptosis-related characteristics such as lipid

peroxidation and iron overload, as well as massive cascading

proliferation and “tumor-like” growth of RA-FLSs (85) (Figure 4).

FLSs are considered to be dominant drivers of RA pathogenesis.

Fibroblast activating protein-a (FAPa) is a RA fibroblast marker

located on the synovial cell surface. According to a previous study

(85), the number of FAPa+
fibroblasts is significantly increased in

the inflammatory synovium of collagen-induced arthritis (CIA)

mice. The TNF antagonist etanercept can significantly enhance the

killing effect of the ferroptosis inducer imidazole ketone erastin

(IKE) on RA-FLSs, and the combination of the two restores synovial
FIGURE 3

The key role of ferroptosis in inflammatory damage, mitochondria, blood vessels. bone, synovial membrane, and articular cartilage.
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homeostasis by promoting FAPa+
fibroblasts ferroptosis and

reducing the number of FAPa+
fibroblasts. Thus, inducing the

ferroptosis of RA-FLSs may be a potential target for the treatment of

RA. In contrast, treatment with the GPX4 inhibitor RSL3 is

observed to specifically induce cell death in FAPa+
fibroblasts.

Interestingly, RSL3 does not increase cell death in macrophages,

endothelial cells, T cells, or B cells (85). The possible reasons for this

may be as follows. Firstly, RA-FLSs proliferate abnormally in

response to the elevation of ROS and lipid oxidation, and the

GPX4 inhibitor RSL3 specifically scavenges ROS accumulation in

the synovial membrane and downregulates the number of FLSs.

Therefore, FLSs are sensitive to RSL3. Secondly, FAPa+ fibroblasts

are almost undetectable in non-inflammatory conditions, while

they significantly increase in inflamed synovial membranes, and

the synovial inflammatory milieu tends to promote ferroptosis and

lipid ROS production, and induction of ferroptosis is effective in

reducing the number of FLSs and thereby improving RA. It can thus

be concluded that GPX4 inhibitors have the potential to selectively

affect the cell survival in specific cell types. However, further studies

are still needed to comprehensively validate and understand the

therapeutic potential of GPX4 inhibitors and their effects on

different cell types. Not only that, future studies are expected to

identify surface proteins more specific to fibroblasts, which will

facilitate the development of fibroblast ferroptosis targeting therapy.

Glycolysis is an essential energy production and metabolic

process, and its regulatory mechanism involves several signaling

pathways such as Akt/mTOR/HIF-1a (86). Overexpression of
Frontiers in Immunology 07
SLC2A3 activates glycolysis and HIF-1 signaling pathways (87).

In the meantime, the ferroptosis inducer RSL3 can trigger

ferroptosis of RA-FLSs by reducing the expression of SLC2A3

and suppressing the glycolytic metabolism of RA-FLSs, which

further reveals the intrinsic mechanism of RSL3-induced

ferroptosis of RA-FLSs.

The nuclear factor E2-related factor 2 (Nrf2)-related anti-

oxidative stress is strongly associated with ferroptosis suppression.

Nrf2 activation can prevent oxidative stress and inflammatory

damage in RA synovium by transcribing various antioxidant

enzymes including superoxide dismutase (SOD), heme

oxygenase-1 (HO-1), and GSH (88). It is discovered (89) that

activation of Nrf2 not only regulates a series of inflammation-

related signaling molecules but also inhibits the production of ROS

and represses the proliferation and migration of RA-FLSs, thereby

effectively alleviating RA synovial inflammation.
5.3 Ferroptosis exacerbates bone and
cartilage damage in RA

In addition to synovial inflammation, progressive bone and

cartilage destruction is another catastrophic pathological change in

RA. The imbalance between bone resorption by osteoclasts and

bone formation by osteoblasts is the major contributor to the

development of bone damage in RA, and ferroptosis further

exacerbates this process.
FIGURE 4

Mechanism of ferroptosis in RA synovium Lipid peroxides as well as iron deposition can be seen in RA synovium. In addition, proinflammatory factors
secreted by immune cells and FLS in RA synovium promote oxidative stress, which in turn further exacerbates the inflammatory response, and
through this vicious circle, ferroptosis and synovial inflammation are promoted, FLS, fibroblast-like synoviocyte; IL-6, interleukin 6; RNS, reactive
nitrogen species; ROS, reactive oxygen species; TNF, tumor necrosis factor; RANKL, Receptor Activator for Nuclear Factor-kB Ligand; MMPs, matrix
metalloproteinases.
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Osteoclasts are multinucleated giant cells formed by the fusion

of monocyte/macrophage precursor cells. M-CSF and RANKL are

crucial for osteoclast differentiation and development. A typical

osteoclast phenotype on the surface of multinucleated giant cells

can be observed at the bone-pannus joint interface in CIA rats,

suggesting the involvement of osteoclasts in RA-associated bone

destruction (90). Furthermore, cytokines such as IL-17 and IL-6 in

RA arthritis induce RANKL expression in osteoblasts and RA-FLSs,

indirectly stimulating osteoclast formation (91, 92). ROS, a

principal feature of ferroptosis, also interacts with RNAKL and

M-CSF to promote osteoclast differentiation. In addition, activation

of the Janus kinase (JAK)2/STAT3 pathway effectively promotes

RANKL expression and induces osteoclast differentiation, and ROS

can activate the JAK2/STAT3 pathway by upregulating HIF-1a
expression (49, 52). An interesting experiment shows (93) that iron

overload induces osteoblast apoptosis and osteoclast differentiation,

and that icariin can inhibit the function of osteoclasts by regulating

ROS and mitochondrial membrane potential (MMP) homeostasis

while attenuating iron overload-induced oxidative damage

in osteoblasts.

As articular cartilage is an important structural and functional

unit of the joint, cartilage degeneration and damage can cause

impairment and loss of joint function in RA patients (94). On the

one hand, IL-7 and TNF in RA can degrade cartilage by stimulating

chondrocytes to secrete cartilage-degrading metalloproteinases

(MMP). On the other hand, the enhanced sensitivity of

chondrocytes to IL-1 and TNF in synovial fluid in turn

accelerates cartilage degradation (95). Not merely that,

knockdown of GPX4 is found to increase chondrocyte sensitivity

to oxidative stress and also activate the MAPK/NF-kB pathway to

promote extracellular matrix (ECM) degradation, while this process

can be effectively mitigated by the use of Fer-1, a ferroptosis

inhibitor (96). However, the research on ferroptosis and bone and

cartilage damage in RA is still in its infancy and still needs more

supporting evidence.
5.4 Effect of ferroptosis on osteoporosis

RA patients have both disease-specific risk factors for OP and

fractures. OP is a common clinical disorder mainly characterized by

bone mass loss and bone microarchitectural deterioration (97).

During the course of RA, inflammatory factors induce osteoclast

differentiation but inhibit osteoblast maturation. The aggravation of

bone loss caused by this imbalance in bone metabolism is the main

reason for RA complicated with OP (98, 99). Moreover, the long-

term clinical use of mainstream drugs such as glucocorticoids and

immunosuppressants can also induce the development of OP.

Epidemiological surveys have shown (100) that approximately 60-

80% of RA patients are complicated with OP.

Iron metabolism disorder is identified as an independent risk

factor for OP. Iron overload can disrupt bone homeostasis by

significant inhibition of osteoblast differentiation and stimulation

of osteoclastogenesis, consequently leading to OP (101). In an iron

overload rat model constructed by intraperitoneal injection of iron

dextrose, iron overload causes thinning of bone trabeculae and
Frontiers in Immunology 08
cortex, and increase of bone resorption. Further findings (102)

reveal that iron overload leads to the increase of MMP and the

accumulation of lipid peroxide by affecting GSH and fatty acid

cycle, which further promotes the activation of osteoclasts and

apoptosis of osteoblasts, leading to increased bone resorption and

decreased bone formation.

Furthermore, the hypoxic microenvironment of RA is known to

inhibit RANKL-induced ferritin phagocytosis and protect

osteoclasts from ferroptosis. Conversely, the HIF-1a inhibitor

2ME2 effectively promotes osteoclast ferroptosis and prevents

ovariectomy-induced OP in rats (52). Not only that, targeting

osteoblast ferroptosis is also a potential therapeutic strategy for

OP. One study has found (103) that the expression of NADPH

oxidase 4 (NOX4) is elevated in OP mice and patients, and NOX4

overexpression drives osteoblast ferroptosis and subsequently

causes bone loss in OP mice.
5.5 Ferroptosis modulates RA pannus
formation and angiogenesis

Pannus formation in the synovial cavity is a major pathological

factor in RA and can cause irreversible damage to the joint and

cartilage. Synovial pannus is composed of neoplastic microvessels,

proliferating hypertrophic synovial cells, inflammatory cells, and

mechanized fibrin, exhibiting tumor-like tissue properties (104).

Angiogenesis is an early event in the pathogenesis of RA, which is

crucial for the proliferation of synovial tissue and the formation of

pannus (105, 106).

RA-FLSs exhibit tumor-like biological characteristics that

facilitate pannus formation. On the one hand, RA-FLSs secrete

reactive substances, such as IL-6, MMP, and TNF-a, which not only
aggravate the process of bone erosion but also exacerbate the

development of pannus (107). On the other hand, FLSs produce

MMP to digest a variety of proteins in cartilage and supporting

structures, further promoting the invasion and expansion of pannus

(108). In addition, VEGF secreted by RA-FLSs is an important

factor in promoting angiogenesis (109, 110). Thus, it is evident that

inducing ferroptosis of RA-FLSs not only regulates synovial

homeostasis but also has important implications for the

inhibition of angiogenesis.

An appropriate ROS concentration is conducive to normal

angiogenesis and vascular homeostasis , while a high

concentration of ROS chronically induces ferroptosis and

consequently causes pathological damage to blood vessels.

However, it must be emphasized that ROS as a trigger for RA

and FLS proliferation is not an inevitable consequence. A recent

study (111) has indicated the involvement of ROS in VEGF-

dependent signaling processes in endothelial cells. Specifically,

ROS transcribes VEGF genes by activating the NF-kB pathway to

participate in key pathological processes such as angiogenesis and

proliferation. In addition, ROS also functions in other cell types,

such as macrophages, fibroblasts, endothelial cells, and keratin-

forming cells. These cells produce VEGF in response to ROS

stimulation and regulate angiogenesis through upstream and

downstream effects of VEGF/VEGFR2 signaling (112, 113).
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The Notch signaling pathway responds to the regulation of ROS

and is closely associated with RA angiogenesis (53). Its mechanism

may be related to the induction of angiogenesis and endothelial cell

migration by activating FLSs. Due to insufficient research results, it

is necessary to further explore the relationship between ferroptosis

and RA angiogenesis, which may help to reveal new mechanisms

underlying the pathological process of RA and provide potential

targets for the development of new therapeutic strategies.
6 Ferroptosis may be a key target in
controlling RA

Compelling evidence supports the potential of ferroptosis as a

prospective target for the prevention and treatment of RA (114–116):

using ferroptosis inducers to induce ferroptosis of RA-FLSs or using

ferroptosis inhibitors to reduce inflammation and joint damage.

Searching for ferroptosis inhibitors or inducers has become a hot

research topic in recent years, but due to the intricate regulatory

mechanisms of ferroptosis and individual differences of patients, the

targeted therapy of ferroptosis still stays in the preliminary stage.

Consistent with previous findings that promoting ferroptosis of

RA-FLSs improves RA, the results of a recent study also indicate

(117) that glycine drives ferroptosis of RA-FLSs through

methylation of the S-adenosylmethionine (SAM)-associated GPX4

promoter and further enhances this effect by reducing FTH1

expression. This study provides important insights into the

molecular mechanisms of ferroptosis in RA and the development

of new therapeutic strategies. However, further studies are still

needed to validate and extend these results.

Another study has also found (118) that the bioactive peptide

G1dP3 promotes RA-FLS ferroptosis via a p53/SLC7A11 axis-

dependent manner and has a potential therapeutic role in RA. It is

speculated that somatic mutations of p53 in RA-FLSs may be the direct

cause of synovial hyperplasia and subsequent pannus formation (119).

p53 is one of the most commonly mutated tumor suppressor genes,

and p53 expression is elevated in activated FLSs (120). Studies have

confirmed (121, 122) that p53 can induce ferroptosis not only by

inhibiting SLC7A11 activity but also by increasing CDKN1A

expression or decreasing DPP4 activity, suggesting the dual

regulatory role of p53 in the regulation of ferroptosis. In addition,

ferroptosis induced by salazosulfapyridine likewise exerts dual effects

(123). On the one hand, salazosulfapyridine inhibits ferroptosis by

inhibiting systemic Xc- and downregulating GSH and GPX4. On the

other hand, salazosulfapyridine induces the Fenton reaction by

upregulating the ferric ion levels, thus generating excessive lipid ROS

and inducing ferroptosis.

Antioxidants also have a regulatory effect on ferroptosis. ROS

promotes Th17 differentiation and IL-17 production through

activation of the RORgt and STAT3 pathways. CoQ10, a ROS

scavenger and anti-inflammatory substance, has been shown to

regulate Th17 and IL-17 through the STAT3 pathway, thereby

inhibiting ferroptosis and ameliorating joint inflammation in CIA

mice (124). In addition, the antioxidant and anti-inflammatory

effects of natural extract polyphenols (like resveratrol, quercetin,
Frontiers in Immunology 09
rutin, curcumin, etc.) have been widely reported (125). Sirtuin 1

(SIRT1) prevents inflammatory responses in articular chondrocytes,

and resveratrol, a natural SIRT1 activator, can exert a protective effect

on chondrocytes by inhibiting NF-kB and MMP-13 expression (126).

Green tea polyphenol EGCG has been shown to activate the

antioxidant defense system in chondrocytes by inhibiting ERK and

p12 MAPK activation while blocking pro-inflammatory signaling

pathways, thereby alleviating RA (127). Xanthine oxidase (XO) is an

essential generator of free radicals, and quercetin has been proven to

stifle XO and prevent oxidative damage. In addition, one study reports

that icariin can inhibit ferroptosis of synovial cells and exert protective

effects by activating the Xc-/GPX4 axis (128).

As described in a previous study (129), TRPM7-mediated

ferroptosis of chondrocytes is likely to be a promising target for

the prevention and treatment of RA. TRPM7 is highly expressed in

the articular cartilage of adjuvant arthritis rats and knockdown of

TRPM7 alleviates articular cartilage destruction in RA (130).

Further, inhibition of TRPM7 activity attenuates RA articular

cartilage destruction and chondrocyte ferroptosis by suppressing

the PKCa-NOX4 axis (129). Moreover, another study has

discovered (131) that glycyrrhizin, a natural flavonoid extracted

from Ural licorice root, can effectively ameliorate RA inflammation

by blocking the MAPK signaling and inhibiting angiogenesis.

Despite the promising results on ferroptosis modulators

revealed by preclinical studies, the effects of sustained ferroptosis

modulation on normal tissues and organs remain unresolved.

Therefore, it is essential to conduct comprehensive toxicity

studies and monitor potential off-target effects to ensure the

safety of ferroptosis modulation in RA treatment.
7 Discussion

Ferroptosis can be utilized as an interventional target for RA

treatment. However, the therapeutic effects of ferroptosis regulation

may vary from tissue to site since ferroptosis is an extremely complex

process. For instance, although ferroptosis inducers can effectively

suppress RA synovial inflammation by inducing FLSs ferroptosis, the

use of ferroptosis inducers may also exacerbate inflammatory responses

given the pro-inflammatory nature of ferroptosis, thus promoting bone

erosion and bone destruction in RA, and further inducing OP

development and angiogenesis. Specifically, two issues need to be

considered for the targeted therapy of ferroptosis in RA. One is the

off-target effect of non-FLS cell types, as ferroptosis induction may

affect other cell populations in the synovium. Another consideration is

the delicate balance between promoting ferroptosis of target cells and

minimizing excessive cell death, which may lead to tissue damage and

healing impairment. Therefore, the underlying mechanisms of

ferroptosis events and autoimmune diseases still need more scientific

exploration, and further studies are required to optimize the specificity

and efficacy of ferroptosis-targeted drugs in RA.

Except for ferroptosis, there are other cell death modalities in RA,

such as apoptosis, pyroptosis, autophagy, and necrosis, which coexist in

a mixed form and play a synergistic role in the pathological progression

of RA. The interactions and regulatory dynamics among these cell
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death pathways are not fully understood. Further research on the

interactions and specific functions of these cell death pathways in RA

contributes to a deeper understanding of the pathological mechanisms

and targeted therapeutic strategies of RA. In addition, the current

understanding remains limited regarding the cellular mechanisms of

different cell death isoforms to maintain the stability of the internal

environment, respond to external stresses, and defend against

pathogenic threats. There are a lot of unknown aspects in this field

that require further in-depth studies.

Furthermore, no consensus has been reached regarding the

potential deleterious or protective effects of ferroptosis in RA. A key

question that remains to be addressed is the identification of the

optimal window for modulating ferroptosis and achieving therapeutic

balance. In particular, the optimal timing and duration of ferroptosis

induction in RA-FLSs are unclear. How to select and when to apply the

best inducer or inhibitor applicable to ferroptosis in RA also demands

in-depth studies. Another critical issue is the lack of specific biomarkers

for monitoring ferroptosis activity in RA. The development of reliable

biomarkers not only contributes to patient stratification and treatment

response monitoring, but also helps to assess the efficacy of iron

ferroptosis-targeted therapies in clinical trials.

In conclusion, ferroptosis in RA represents an exciting research

field with important research and application prospects. in-depth

research on the regulatory mechanisms of ferroptosis and the role of

ferroptosis in RA is expected to lead to the development of more

precise and efficient ferroptosis-targeted therapeutic strategies for RA.
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