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Background: Community-acquired pneumonia (CAP) represents a major health

burden worldwide. Dysregulation of the immune response plays an important

role in adverse outcomes in patients with CAP.

Methods: We analyzed peripheral blood mononuclear cells by 36-color spectral

flow cytometry in adult patients hospitalized for CAP (n=40), matched control

subjects (n=31), and patients hospitalized for COVID-19 (n=35).

Results: We identified 86 immune cell metaclusters, 19 of which (22.1%) were

differentially abundant in patients with CAP versus matched controls. The most

notable differences involved classical monocyte metaclusters, which were more

abundant in CAP and displayed phenotypic alterations reminiscent of

immunosuppression, increased susceptibility to apoptosis, and enhanced

expression of chemokine receptors. Expression profiles on classical

monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two

clusters with a distinct inflammatory response and disease course. The peripheral

immune response in patients with CAP was highly similar to that in patients with

COVID-19, but increased CCR7 expression on classical monocytes was only

present in CAP.

Conclusion: CAP is associated with profound cellular changes in blood that

mainly relate to classical monocytes and largely overlap with the immune

response detected in COVID-19.

KEYWORDS

pneumonia, immunophenotyping, host response, COVID-19, spectral flow cytometry,
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Introduction

Community-acquired pneumonia (CAP) is a preeminent driver

of hospitalization, short-termmortality and long-term decline (1–4).

CAP is initiated by a pathogen, but symptoms and life-threatening

complications are primarily caused by the collateral damage of

dysregulated host defense mechanisms aimed at eradicating the

causative microorganism (1, 4, 5). While in vitro and animal

studies have generated extensive knowledge of the phenotype and

function of immune cells involved in pneumonia pathophysiology,

studies that report in-depth cellular phenotyping in patients with

CAP remain scarce. In stark contrast, numerous deep

immunological profiling studies have been performed in patients

with CAP caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) – the pathogen responsible for coronavirus disease

(COVID)-19 – relaying intricate details on immune phenotypes and

functional states at single cell level (6). This knowledge has

contributed to various immunotherapeutic trials, and the

successful application of some of these therapies in clinical

practice (7). No such immunotherapies are considered standard of

care in patients with other forms of CAP.

We recently reported on the immune response in different

forms of CAP based on single-cell RNA sequencing and an

extensive set of host response plasma biomarkers (8, 9), and we

described differences in lung and blood immunophenotypes in

critically ill patients with COVID-19 (10). Here, we use high-

dimensional spectral flow cytometry to provide a comprehensive

analysis of the peripheral blood immune system compartment at

the single-cell protein level in patients with CAP, using age- and

sex-matched control subjects without acute infection and patients

with COVID-19 as comparator groups.
Materials and methods

Study design and participants

This project was part of the ELDER-BIOME study

(ClinicalTrials.gov Identifier: NCT02928367) (8, 9). Patients for

this project were consecutively enrolled between October 2018 and

March 2020 for CAP and in April and May 2020 for COVID-19

(prior to the introduction of the Alpha variant, the availability of

vaccines, and dexamethasone becoming standard of care). Inclusion

criteria were as reported previously (9), with additional exclusion

criteria for comorbidities associated with an immunocompromised

state (Supplemental Methods). Age- and sex-matched control

subjects without signs of acute infection were recruited from the

outpatient clinic. The study was approved by the medical ethical

committee of the Amsterdam University Medical Centers. All

patients or their representatives provided written informed consent.
Sampling

Blood samples were obtained from patients within 48 hours of

admission to a general hospital ward and processed within 4 hours
Frontiers in Immunology 02
after collection. Peripheral blood mononuclear cells (PBMCs) were

isolated from heparin-anticoagulated blood by density gradient

centrifugation using Ficoll-Paque plus medium (GE Healthcare

Life sciences, Eindhoven, The Netherlands) and cryopreserved in

liquid nitrogen until further use, as described (8). Plasma was

obtained from EDTA-anticoagulated blood by centrifugation and

stored at -80 °C until use.
Spectral flow cytometry – staining, data
acquisition and analysis

We performed 36-color spectral flow cytometry based on the

Optimized Multicolor Immunofluorescence Panel (OMIP) 069 (11).

Details on experimental procedures and antibodies used can be found

in the Supplemental Methods and Supplementary Table 1. Live single

CD45+ cells (Supplementary Figure 1) were clustered using FlowSOM

(12) (version 1.18) into 600 SOM clusters. The optimal number of

metaclusters (MCs) was determined as described in the Supplemental

Methods and Supplementary Figure 2A. MCs were phenotyped by

comparison tomanual gating strategies as described (11). MCs with the

same immunological phenotype were given numbers, and represent

differential (activation) states of these phenotypes.
Protein biomarker assays

Plasma protein biomarkers were measured using Luminex

(R&D systems, Minneapolis, Minnesota, USA) or cytometric bead

array (BioLegend, San Diego, California, USA) as described (9).
Statistical analysis

We initially determined which MCs were differentially abundant

between patient groups in an untargeted manner (i.e. the volcano plot)

by performing Welch’s t-test on log2-transformed MC proportions (of

total cells), and applied Benjamini-Hochberg (BH) adjustment to the

resulting P-values. In subsequent analyses, we expressed the difference

in log2-transformed MC proportions between patient groups and

controls by Hedges’ g, a commonly used effect size measure that

incorporates both the differences in means and a shared measure of

variance (13). An overview of the study design, including analysis levels

and comparisons, is depicted in Figure 1A. Further details can be found

in the Supplemental Methods.
Results

Patient characteristics

We enrolled 40 consecutive patients with CAP within 48 hours

after hospital admission, and 31 age- and sex-matched control subjects

without signs of acute infection (Table 1). Patients and controls were

well-matched, although patients more often had chronic obstructive

pulmonary disease. Vital signs, disease severity scores and clinical
frontiersin.org
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outcomes reflected an overall low to moderate severity of disease; all

patients survived up to day 28.
Differential abundance of monocyte/
dendritic cell and unconventional T cell
metaclusters characterize the immune
response in CAP

We identified 86 metaclusters (MCs) in PBMCs by 36-color

spectral flow cytometry followed by unsupervised clustering using
Frontiers in Immunology 03
FlowSOM (12) (Supplementary Figures 2, 3). We classified these

MCs into seven parent lineages: monocytes and dendritic cells

(DCs), natural killer (NK) cells, B cells, CD4 T cells, CD8 T cells,

unconventional T cells, and granulocytes (Figures 1B–E and

Supplementary Figure 4A). The proportions of these lineages

were similar between patients and controls, except for

unconventional T cells, which were low in abundance in both

groups, yet relatively less abundant in CAP patients (median for

CAP, 1.8% [IQR, 1.2-2.6], median for control, 2.2% [IQR, 1.6-3.9];

P = 0.043; Figure 1E and Supplementary Figure 4B). We next

compared the abundance of all 86 MCs between patients and
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FIGURE 1

Circulating immune cell frequencies in patients with community-acquired pneumonia (CAP) and controls. (A) Experimental design: we obtained
peripheral blood mononuclear cells (PBMCs) and plasma from patients with CAP and two comparator groups: controls without signs of acute
infection and disease controls with COVID-19. We used 36-color spectral flow cytometry to acquire surface marker expression patterns for each cell
and clustered cells using FlowSOM. We performed analyses at several levels (1): individual cells; (2) MCs; (3) cell subsets, defined as all MCs that fall
within the same gate as determined by manual gating (e.g. we find nine classical monocyte MCs that altogether make up one classical monocyte
subset); and (4) lineages, assigned to MCs based on commonly used groupings in the immunological literature. In some analyses, we compared MCs
as whole, whereas in others we look at the values of individual subjects whose cells make up that MC (e.g. the median fluorescence intensity [MFI] of
HLA-DR for a subject within an MC). (B) Uniform manifold approximation and projection (UMAP) representative of all PBMCs from patients with CAP
and controls, colored by lineage (color codes as in D–F) or (C) by group. (D) Number of metaclusters (MCs) per lineage. (E) Stacked bar charts
indicating the mean of each lineage as a proportion of total cells for patients with CAP and controls. The proportion of (contaminating) granulocytes
in the PBMC fraction was very low and therefore indicated in text at the bottom of each bar. (F) Volcano plot for the comparison of all 86 MCs (as
proportions of total number of cells per subject). The X-axis depicts the difference in means of the log2-transformed proportion of each MC, the Y-
axis depicts the -log10-transformed Benjamini-Hochberg- (BH)-adjusted P-value obtained using Welch’s t-test. Larger labelled points above the
horizontal line represent significantly differentially abundant MCs. DC, dendritic cell; NK, natural killer.
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TABLE 1 Baseline characteristics and outcomes.

CAP
(n = 40)

Controls
(n = 31)

P-value

DEMOGRAPHICS

Age, years 68.8 (15.4) 64.3 (15.6) 0.23

Sex, male 24 (60.0) 20 (64.5) 0.81

COMORBIDITIES

Chronic obstructive pulmonary disease 15 (37.5) 2 (6.5) 0.002

Asthma 6 (15.0) 1 (3.2) 0.13

Hypertension 16 (40.0) 15 (48.4) 0.63

Diabetes mellitus, type 2 4 (10.0) 7 (22.6) 0.19

Chronic kidney disease 3 (7.5) 3 (9.7) >0.99

LABORATORY TESTS*

Platelets, x109 cells/L 273.9 (119.7)

Leukocytes, x109 cells/L 13.2 [9.4, 17.0]

Neutrophils, x109 cells/L 11.5 [7.2, 14.9]

Lymphocytes, x109 cells/L 0.80 [0.60, 1.28]

Neutrophil-to-lymphocyte ratio 9.9 [7.3, 15.4]

C-reactive protein, mg/L 150.8 [68.2, 264.5]

VITAL SIGNS AND DISEASE SEVERITY*

Mean arterial pressure, mmHg 95 (14)

Respiratory rate, bpm 22 [19, 28]

Temperature, °C 37.8 (1.3)

Modified Early Warning Score 3 [2, 4]

Pneumonia Severity Index 4 [2, 4]

CURB-65 1 [1, 2]

qSOFA 1 [0, 1]

CLINICAL COURSE AND OUTCOMES

Symptoms to admission, days 3 [2, 5]

Pathogen identified† 16 (40.0)

ICU stay (at any point during admission) 3 (7.5)

Hospital length of stay, days 5 [3, 9]

Time to clinical stability†† or discharge, days 5 [2, 8]

28-day mortality 0 (0)
F
rontiers in Immunology
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CAP, community-acquired pneumonia; bpm, breaths/beats per minute; CURB-65, confusion, blood urea nitrogen, respiratory rate, blood pressure, age 65 or older; qSOFA, quick sequential
organ failure assessment score.
Normally distributed continuous data are displayed as mean (standard deviation) and compared using Welch’s t¬-test; non-normally distributed continuous data are displayed as median
[interquartile range]; categorical data are displayed as count (percentage) and compared using Fisher’s exact test.
* Measured upon presentation to the emergency ward.
† Pathogens identified: influenza A (n = 4), Pseudomonas aeruginosa (n = 4), Streptococcus pneumoniae (n = 3), Moraxella catarrhalis (n = 2), Staphylococcus aureus (n = 2), Haemophilus
influenzae (n = 1), rhinovirus (n = 1), respiratory syncytial virus (n = 1), and Aspergillus spp. (n = 1).
Co-infections in three patients: (1) Pseudomonas aeruginosa and Staphylococcus aureus, (2) Streptococcus pneumoniae and influenza A, and (3) Streptococcus pneumoniae and respiratory
syncytial virus.
†† Defined as the modified Halm’s criteria (14): temperature ≤37,2°C, heart rate ≤100 bpm, systolic blood pressure ≤90 mmHg, respiratory rate ≤ 24 bpm, and oxygen saturation ≥90% for the
entire day.
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controls. This untargeted analysis resulted in 19 (22.1%)

significantly differentially abundant MCs (BH-adjusted P <0.05)

between groups (Figure 1F). MCs within the monocyte and DC

lineage featured prominently in this comparison (7/19 [36.8%] of

total MCs significantly different), as did unconventional T cell MCs

(5/19 [26.3%]). MCs 50 (neutrophils) and 54 (basophils) are likely

low density granulocytes that commonly contaminate PBMC

fractions of patients with inflammatory conditions (15). These

cells comprised only a minor fraction of total cells and will not be

discussed further. As alterations in immune phenotypes have been

reported when comparing patients with COPD with healthy

controls (16), we repeated the comparison between patients with

CAP and control subjects after excluding patients (n = 15) and

controls (n = 2) with COPD. The effect sizes in this comparison

correlated almost perfectly to the effect sizes of the whole cohort

(Pearson’s r = 0.97, P <0.0001), indicating that the higher

prevalence of COPD in patients with CAP did not confound the

comparison of circulating immune cell phenotypes between CAP

and control subjects (Supplementary Figure 5). Thus, substantial

differences emerged in the relative abundance of immune cell MCs

between patients with CAP and controls, driven primarily by

monocytes, DCs and unconventional T cells.
Monocytes and DCs express markers of
immune suppression

We delineated 17 monocyte/DC MCs (Figure 1D), divided over

8 cell subsets (Figure 2A). The four monocyte/DC MCs that were

significantly more abundant in patients with CAP compared with

controls were three classical monocytes MCs and one CD14dim

monocyte MC, whereas all less abundant MCs within this lineage

were DC MCs (Figure 2B; Supplementary Figure 6A for the relative

abundance of all monocyte and DC MCs). We examined the

functional profile of these MCs by assessing the expression of

seven surface markers relevant for immune cell activation and

suppression: CD11b, CD11c, CD38, CD95/Fas, human leukocyte

antigen – DR isotype (HLA-DR), programmed death 1 (PD-1), and

PD-ligand 1 (PD-L1; Supplementary Figure 6B for all markers).

First, we compared the expression of these markers on the

significantly more abundant classical monocyte MCs (MCs 64, 65

and 76) with the remaining non-significant classical monocyte MCs

(MCs 63, 69, 70, 71, 79, and 83; Figure 2C). MCs 64, 65, and 76 all

showed increased expression of PD-L1, and to a lesser extent PD-1

and CD38. Expression of HLA-DR was evidently decreased on MC

65, but increased on MC 76. CD11c was decreased on MCs 64 and

65, but slightly increased on MC 76. Concurrent expression of

HLA-DR and CD11c on MC 76 may indicate that these cells are

pro-inflammatory, whereas the concurrent downregulation of these

molecules on MC 65 likely indicates an immunosuppressive

phenotype. The differential expression patterns on the

significantly more abundant classical monocyte MCs (Figure 2C)

may reflect both immune suppression (e.g. reduced HLA-DR and

increased PD-L1) and inflammatory activity (e.g. increased CD38
Frontiers in Immunology 05
expression), which are both key features of the immunopathology in

critically ill patients with sepsis (17).

We next contrasted expression patterns of these markers across

all monocyte/DC MCs. For this, we compared the expression (as

median fluorescence intensity [MFI] per subject) between CAP and

control cells within each MC (Figure 2D) and each subset

(Figure 2E and Supplementary Figure 7). These analyses revealed

that cells from patients with CAP exhibited markedly decreased

expression of HLA-DR – even in MC 76, which had an overall high

expression of HLA-DR compared with other classical monocyte

MCs (Figure 2C) – and CD11c, and increased expression of PD-1

and PD-L1. To a lesser extent, CD11b was reduced, and CD38 and

CD95/Fas increased. We then explored whether the expression of

these markers corresponds to the relative abundance of monocyte/

DC MCs (Supplementary Figure 8). We found linear relationships

between the overall expression of PD-L1 and HLA-DR (the MFI for

all cells together) and the relative abundance of eachMC (quantified

as the Hedges’ g effect size compared with control); for example, the

more abundant a monocyte/DC MC was in CAP, the higher the

expression of PD-L1 (Pearson’s r = 0.82; P <0.0001), and the lower

the expression of HLA-DR (r = -0.57; P = 0.018; Figure 2F). Taken

together, these results indicate that, when compared with control

subjects, monocytes and DCs from patients with CAP display

variable signs of inflammation-induced activation, yet clear

subset-wide signs of immune suppression (increased PD-L1 and

PD-1, lower HLA-DR) and susceptibility to (Fas ligand-mediated)

apoptosis (increased CD95/Fas).
Universal upregulation of CCR7 and CXCR5
on monocytes and DCs

Considering their importance in immune cell migration, we

next examined the expression of chemokines receptors. The three

more abundant classical monocyte MCs all showed increased

expression of all measured chemokine receptors (CCR5, CCR6,

CCR7, CXCR3, and CXCR5), when compared with the classical

monocyte MCs that were not differentially abundant (Figure 3A).

However, when comparing the MFI for these chemokine receptors

between CAP and controls for each subject within each MC

(Figure 3B) and each subset (Figure 3C and Supplementary

Figure 9), we found a near-universal upregulation of the

chemokine receptors CXCR3, CCR7, and CXCR5 across most

monocyte/DC MCs and cell subsets in patients with CAP. In

addition, we found strong linear relationships between the relative

abundance of monocyte/DC MCs and the overall expression of

CCR7 (r = 0.78; P = 0.0002) and CXCR5 (r = 0.80; P = 0.0001;

Figure 3D); such relationships were not present for the other

chemokine receptors (Supplementary Figure 8). Expression of

CCR7 and CXCR5 positively correlated with PD-1, PD-L1 and

CD95/Fas, and negatively correlated with CD11c and to a lesser

extent HLA-DR (Figure 3E), and thus appear related to the

immunosuppressed and apoptosis-susceptible monocyte/DC

phenotype described in Figure 2.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1260283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Reijnders et al. 10.3389/fimmu.2023.1260283
Classical monocyte phenotypes are
associated with systemic inflammation
and clinical outcomes

We next explored whether K-means clustering – an

unsupervised machine learning algorithm – could use patterns of
Frontiers in Immunology 06
surface marker expression on classical monocyte MCs to

distinguish subgroups of patients with CAP. The expression of

CD11c, CD11b, CD38, CD95/Fas, PD-1, PD-L1, HLA-DR, CCR5,

CCR6, CCR7, CXCR3, and CXCR5 on classical monocyte MCs

separated patients in two distinct groups (KM-cluster 1, n = 21, and

KM-cluster 2, n = 19; Figure 4A and Supplementary Figure 10A).
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(opt-SNE) plot representative of all monocytes and DCs, colored by cell subset (e.g. all nine classical monocyte metaclusters [MCs] have the same
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Wilcoxon’s rank-sum test (adjusted per surface marker). Non-significant comparisons are displayed as more transparent bubbles to facilitate
interpretation of overall patterns. The color of the bubbles is proportional to the magnitude and direction of the differences (red is higher in CAP,
blue is lower in CAP), expressed as the Hedges’ g effect size. The plot is stratified based on whether these MCs are differentially abundant in the
volcano plot depicted in Figure 1F. (E) Boxplots showing the (arcsinh transformed) MFI of programmed death ligand 1 (PD-L1) and human leukocyte
antigen – DR isotype (HLA-DR) for each subject within the classical monocyte subset (i.e. all nine classical monocyte MCs taken together). Each
colored dot represents an individual subject, the box represents the lower and upper quartile, the middle line and black dot represent the median.
**P <0.01, ****P <0.0001. (F) Scatterplots for the correlations between the expression of PD-L1 and HLA-DR and the relative abundance of
monocyte/DC MCs. Y-axis shows the (arcsinh transformed) MFI; X-axis shows the Hedges’ g effect size (positive means higher in CAP versus
controls, negative means lower in CAP versus controls). The correlation coefficient (Pearson’s r) and corresponding P-value are depicted in the plot.
The size of the individual points in the scatterplots is proportional to the mean proportion of these cells within all monocytes and DCs of both CAP
and control subjects. PD-1, programmed death 1.
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Separation of the two KM-clusters was driven primarily by

expression of CCR7 and CXCR5 (Supplementary Figure 10B).

Consistently, when we compared the overall classical monocyte

phenotype between the two KM-clusters, KM-cluster 2 was

predominantly characterized by increased expression of

chemokine receptors, except for CCR6 (Figure 4B and

Supplementary Figure 10C). Remarkably, KM clustering using

only CCR7 or CXCR5 resulted in almost the exact same cluster

assignment for patients (Supplementary Table 2), emphasizing the

key role of CCR7 and CXCR5 in separating these two groups of

patients with CAP.

Patients in KM-cluster 2 had a longer time from start of

symptoms to hospital admission (median, 4 vs 2 days; P = 0.03),
Frontiers in Immunology 07
and higher admission C-reactive protein (median, 235 vs 74 mg/L;

P = 0.03; Supplementary Table 3). We next compared host response

plasma biomarkers between these clusters of patients. While limited

in statistical power due to sample size, the overall pattern suggested

an exaggerated inflammatory state in KM-cluster 2 – consistent

with the elevated C-reactive protein at hospital admission – with

significantly higher IL-6 and IL-1RA levels (Figure 4C and

Supplementary Figure 10D). Patients in KM-cluster 2 had an

increase, albeit not statistically significant, in time to clinical

stability or discharge (median, 6 vs 3 days; hazard ratio 0.56; 95%

confidence interval 0.29-1.07; P = 0.08; Figure 4D). Together, this

exploratory analysis provides preliminary evidence that classical

monocyte phenotypes – in particular high expression of CCR7 and
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Chemokine receptors on monocytes and dendritic cells (DCs). (A) Expression of chemokine receptors on individual cells in the three classical
monocyte MCs increased in CAP (MCs 64, 65, and 76), as compared with all MCs not significantly different in Figure 1F (MCs 63, 69, 70, 71, 79, and
83). The difference in fluorescence intensity is expressed as a Hedges’ g effect size. The magnitude of this effect size is commonly interpreted as
follows: ≥0.2 = small effect, ≥0.5 = moderate effect, ≥0.8 = large effect. (B) Bubble plot for the statistical comparisons between median fluorescence
intensity (MFI) of the selected surface markers for each patient within each metacluster (MC), i.e. using each individual subject’s MFI of their cells
within that MC and then comparing CAP and control. The size of the bubbles is proportional to the -log10-transformed Benjamini-Hochberg- (BH)-
adjusted P value obtained using Wilcoxon’s rank-sum test (adjusted per surface marker). Non-significant comparisons are displayed as transparent
bubbles to facilitate interpretation of overall patterns. The color of the bubbles is proportional to the magnitude and direction of the differences (red
is higher in CAP, blue is lower in CAP), expressed as the Hedges’ g effect size. The plot is stratified based on whether these MCs are differentially
abundant in the volcano plot depicted in Figure 1F. (C) Boxplots showing the (arcsinh transformed) MFI of CCR7 and CXCR5 for each subject within
the classical monocyte subset (i.e. all nine classical monocyte MCs taken together). Each colored dot represents an individual subject, the box
represents the lower and upper quartile, the middle line and black dot represent the median. ****P <0.0001. (D) Scatterplots for the correlations
between the expression of CCR7 and CXCR5 and the relative abundance of monocyte/DC MCs. Y-axis shows the (arcsinh transformed) MFI; X-axis
shows the Hedges’ g effect size (positive means higher in CAP versus controls, negative means lower in CAP versus controls). The correlation
coefficient (Pearson’s r) and corresponding P-value are depicted in the plot. The size of the individual points in the scatterplots is proportional to the
mean proportion of these cells within all monocytes and DCs of both CAP and control subjects. (E) Plot for correlations between CCR7 and CXCR5
expression and the expression of other selected surface markers on all nine classical monocyte MCs. The size and color of the square are
proportional to the correlation coefficient (Spearman’s r). Red represents a positive correlation, blue a negative correlation. PD-(L)1, programmed
death (ligand) 1.
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CXCR5 – are associated with the inflammatory status and disease

course in patients with CAP.
Other differentially abundant metaclusters
in patients with CAP

Besides monocytes and DCs, other differentially abundant MCs –

in the untargeted comparison of patients with CAP versus controls

(Figure 1F) – included five unconventional T cell MCs: three less

abundant TCRgd T cell MCs (MCs 18, 24, 47), one less abundant

double-positive T cell MC (MC 10), and one more abundant double-

negative T cell MC (MC 17) with an activated phenotype (high HLA-

DR, CD38 and CD95 expression; Figure 5A). Double-negative T cells

are heterogeneous and can be either TCRab+ or TCRgd+ andmay be

both immunosuppressive and proinflammatory (18, 19). While data

on double-negative T cells in pneumonia are limited, increased

circulating numbers have been reported to correlate with disease

severity in pediatric pneumonia (20) – specifically the CD3low subset,

which may correspond to the relatively low CD3 expression inMC 17

– and also in COVID-19 (21).

For the remaining differentially abundant MCs (Figure 1F), we

focused on those increased in patients with CAP. These included a

CD4 central memory T cell cluster with an activated and possibly

exhausted phenotype (high CD38, HLA-DR, PD-1, and CD95;

Figure 5B); a plasmablast MC (MC 84, Figure 5C); and a B cell

MC (MC 38) with high CXCR3 and high IgG, possibly reflecting an
Frontiers in Immunology 08
activated, class-switched pre-plasmablast/plasma-cell memory B

cell (Figure 5D) (22). These results highlight that cells throughout

the circulating immune system are altered in patients with CAP,

and may point towards a hitherto underexplored role for

unconventional T cells in CAP pathophysiology.
Immune features largely overlap between
patients with CAP and COVID-19

We next assessed to what degree peripheral immune features in

patients hospitalized for CAP overlap with those in 35 patients

hospitalized for COVID-19, with – similar to CAP – a low to

moderate severity of disease (Supplementary Table 4). The

proportions of lineages between COVID-19 and controls were

similar (Supplementary Figure 11A). Differences in the relative

abundance of MCs between COVID-19 patients and controls

were largely in line with the COVID-19 peripheral immune

signature reported in literature (23–31) (Supplementary

Figure 11B). Specifically, for the innate immune system, this

included an increase in classical monocytes (MCs 64 and 65) and

neutrophils (MC 50, likely low density), with a concurrent decrease

in non-classical and intermediate monocytes (MCs 72 and 73) and

DCs (MCs 66 and 80); for the adaptive immune system this

included an increase in plasmablasts (MC 86) and activated

effector CD8 T cells (MC 33).
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antigen – DR isotype; IL(-RA), interleukin (receptor antagonist); PD-(L)1, programmed death (ligand) 1.
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We assessed whether the immune features documented in

patients with CAP were also present in patients with COVID-19.

Interestingly, the majority of MCs with a biologically relevant

difference compared with controls (defined as Hedges’ g ≥0.5

versus controls in CAP or COVID-19) changed in the same

direction for CAP and COVID-19 (26/30 [86.7%]), indicating a

large overlap in peripheral immune response (Figure 6A). Indeed,

the proportional changes across all MCs strongly correlated

between patients with CAP and patients with COVID-19

(Pearson’s r = 0.65; P <0.001). Directly comparing CAP and

COVID-19 in an untargeted manner resulted in a modest
Frontiers in Immunology 09
number (8/86 [9.3%]) of differentially abundant MCs (with BH-

adjusted P-values mostly very close to 0.05), including higher

frequencies of several CD4, CD8 and TCRgd T cell MCs (MCs

12, 14, 18, 19, 21, and 24) in COVID-19 and higher frequencies of

DCs (MC 66) and non-classical monocytes (MC 73) in CAP

(Figure 6B). Together, these data show that the proportional

change of circulating immune cell frequencies is highly similar

between patients with CAP and patients with COVID-19.

Finally, we investigated whether key findings in monocytes and

DCs in CAP were also present in COVID-19. Comparing COVID-

19 and controls at the level of MFI for each subject within each MC
U
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represents an individual subject, the box represents the lower and upper quartile, the middle line and black dot represent the median. *P <0.05,
**P <0.01, ***P <0.001, ****P <0.0001. PD-1, programmed death 1.
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and each subset revealed expression patterns highly comparable to

CAP, such as decreased HLA-DR and CD11c, and increased PD-L1,

PD-1, CD95/Fas, CD38 and CXCR5 (Figures 6C, D). However, in

clear contrast with CAP, classical monocytes of patients with

COVID-19 did not express more CCR7 than controls

(Figures 6C, D). In summary, these comparisons show that the

immune response – at the level of circulating immune cell

frequencies and monocyte/DC surface marker expression – is

highly similar between CAP and COVID-19, with the notable

exception of CCR7 expression on classical monocytes.
Discussion

In this study we aimed to characterize the peripheral immune

response in patients with CAP at single-cell protein levels using 36-

color spectral flow cytometry. Compared with matched controls

without signs of acute infection, the most profound alterations in

patients with CAP were in the frequency and phenotype of

monocyte and DC MCs. Specifically, we demonstrate both an

increased frequency in distinct classical monocyte MCs, as well as

phenotypic alterations across virtually all classical monocyte MCs

reminiscent of immunosuppression (low HLA-DR, high PD-1 and

PD-L1) and clear upregulation of chemokine receptors, most

notably CCR7 and CXCR5. In an exploratory analysis, expression

patterns on classical monocytes, driven by CCR7 and CXCR5,

separated patients into two KM-clusters with diverging

inflammatory status and disease course. The peripheral immune

response in patients with COVID-19 was highly comparable to

patients with CAP, yet lacked the increased expression of CCR7 on

classical monocytes.

Immunosuppression is a key feature of the immunopathology

of sepsis (32, 33). Reduced expression of HLA-DR (important for

antigen presentation) and increased expression of PD-L1 (an

inhibitory immune checkpoint protein) on monocytes are used as

surrogates for an immunosuppressive state and, in septic shock,

have been linked to reduced cytokine secretion upon stimulation,

secondary infections, and mortality (34–37). In line with previous

studies by our group (8, 38, 39), these indicators of

immunosuppression were already present at hospital admission in

this cohort of patients with CAP of only moderate disease severity.

It remains to be established whether signs of immunosuppression in

patients hospitalized with moderately severe CAP relate to clinical

outcomes such as new infections (1, 4), an association that has been

made in patients with septic shock (17, 33). Our understanding of

the association between immunological profiles and clinical

consequences of pneumonia would be enhanced by future

longitudinal studies documenting immune and clinical readouts

before, during, and after pneumonia, although such investigations

are logistically and methodologically challenging.

We report a remarkable upregulation in the expression of CCR7

and CXCR5 across virtually all circulating classical monocyte MCs.

Additionally, separation of KM-clusters 1 and 2 was driven by these

chemokine receptors, and high expression of CCR7 and CXCR5 on

classical monocytes in KM-cluster 2 was associated with systemic

inflammation and a clear trend towards a longer time to clinical
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stability. Moreover, enhanced CCR7 expression on classical monocytes

was restricted to CAP and not present in COVID-19. CCR7 is best

known for its role in the migration of DCs and T cells to lymph nodes

for antigen presentation, and CXCR5 for migration of B and T cells to

lymphoid follicles (40, 41). In agreement with our results, exposure of

human monocytes to toll-like receptor agonists, b-adrenergic agents

and supernatants of activated platelets, increased CCR7 and CXCR5

expression (42, 43). Particularly monocyte CCR7 may impact the host

response during bacterial infection. CCR7 is considered a marker for

pro-inflammatory M1 macrophages (44), and binding of CCR7 on

monocytes/macrophages by its ligands CCL19 or CCL21 may

potentiate the secretion of pro-inflammatory mediators such as

tumor necrosis factor and IL-8 (45, 46). Patients with sepsis showed

increased CCR7 expression on circulating monocytes (47, 48), and a

bioinformatics analysis of whole blood leukocyte RNA expression in

datasets of patients with CAP-induced sepsis implicated CCR7 as a

gene driving sepsis development (49). In mice with Pseudomonas

pneumonia CCR7 deficiency resulted in a stronger proinflammatory

response and a more efficient clearance of bacteria from the lungs (50).

Collectively, these results identify monocyte CCR7 as a potentially

important player in the host response during pneumonia.

This study is the first to comprehensively characterize PBMC

immunophenotypes at single cell resolution in patients with CAP. We

used two matched control groups, including patients with COVID-19,

which allowed identification of common and distinctive immune

features. Limitations include that measurements were performed at a

single time point and in a single compartment (i.e. blood), and the lack

of functional testing of cell subsets/MCs. Furthermore, while our panel

was extensive, it does not capture all rare cell subsets. Although absence

of the confounding influence of dexamethasone treatment in our

comparison of CAP with COVID-19 can be considered a strength,

results obtained in the latter group may be less generalizable to patients

currently hospitalized with COVID-19. The K-means clustering

analysis was aimed at linking immune phenotypes to clinical

characteristics, but should be considered exploratory and requires

validation in a larger cohort.

We provide a comprehensive immunological map of PBMCs in

patients with moderately severe CAP at single-cell protein level,

revealing monocyte MCs with immunosuppressive features and

enhanced chemokine receptor expression, and disclosing increased

classical monocyte CCR7 expression as a feature unique to CAP

when compared with COVID-19. Our results may offer an entry

point toward developing novel immunomodulatory treatments of

patients with CAP.
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