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The yin and yang of B cells in a
constant state of battle:
intestinal inflammation and
inflammatory bowel disease
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1Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-
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Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the

gastrointestinal tract, defined by a clinical relapse-remitting course. Affecting

people worldwide, the origin of IBD is still undefined, arising as a consequence of

the interaction between genes, environment, and microbiota. Although the root

cause is difficult to identify, data clearly indicate that dysbiosis and pathogenic

microbial taxa are connected with the establishment and clinical course of IBD.

The composition of the microbiota is shaped by plasma cell IgA secretion and

binding, while cytokines such as IL10 or IFN-g are important fine-tuners of the

immune response in the gastrointestinal environment. B cells may also influence

the course of inflammation by promoting either an anti-inflammatory or a pro-

inflammatory milieu. Here, we discuss IgA-producing B regulatory cells as an

anti-inflammatory factor in intestinal inflammation. Moreover, we specify the

context of IgA and IgG as players that can potentially participate in mucosal

inflammation. Finally, we discuss the role of B cells in mouse infection models

where IL10, IgA, or IgG contribute to the outcome of the infection.

KEYWORDS
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Introduction

Inflammatory Bowel diseases (IBD) are chronic inflammatory disorders of the

gastrointestinal tract. Several factors may essentially contribute to the onset and

progression of IBD: genetic factors, environmental factors, the host immune system and

microbiota. The crosstalk between microbiota and the immune cells together with

intestinal epithelial cells comprises the hallmark of intestinal homeostasis (1, 2).

Although this interaction is essential for maintaining a balanced system and for

initiating a protective response to luminal pathogens, it seems to be also critical in the

pathogenesis of IBD. In response to intestinal barrier disruption, cytokines and chemokines

are released in excess and are crucial contributors to acute intestinal inflammation (3). IBD
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patients are unable to resolve the inflammation which further

develops into chronic intestinal inflammation due to sustained

activation of the mucosal immune cells.

Importantly, inflammatory bowel diseases, Crohn’s disease and

ulcerative colitis, are characterized as well by increased antibody

responses at the mucosal site which participate in exacerbation of

inflammation (4–8). Despite the fact that the pathogenic role of T

cell subsets and soluble factors such as TNF and IL-23 have been

intensively studied in intestinal inflammation (9–11), the role of B

cells and antibodies still remains largely elusive. However, in recent

years, studies have increasingly brought more light into the role of B

cells in IBD. In particular the detection of autoantibodies in the

serum of both ulcerative colitis (UC) and Crohn’s disease (CD)

patients has led to a better understanding of possible therapeutic

strategies (12). Different pathophysiology defines the two types of

IBD in regards to autoantibodies: UC patients have higher IgG

antibodies against tropomyosin 1 and 5 isoforms (13, 14) and anti-

neutrophil cytoplasmic antibody (ANCA) (15). On the other hand,

CD patients have much lower ANCA antibodies but increased levels

of IgG and IgA against Saccharomyces cervisiae (16), flagellin (17)

and E. coli (18). However, more studies are necessary for elucidating

the pathogenic role and the relevance of autoantibodies in IBD (12).

Due to the disruption of the intestinal barrier in IBD, increased

levels of plasma cells are found in the mucosa of UC patients and

may be an indicator of severity or relapse (8, 19). In addition to the

disruption of the intestinal barrier, IBD patients have altered

microbiota composition compared to healthy controls (20–22).

IgA, the most abundant antibody in the body, has been shown to

have a role in targeting bacterial species to maintain homeostasis

and control and elimination of pathogenic bacteria (23). The fitness

of beneficial bacteria is an important parameter for health, and the

secretion of IgA may have an advantageous role to play in this

respect. While several commensal bacteria are known to play an

immunosuppressive role in inflammation and the imbalance

between beneficial and harmful bacteria is a feature of IBD, the

precise function of gut bacteria in IBD still remains incompletely

understood (24).

In homeostasis, B cells are involved in maintaining the

intestinal barrier by producing antibodies such as IgA and IgM.

In addition, they have immunosuppressive activity as regulatory B

cells (Bregs) during inflammation, and their role has been described

in a number of diseases, including IBD, in both humans and mice

(25, 26). B cells have been suggested to be involved in the

immunoregulatory response to intestinal inflammation through

the production of the anti-inflammatory cytokine IL-10 in T cell-

induced colitis or DSS colitis models (25, 26). B-cell depletion using

anti-CD20 therapies also targets Bregs and IL-10, leading to

increased CD4+ T-cell proliferation and proinflammatory

cytokines and worsening UC (27, 28). In comparison to

regulatory T cells, Bregs do not consist of a single subset of B

cells (29) which raises the interest for their possible

hindered functions.

However, in a murine model of IBD, B cells are found to be

increased in the mesenteric lymph nodes and may increase the

inflammation severity together with T cells (30). A recent study

found that B cells with an IFN-I signature reduced the stromal-
Frontiers in Immunology 02
epithelial cell interaction required for mucosal healing. The study

demonstrates the short-term beneficial effect of B cell depletion on

wound healing in inflamed colonic tissue (31).

IgA is produced mainly in the gut-associated lymphoid tissues

(GALT) such as Peyer’s patches, mesenteric lymph nodes (mLN),

isolated lymphoid follicles (ILF), the cecal patch but also in the

lamina propria. In mice, the germinal centers formed in the Peyer’s

patches and mLN support the differentiation of IgA+ B cells and

consequently the production of specific IgA, while ILF seem to

contribute mostly to T-independent IgA synthesis (32, 33).

Interestingly, human GALT ILFs have recently been classified

into two subtypes, namely mucosal ILF (M-ILF) and submucosal

ILF (SM-ILF). These, ILFs have been shown to contain germinal

centers and memory B cells and are a major source of

physiologically important IgA (34) indicating the existence of

substantial species specific differences.

Although the function antibodies in the intestine environment

may be better understood, acting in opsonization of pathogens,

recruiting complement, binding Fc receptors (35–38), the function

of IgA is still puzzling especially due to the dichotomic role of

maintaining tolerance to commensals and elimination of pathogens.

Studies done on activation induced cytidine deaminase-

deficient mice showed that IgA is important for modulating the

bacterial communities in the intestine. Lack of IgA in the AID -/-

mice determined the excessive growing of anaerobic bacteria in the

small intestines. Colonization of germ-free mice with the same

anaerobic bacteria showed strong induction of unspecific IgA (39).

The changes in the microbial environment caused strong activation

of the immune response with hypertrophy in the lymphoid tissues.

IgA modulates the microbiota-immune response cross talk by

acting on bacterial epitopes and on bacterial metabolism (40, 41).

For example IgA directed against the capsular polysaccharide CPS4

determines a less pro-inflammatory phenotype of Bacteroides

thetaiotaomicron (42). IgA antibodies protect against colonizing

mucosal pathogens and maintain a homeostatic environment for

commensals using a variety of strategies that have been reviewed

elsewhere (43, 44). An interesting observation was made by Bunker

et al. when they tested the binding affinities of IgA antibodies to

bacteria in vitro. The study shows that the antigen expression levels

on bacteria that drives IgA binding are depending on the

environment (45).

Herein, we review how pro-inflammatory cytokines may play

an anti-inflammatory or pro-inflammatory role in the intestine and

how microbiota is influenced by immune cells interaction and in

return can influence the nature of immune response. In addition, we

discuss regulatory B cells in relation to microbiota. We present

newly described IgA producing Bregs as possible key players in

shaping the microbiota to enhance suppression of inflammation.
Anti or pro-inflammatory cytokines:
fine-tuners of the immune response

Cytokines and chemokines enable intercellular communication

and participate in maintaining homeostasis of the intestine. In IBD

patients, their functions seemed to be skewed to a continuous
frontiersin.org
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inflammatory state with negative effects on intestinal barrier

integrity (3). However, the labels of pro- and anti-inflammatory

describe a simplistic view of cytokines functions during an

inflammatory process (46). When sensing microbial components

through e.g. Toll like receptor (TLR) signaling, lamina propria

macrophages and dendritic cells produce large amounts of IL-1b,
IL-6, IL-18 and TNF (47). IL-6 is a pro-inflammatory cytokine

which can activate antigen presenting cells and T cells from the

intestine and may also have a function in the stimulation and

expansion of intestinal epithelial cells (IEC) (48). However,

blocking of IL-6 or IL-6 signaling has become an important

direction especially in treatment of UC and CD patients with

high production of IL-6 (49).

TNF is produced mostly by CD14+ macrophages, adipocytes, T

cells, fibroblasts in patients with IBD (50–52) and has several effects

in inducing intestinal inflammation in colitis: causing necroptosis in

Paneth cells, activating macrophages and effector T cells, affecting

the IEC and disrupting the intestinal barrier. IBD patients treated

with anti-TNF antibodies show reduced inflammation (53), but the

treatment with soluble TNF receptor has failed to improve the

disease (54). It was thus hypothesized that soluble TNF is needed for

self-renewal during intestinal inflammation while anti-TNF

antibodies resolve inflammation by binding to membrane TNF on

immune cells thereby causing apoptosis (55).

Innate lymphoid cells (ILCs) have been shown to produce high

levels of mainly pro-inflammatory cytokines such as IFN-g and IL23
which drive experimental innate immune mediated colitis (56).

IL23 production has been found to be increased in several murine

models of colitis, suggesting an essential role in intestinal

inflammation (57–59). Furthermore, UC and CD patients have

increased levels of IL23 in the serum and mucosa (60, 61). Several

other mechanisms were described that render the balance to a pro-

inflammatory state: the production of CC-chemokine ligand 3 by

ILCs recruits CCR1+ inflammatory monocytes and intensify the

inflammation in CD (62).

Moreover, in mice type 3 innate lymphoid cells are one of the

primary producers of IL-22, a cytokine with pleiotropic effects mainly

on non-hematopoietic cells (63). IL-22 production has protective

roles in the context of mucosal inflammation by preserving intestinal

stem cells after tissue damage (64) and by producing antimicrobial

peptides which act on the intestinal barrier and microbiota (65, 66).

Besides its beneficial role, studies however indicate that

overexpression of IL-22 results in high antimicrobial peptides

production with loss of bacterial diversity in IL10-/- mice, which

develop spontaneous colitis compared to IL10-/-IL-22-/- mice (67).

Studies have revealed high numbers of T cells present in the

intestine of IBD patients together with high levels of T cell-derived

pro-inflammatory cytokines (68, 69). Interestingly, there are

couples of differences in T cells subtypes present in CD compared

to UC patients. Th1 infiltration and increased production of IFN-g
and IL-2 is detected mostly in the lamina propria of patients of CD

(70), while NKT cells with Th2 type phenotype seem to be present

in the lamina propria of UC patients (71, 72).

Another T cell subset, Th17 cells, has been shown to produce

high levels of cytokines with pro-inflammatory activity in mouse
Frontiers in Immunology 03
models and potentially in both CD and UC (73, 74). Th17 cells,

together with other types of immune cells such as gd T cells and

ILCs, are the major producers of IL-17 in response to stimulation by

IL-1b and IL-23. During inflammation, IL-17 plays a role in

recruiting neutrophils, antimicrobial peptide production and

maintaining the intestinal barrier (75). Although IL-17

production protects against bacterial or fungal intestinal

infections, it can also have a pathological role. High levels of IL-

17 are found in the serum and in the mucosa of patients with UC

and CD (61, 76). Whether its supports inflammation in IBD

remains however unclear (77).

Integrity of the intestinal barrier is maintained also by gd T cells,

a cell type abundant in the intestinal epithelium. These cells were

shown to produce antimicrobial peptides or cytokines such as IL-

17, but can also contribute to intestinal immune reactions via

molecules such as granzymes (78). Despite their described role in

maintaining intestinal homeostasis in mice (79), their distribution

in IBD patients is less clear (80). For instance, one study found

increased expression of gut-homing chemokine receptor 9 on

circulating gd T cells in IBD patients (81). However, another

recent study, using single cell sequencing, showed a decrease of

CD8+ T cells and gd T cells in the tissues of patients with severe CD

(82). Nonetheless, treatment of CD patients with a neutralizing

anti–IL-17 receptor monoclonal antibody has shown no efficacy

and even worsened disease (83). Moreover, murine and human

Th17 cells may produce a more diverse pro-inflammatory

repertoire of cytokine such as IL-26 and IFN-g (84–87) suggesting
a strong role in inflammation and tissue damage in IBD.

The role of IL-26 in intestinal inflammation may depend on the

disease state, with a protective effect in acute inflammation but

damaging in the chronic inflammation of IBD patients (88). While

IL-8 is known to have a role in immune cell recruitment to the site

of infection or inflammation (89), it also has a role in differentiation

of Caco-2 BBE monolayers to enterocytes (90). Although, IL-1b
levels are elevated in IBD patients and are corelated with disease

severity, macrophage derived IL-1b signals from sensing microbiota

in steady state promote Treg differentiation and tolerance to dietary

antigens (91).

Importantly, non-immune cells contribute to the production of

pro-inflammatory cytokines in IBD (92). These cells may activate

the immune cells by producing TNF and IL-6 or may respond to

pro-inflammatory cytokines produced by lymphocytes or APC and

thus participate in intestinal barrier destruction in IBD. On the

contrary, IL-6 production by murine intestinal epithelial cells

promoted crypt organoid proliferation and increased stem cell

numbers (93). Moreover, anti-inflammatory cytokines such as IL-

10 are induced in response to microbiota and participate in

maintaining tolerance and homeostasis in the murine intestinal

epithelium (94, 95).

In conclusion, the cytokine network involved in intestinal

inflammation which then leads to IBD is regulated in a complex

manner by genetic, microbial and immune factors. Therapeutic

agents are used to block cytokines or cytokine signaling but have

sometimes limited efficacy or different outcomes depending on

patient subgroups (3, 96).
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The role of microbiota in
maintaining homeostasis

Homeostasis in the gut is characterized by immune tolerance to

commensal bacteria while preserving an intact intestinal barrier and

successfully fighting and clearing out pathogens. The intestinal

microbiota is separated from the intestinal epithelium by a barrier

of mucus (97, 98) enriched in antimicrobial peptides (AMPs). Not

solely the mucus layer acts as shield, but is also the environment

where bacteria are constrained by immune response (Figure 1).

Various intestinal dendritic cell (DC) subsets capture luminal

antigens from commensal bacteria via several proposed

mechanisms. One pathway refers to the delivery of luminal

antigens and is dependent on M cells, neonatal Fc receptors or

apoptosis. It was demonstrated recently that DC sampling of both

soluble and particulate antigens via so called Goblet cell associated

Passages (GAPs) could be of particular importance for mucosal

immunity and tolerance (99, 100). The direct pathway involves

intestinal dendrite extension into the lumen to sample antigens

(101) followed by migration to the lymph nodes (102). Importantly,

intestinal DC functions support IgA production by B cells (103).

Commensal products such as polysaccharide A condition DCs to

induce IL-10 producing T regs which help in preventing colonic

inflammation in the mouse colitis models (104–106). Murine DCs

can be conditioned by short-chain fatty acids: acetate, butyrate and

propionate to further support IL-10 producing cells (107) or IgA

production in B cells (108) (Figure 2).
Frontiers in Immunology 04
Mucosal tolerance is maintained by Tregs activated in response

to Myd88-dependent microbial sensing which promote IgA

production in mouse models and enforce commensal bacteria

(109). Myd88 regulates the expression of antimicrobial protein

RegIIIg preventing the activation of the adaptive immune

response to bacteria (110).

Nod-like receptors such as NOD2 participate in shaping the

microbiota composition by limiting the proliferation of the certain

bacterial taxa in NOD2-/- mice (111). In return, NOD2 can be

stimulated by commensal bacteria to promote the survival of

murine epithelial stem cells and epithelial renewal (112).

Commensal microbiota interacts with other innate immune

effector cells like monocytes and macrophages to maintain

homeostasis in the gut. Helicobacter hepaticus, a pathobiont,

produces an immunomodulatory polysaccharide that induces IL-

10 production in murine intestinal macrophages (113) and may

further promote IL-10 producing Tregs (114)(Figure 2).

Clostridium butyricum prevents acute experimental colitis in

mice by inducing IL-10 production in intestinal macrophages

(115). Anti-inflammatory response due to M2 polarization of

macrophages is induced by Bacteroides fragilis (116) and

Clostridia class, while Enterococcus faecalis induces a pro-

inflammatory M1 phenotype (117, 118) (Figure 2).

Signals from microbiota can shape the phenotypic diversity and

function of innate lymphoid cells ILCs. For example, microbial

metabolite sensor Ffar2 regulates the proliferation and function of

mouse type 3 ILCs (119). A study done by Kedmi et al. (120)
FIGURE 1

Regulatory B cells differentiate in response to pro-inflammatory stimuli during an acute infection. In a feedback loop with the microbiota, regulatory
B cells suppress inflammation in the gut and help return the environment to homeostasis. On the other hand, in the absence of regulatory B cells,
intestinal inflammation becomes chronic. This is associated with disruption of the intestinal barrier, bacterial translocation and high levels of pro-
inflammatory cytokines. B effector cells produce high levels of IgG antibodies in response to disruption of the mucosal barrier.
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showed that RORgt type 3 ILCs are necessary in inducing Tregs by

the Helicobacter hepaticus showing that microbiota target multiple

antigen presenting cells. Type 3 ILCs are important as immune

surveillance players of the microbiota, participating in controlling

the colonization resistance to pathogens by production of

IL22 (121).

Although the role of the Th17 subset is controversial in the

context of intestinal inflammation (122), their inflammatory

activity may be determined by specific bacterial taxa inducing

their differentiation. Segmented filamentous bacteria (SFB) induce

non-inflammatory Th17 while Citrobacter rodentium induced

production of pro-inflammatory cytokines from Th17 (123). Xu

et al. demonstrated that TGF-b signaling drives the production of

anti-inflammatory cytokine IL-10 in Th17 cells in the ileum and

Peyers patches of the mice showing that plasticity of Th17 cells

depends on environmental cues (124).

Another subset of T cells, follicular helper T cells (Tfh), can also

play a role in microbiota composition. One study showed that

deficiency of PD-1 co-receptor determines an altered phenotype of

murine Tfh that affects IgA binding capacity to bacteria and results

in an increase of the Enterobacteriaceae family (125). Tfh cells are

crucial for GC formation in both mice and humans, assisting B cells

in the generation of high affinity antibody production (126).

Consequently, impairment in Tfh cells caused by lack of

receptors, for example ATP-gated ionotropic P2RX7, translates to

low IgA binding to commensals (127). On the other hand,

microbiota can also have an impact on Tfh cells. Germ free mice

have impairment in Tfh development, due to the loss of MYD88

signaling through TLR2 (128). Tfh cells are continuously exposed to

microbial byproducts that infer in the GC reaction and the IgA

production, participating in the regulation of the microbiota-host

interaction (129, 130).
Frontiers in Immunology 05
Microbiota-T cells-IgA crosstalk in
inflammation processes

Alterations in the gut microbiota due to multiple factors, such

as environment or genetic susceptibility, contribute to development

of intestinal inflammation and IBD. Multiple IBD loci have been

linked to sensing and defense against bacteria, supporting the

evidence of aberrant immune responses to intestinal microbiota

(131–133). One of the first line of defense between luminal antigens

and intestinal epithelium is represented by IgA production at

mucosal surfaces (134). Although commensal bacteria induce

homeostatic IgA production which in turn binds to bacterial

communities to regulate their abundance and diversity (43, 135),

higher levels of IgA were found on pathogenic and colitogenic

bacteria (4).

In patients with IBD, bacteria taxa coated with IgA were shown

to participate in the pathogenesis of inflammatory processes in

mouse models (4, 6). Nevertheless, IgA coating plays a role in

restricting pathogenic strains from disrupting the mucosal barrier

(136, 137). Moreover, IgA coated bacteria from healthy individuals

have immunosuppressive roles in the gut in comparison with taxa

identified from IBD patients or from mice with dysbiosis. The

outcome on intestinal inflammation from the two situations with

IgA coated strains may be caused by different mechanism of T cell

dependent IgA production. The inflammatory pathway is induced

by Th17 cells while the immunoregulatory pathway depends on

regulatory T cells (138).

Cong et al. (139) focused specifically on T dependent IgA

production by Foxp3+Tregs in CBir1 Tg flagellin transgenic mice.

The study showed that Foxp3+ Tregs when stimulated by a specific

antigen only, in this case flagellin, promote the production of IgA in

B cells. Upon depletion of Foxp3+ Tregs, IgA levels and IgA+ B cells
FIGURE 2

Regulatory B cells produce IgA in response to anti-inflammatory factors such as IL-10. As a dual protective phenotype, IgA production regulate the
microbial composition while IL-10 production suppresses the activity of immune cells. Microbiota and microbial metabolites induce regulatory
phenotype in other immune cells that further support IgA+ B regs, which will further regulate the microbiota and suppress the activity of T cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1260266
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zogorean and Wirtz 10.3389/fimmu.2023.1260266
were reduced in the lamina propria suggesting that Foxp3+ Tregs

may also be important for the survival of intestinal IgA+ B cells.

Foxp3+ T cells suppress inflammation and sustain a balanced and

diverse microbiota, which in turn, stimulates the proliferation of

Foxp3+ T cells and IgA production in a feedback regulatory loop

(140). Foxp3+ T cells differentiate to T follicular regulatory (Tfr)

cells and induce IgA production in B cells. When Tfr are absent, T

follicular helper cells increase and affect the response of GC reaction

towards more poly or self-reactive B cells (141, 142) (Figure 1).

Furthermore, the production of a low specific IgA may determine

changes in the microbiota and their microbial products that are

necessary for the induction of regulatory T cells (143, 144). Th17

cells maintain homeostasis of the intestinal barrier in the steady

state but can also act as a two-edged sword by promoting

pathogenic inflammation in a genetic susceptible host (145, 146).

IL-10 deficient mice have severe inflammation in the gut due to

inflammatory and destructive processes mediated by Th17

responses (6). The study done by Britton et al. (138) offers a

hypothesis regarding the immunoregulatory capability of

microbiota in the etiology of IBD: the anti- or pro-inflammatory

arm of the balance is influenced by the microbial communities in

the gut which can either enrich a tolerogenic RORgt+Tregs cells or
enrich proinflammatory Th17 cells (Figure 1).

IgA-seq helped to identify bacterial taxa coated with high levels

of IgA from the gut of IBD patients (147) which were shown to

worsen the development of DSS-induced colitis in gnotobiotic mice

(4). However, the highly IgA coated bacteria are part of commensals

and may be insufficient to drive the inflammation alone without

having a specific susceptible environment or genetic conditions. For

example, Prevotellaceae, one of the taxa identified by Palm et al. (4)

aggravated chemically induced colitis in mice (148) and absence of

IL-10 predisposed to colitis in the presence of Helicobacter species

(149, 150).
Regulatory B cells

B cells are involved in the generation of an effective immune

response through antigen presentation, antibody and cytokine

production. Interestingly, B cells can also become Bregs, which

play a role in the suppression of the inflammatory milieu. The

suppressive capacity has mainly been described by the production

of IL-10. However, other immunoregulatory mechanisms are also

employed (151, 152).

The phenotypic characterization of Bregs is challenging because of

high heterogeneity in markers and lack of prototypic transcription

factors which precisely identify the population. Consequently, Bregs are

defined based upon their immunoregulatory function. B cells can

become Bregs at different stages of development or differentiation,

suggesting that the regulatory program may depend on environmental

conditions and not on predisposed fate-decisions (153).

B cells involved in the first line of defense are represented by

marginal zone B cells and B1 cells. To become mature, B cells have

to travel from the bone marrow to the secondary lymphoid organs.

As they progress to their maturation they go through 3 stages

identified, in mice, as transitional B cells T1, T2 and T3.
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Transitional 2-marginal zone precursors (T2-MZP) were

identified to produce IL-10 and have regulatory function in vitro

and in vivo (154–156). Additionally, marginal zone CD23-CD1dhigh

B cells produce high amount of IL-10 and have suppressive activity

(157–159). B10 cells are another population of Bregs, defined as

CD1dhi CD5+, and can be found in the spleen or peritoneal cavity

(160–162). B10 produce solely IL-10 and originate either in the

bone marrow or fetal liver (163). Antibody secreting cells (ASC),

such as plasmablasts and plasma cells, can also become Bregs with

important suppressive functions in experimental autoimmune

encephalomyelitis (EAE) and a Salmonella infection model (164,

165). Other Breg subsets were described in mouse and humans with

overlapping markers and suppressive function (166).

Bregs differentiate in response to inflammatory signals by

expressing inhibitory markers and anti-inflammatory cytokines

(167). Pro-inflammatory cytokines such as IL-6 or IL-1b are

induced during inflammation and drive the differentiation of T2-

MZP IL-10+ Bregs cells in a model of antigen induced arthritis.

Interestingly, the production of IL-6 and IL-1b is regulated by the

microbiota of mice manifesting arthritis (168). Nevertheless, IL10+

B cells can co-express IL10 together with pro-inflammatory

cytokines including IL-6 and TNF-a, which may suggest a

possible role of IL-6 and TNF-a for enhancing IL-10

production (169).

Factors such as B-cell activating factor (BAFF) and A

proliferation-inducing ligand (APRIL) are involved in IgA B cell

induction and survival (128, 170, 171), as well as in the induction of

IL-10+ and IL-35+ Bregs during inflammation (172–176).

Moreover, it was shown that human CD40+ILC3s engage in a

feedback loop with B cells in which they induce the differentiation

of Bregs through BAFF production (177) (Figure 1). The cytokine

IL-21 is produced by Th17 and Tfh cells. Together with TGF-b or

retinoic acid, IL-21 strongly promotes IgA class switching and

production in mice (178). Furthermore, IL-21, IL-15 and

granulocyte macrophage colony-stimulating factor (GM-CSF) are

essential for the induction of Bregs (179, 180).

Although inflammatory stimuli induce the activation of Bregs,

BCR recognition plays a critical role as well. By deleting two calcium

sensors STIM1 and STIM2 in mice, causing a BCR impairment,

Matsumoto et al. have shown that B cells produce less IL-10 due to

defective BCR stimulation (181). IL-10 production by IL10+

plasmablasts requires engaging of TLR and BCR which further

determine the transcription of IRF4 that binds to the IL-10 genomic

locus (165). Another study found that the differentiation of B10 cells

and IL-10 production can be induced by stimulating the B cells with

LPS, PMA (Phorbol-12-myristat-13-acetat) and ionomycin (182).

Moreover, Bregs are dominant in lymphoid tissues and the

peritoneal cavity but their role can be hindered depending on the

murine model of choice due to the presence of myeloid cells

producing IL-10 in liver and blood. While IL10+ B cells play no

essential role in endotoxemia, IL10+ B cells decrease the numbers of

CD8+ T cells during infection with murine cytomegalovirus and

control the immune activation when the mice were challenged with

anti-IgD antibodies (183).

Bregs differentiation and IL-10 production depends also on

CD40 stimulation and signaling and can be enhanced by IL-21 (169,
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184). Follicular T helper cells express both IL-21 and CD40L in the

GC, driving the class-switching of B cells to become memory B cells

and plasma cells. Hence, the GC reactions might be an environment

where effector and suppressive memory and plasma cells are

produced (153).

An efficient immune response is comprised also of effective

antigen presentation by B cells, which can further induce pro-

inflammatory or anti-inflammatory reaction. For example, the lack

of co-stimulatory ligands such as CD80 and CD86 on B cells induce

T cell anergy or Tregs (153, 185). In return, Tregs can deplete CD80

and CD86 ligands from antigen presenting cells such as B cells and

dendritic cells to further suppress the activation of conventional T

cells (186).

Stimulation of B cells with IL-35, an anti-inflammatory

cytokine, stimulates the conversion of B cells to IL35+ Bregs

which further act on suppression of T cells (187). It was shown

that in a model of experimental autoimmune uveitis both IL-10 and

IL-35 signaling might be essential for the suppression function of

IL35+Bregs (188). The same research group discovered that the IL-

12p35 subunit has immune-regulatory functions and is responsible

for inducing Bregs and Tregs expansion (189).

Several remaining questions still yet have to be answered

regarding Bregs activation and differentiation. Is the fate of a

Bregs written in their ontogeny or there are several factors that

contribute to the conversion of B cells to Breg? Given the missing

link of a transcription factor or the high diversity of markers that

describe Bregs, is their state a stable one or it is transitory to a pro-

inflammatory B cell? Moreover, looking at similar inducible cues for

both Bregs and effector B cells, does it depend on a certain

concentration or combination of factors? (153).

New studies addressing intracellular and extracellular

metabolic signals in Breg offered some light in understanding

the immunoregulatory balance of B cells. Although the

microenvironmental signals seem to be similar for both

regulatory and effector B cells, several pathways were identified as

regulators of different outcomes. For example, gut and microbial

metabolites (short-chain fatty acids, 5-hydroxyindoleacetic acid,

fatty acids) particularly supportes regulatory B cell differentiation

(166, 190, 191) (Figure 2).
How does the microbiota interact
with Bregs?

Microbiota promotes the differentiation of Bregs which in

response suppress inflammatory signals. The regulatory function

of Bregs has been described in several studies in autoimmune

disease models of multiple sclerosis, rheumatoid arthritis and IBD

(192–195). Bregs regulate the Th1/Th17 to Tregs balance in both

mice and humans. Mice that have a conditional IL-10 deletion in B

cells have reduced numbers of Tregs and an increase in pro-

inflammatory Th1 and Th17 cells (156, 196) (Figure 1).

The suppressive function of Bregs is not only supported by their

IL-10 production (166). Bregs can regulate the immune response

through other mechanisms such as: TGF-b (197), EBI3/IL-35

(Epstein-Barr virus induced gene 3) participates in inducing Tregs
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(164, 189), GITRL (glucocorticoid-induced tumor necrosis factor

receptor-related protein ligand) (194), FasL (Fas ligand) induced

apoptosis by binding to its receptor (198), PD-L1 (programmed

death ligand 1) participate in restricting T cell differentiation (173),

CD73 has an immunosuppressive effect by converting adenosine

monophosphate to adenosine (199, 200). B cells cooperate with

Tregs in feedback loops to attenuate inflammatory processes in the

gut. In DSS-colitis, B cell deficient mice have lower number of Tregs

in GALT and display more severe colitis. Interestingly, B cells

attenuated colitis in an IL10-independent pathway and induced

the differentiation of Tregs which supported the functions of IgA-

plasma cells (25).

The immunogenicity of bacteria seems to play an important

role in B cell activation and differentiation during the interaction of

B cells with host microbiota. If the encountered bacteria have a

strong immunogenic potential then Bregs will respond with a

strong immunoregulatory response to maintain immune tolerance

(201). Although, a more intense suppressive response by Bregs can

regulate pro-inflammatory immune responses caused by the same

bacteria, in the absence of Bregs the strong immunogenic bacteria

will aggravate the disease progression (202–204).

Defects in PI3Kg signaling translate to reduced numbers of IL-

10 producing Bregs in response to resident bacteria. B cells lacking

PI3Kg were unable to resolve the intestinal inflammation in T cell

mediated-colitis (205). The human IBD7 susceptibility locus

harbors the PIK3cd gene (206, 207) and genetic deletion of PI3Kg
drives spontaneous colitis in the presence of commensals (208, 209).

These findings might explain the roles of specific pathways in the

activation of immune cells by microbiota, since the PI3Kg pathway
seems to contribute to the immunoregulation mostly when

intestinal microbiota is the main activator of inflammation (205).

Another study done by Mishima et al. supports the role of

PI3Kp110d signaling for IL-10 production by bacteria murine

activated-B cells and its importance in maintaining mucosal

tolerance (210). They also observed that continuous bacterial

stimulation is essential for mounting a sustained activation of

Bregs in vitro.

Breg cells are characterized by their ability to suppress the

immune system, but their high diversity in phenotypic marker and

transcription factor expression makes specific phenotyping difficult

(152). The transcription factor AhR (aryl-hydrocarbon receptor)

contributes to the interaction of immune cells and microbiota by

binding diverse ligands from dietary components or from

microbiota (211). Recently, several studies revealed that Ahr

drives and maintains the immunoregulatory function of splenic

Breg (212, 213). Importantly, Piper et al. shows that, in mice, Ahr

responds to inflammatory stimuli and promotes the differentiation

of Bregs by regulating the production of IL-10 and silencing the

transcription of pro-inflammatory cytokines (212). Moreover,

Rosser et al. shows that presence of gut microbiota derived

metabolites such as butyrate increases the Ahr ligand availability

which results in supporting Breg function (190).

In addition to IL-10; other cytokines such as IL-35 are essential

in the outcome of several diseases (194). IL35+ B cells interact with

microbiota through their microbial metabolites and maintain

intestinal homeostasis. A microbial metabolite, indoleacetic acid,
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supports the expansion of IL35+ Bregs which are the main source of

IL-35 in the intestine during DSS-induced colitis. In turn, the

presence of IL-35 has immunosuppressive function and shapes

the intestinal microbiota (214). Moreover, IL-35 production plays

an important role in reducing the inflammation in models of T cell

dependent colitis (215) and DSS-induced colitis (216). Although the

IL-35 secretion is decreased in patients with UC compared to

controls, higher IL-35 in the mucosa of UC was correlated with

higher IL-10 secretion in the gut (217). Moreover, B cells from CD

patients have a higher expression of IL-35 but lower protein

secretion compared to controls (218).

Several bacterial pathogens can induce immunosuppressive

response to infection as an immunological escape. For example,

Helicobacter pylori infection can induce differentiation of Foxp3+

Tregs and CD19+ IL10+Bregs (219). When mice are infected with

H. pylori and treated with DSS-colitis, the colitis scores were

significantly reduced with less pro-inflammatory cytokines in the

colonic mucosa (220, 221). The studies suggest the role of H. pylori

in attenuation of acute and chronic colitis. Salmonella sp. infection

helped to identify a subset of IL-35 plasma cells which is induced

during infection together with IL-10 plasma cells and highlighted

the role of IL-35 Bregs as essential regulators of the immune system

(164, 222).
IgA Bregs

Although IgA plasma cells modulate the immune response in

particular at the mucosal sites through production of IgA, their role

as immunosuppressive players is not yet fully understood.

In vitro studies showed that IL-10 stimulation of human but not

mouse B cells contributes to proliferation of activated B cells and

may drive IgA production (223, 224). Kunisawa et al. (225) found

that IL-10 induced CD11b+, IgA+ plasma cells and determine IgA

production on those cells. Although it is not clear if IL-10 alone is

necessary for IgA production or some other factors are participating

in maintaining CD11b+ IgA+ plasma cells, the study identified the

CD150 surface marker as potential mechanism through which IL-

10 can mediate B cell proliferation. CD11b+ B cells are present in

the GALT in DSS-induced colitis and in UC patients. CD11b+ B

cells play an immunosuppressive role by inhibiting colitis in mice

and produce increased levels of IgA (226) (Figure 2).

As described before, another immunosuppressive mechanism

of Bregs is through expression of PD-L1 upon sensing inflammatory

signals (227, 228). IgA plasma cells in the lamina propria of mice

were found to express PD-L1 and to induce FOXP3+ Tregs cells but

not pro-inflammatory IFN-g+ Th1 cells (229) (Figure 2). Despite

the fact that IgA production is not the main focus, one study by

Serrán et al. (230) found expression of high levels of PD-L1 on

plasmablasts during infection with Trypanosoma cruzi with a

suppressive effect on T cells.

Fehres et al. identified a new subset of human IL-10 producing

B regs that express IgA (173). In this study, they describe that

APRIL stimulation determines differentiation to IgA+ B regs, while

other stimulations such as TGF-b and BAFF does not induce IL-10

production in IgA+ Bregs. APRIL-induced IgA+ Bregs significantly,
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suppressed CD4+ proliferation and induced Foxp3+ Tregs.

Furthermore, APRIL-induced IgA+ Bregs also inhibited TNF

production by macrophages through IL-10 and PD-L1. Albeit this

role of APRIL for production of IL-10 by IgA+ Bregs, some other

studies identified TGF-b as potent stimulatory factor for

differentiation of immunosuppressive plasma cells which express

IgA, IL-10 and PD-L1 in a mouse model of prostate cancer (231).

Non-resolving inflammatory responses in IBD are associated

with the development of colitis-associated colorectal cancer (CAC)

(232, 233). Even though IL-10 deficiency in B cells aggravates the

outcome of DSS-induced chronic colitis, it does not contribute to

the development of tumorigenesis in CAC, which suggests the

presence of other immunosuppressive mechanisms. Melcher et al.

found that Bregs can exhibit dual protective phenotypes: IL-10

production for the suppression on inflammatory environment and

on IgA production for shaping a protective microbiota (234)

(Figure 2). Interestingly, in this study the IL-10 producing Bregs

exert suppressive effects on Th1/Th17 cells in mouse chronic colitis

and then differentiate into IgA+ plasma cells in response to TLR

activation. After the differentiation into IgA+ plasma cells, the Bregs

lost the capacity for IL-10 production.

Homeostasis in the colon may also depend on the interaction of

IgA antibody secreting cells (IgA-ASC) and Tregs. IgA-ASC that

express the gut homing chemokine receptor CCR10+ form

conjugates with Tregs to direct their migration into the colon to

support a homeostatic environment (235). Moreover, CCR10+

IgG1-ASC have immunoregulatory role and can compensate for

the loss of CCR10+ IgA-ASC in IgA-ko mice. Furthermore, IgA-

ASC originate in the gut in response to commensals and can

migrate to central nervous system during experimental

autoimmune encephalomyelitis (EAE) where they play a critical

role in regulation of inflammation (236).

Bregs have heterogeneity in phenotypic markers and express

different transcription factors in both mice and human, giving rise

to the hypothesis that Bregs do not comprise a distinct cellular

lineage but any B cells can differentiate to Breg cells in an

appropriate environment (167). Latest research show that IgA

production by Bregs may be a new mechanism to regulate the

immune response and may bring new light in understanding the

anti-inflammatory and pro-inflammatory balance.
Pro-inflammatory IgA and IgG

IBD patients have increased numbers of B cells in the inflamed

intestine compared to healthy individuals. Interestingly, UC

patients described as ulcerative colitis type 1, have increased

expression of the B cell activation factor BAFF, suggesting a

possible role for B cells in IBD. Further studies have also

confirmed the expansion of B cells in UC patients. In a study

done by Rubin et al. they observed more gut trophic CD45RO+ B

cells in the inflamed tissue of CD patients compared to UC patients

(237). These CD45+RO B cells are considered a biomarker for CD

activity index and permeability of the gut. Moreover, a lower

expression of pSTAT3 levels in CD25+ B cells in inflamed tissue

of CD patients was detected compared to uninflamed tissue which
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can be associated with lower levels of regulatory B cells (237). The

study of Pararasa et al. suggests that the increase in CD27-IgD-

memory B cells in GALT of IBD patients is rather determined by

the proliferation at the site of inflammation and less by the

recruitment of cells from the blood. However, is interesting to

notice the same immune response for both UC and CD, supporting

the notion that the response to intestinal challenge determine the

expansion of CD27- B cells (238). The inflamed gut of UC patients

has increased IgA+ and IgG+ plasma cell populations compared

with healthy controls. Uzzan et al. suggests that IgG+ plasma cells

could participate in enhancing the inflammatory milieu (8). The

increased number of B cells during chronic inflammation in the

intestine develops in lymphoid structures recently described as

tertiary lymphoid structures (TLSs). However, TLS are present

more in biopsies from CD patients and still remain enigmatic in

their role during the disease (239, 240).

IgA produced at mucosal sites is considered to have anti-

inflammatory proprieties by keeping tolerance to commensals and

protecting against pathogens. Despite its high abundance in the

blood, the role of IgA in the serum is less understood (241). In

recent years the role of IgA binding to FcaRI (CD89) gained

increasing attention. FcaRI expression is observed in neutrophils,

eosinophils, macrophages, monocytes and Kuppfer cells (242).

Hansen et al. show that serum IgA forms immune complexes,

binds to FcaRI and induces pro-inflammatory cytokine production

in different human myeloid cells (243). High levels of IgA immune

complexes, IgA autoantibodies or increased IgA levels in the serum

are found in diseases such as celiac disease (244), IgA nephropathy

(245); and IBD (246).

Furthermore, patients with IBD have increased levels of

commensal-targeting IgG in the serum which contributes to

inflammation of the intestinal mucosa (247). Uzzan et al. found

reduced VDJ gene mutation in IgG+ plasma cells in UC which

might suggest an impairment of GC for differentiation of IgG+ and

IgA+ plasma cells due to hyperstimulation of B cells in an

inflammatory environment or might be explained by higher

accumulation of autoreactive cells due to inflammation (8). A

variant of FCGR2A, which alters the binding affinity of the

antibody receptor it encodes, FcgRIIA, for IgG, has been found in

genome-wide association studies (GWAS) in UC. The study of

Castro-Dopico et al. shows that colonic mucosa of UC patients with

FCGR2A genotype have anti-commensal IgG which forms

complexes with macrophages and induces NLRP3 and reactive

oxygen species with the production of pro-inflammatory IL-1b
and neutrophil-recruiting chemokines (248).
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Conclusion

In conclusion, the cytokine network in intestinal inflammation

leading to IBD is complex and highly regulated by genetic, microbial,

and immune factors. So far therapeutic agents targeting cytokines have

at least in some patients limited efficacy and varied outcomes.

Targeting all B cells with Rituximab has proven to be unsuccessful

and rather detrimental to IBD patients, most likely particularly because

potential functions of Bregs have been overlooked (12). Better

understanding the proinflammatory role of B cells and the factors

that induce intestinal Bregs could help to design better treatments that

do not interfere with the activity of beneficial Bregs and provide new

insights into stimulating Bregs to tilt the balance towards suppression

of inflammation. The emergence of IgA-producing Bregs adds another

mechanism for regulating inflammation in close interaction with the

microbiota. Further research is needed to fully comprehend the

intricate mechanisms and interactions within this complex network

and to develop more effective treatments for IBD.
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102. Esterházy D, Loschko J, London M, Jove V, Oliveira TY, Mucida D. Classical
dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg)
cells and tolerance. Nat Immunol (2016) 17(5):545–55. doi: 10.1038/ni.3408

103. Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells
carrying commensal bacteria. Science (2004) 303(5664):1662–5. doi: 10.1126/
science.1091334
frontiersin.org

https://doi.org/10.4049/jimmunol.1601066
https://doi.org/10.1038/nature08949
https://doi.org/10.1172/JCI21404
https://doi.org/10.1038/mi.2015.65
https://doi.org/10.4049/jimmunol.177.5.2760
https://doi.org/10.3389/fimmu.2021.611256
https://doi.org/10.3389/fimmu.2021.622934
https://doi.org/10.1016/j.immuni.2012.05.013
https://doi.org/10.3389/fimmu.2020.02148
https://doi.org/10.1084/jem.20150318
https://doi.org/10.1084/jem.20121588
https://doi.org/10.1371/journal.ppat.1005108
https://doi.org/10.1038/s41385-019-0252-3
https://doi.org/10.1016/S0140-6736(12)60026-9
https://doi.org/10.3389/fimmu.2018.01212
https://doi.org/10.1136/gut.2008.163667
https://doi.org/10.1016/j.autrev.2021.103017
https://doi.org/10.1136/gut.2007.135053
https://doi.org/10.1155/2021/8816041
https://doi.org/10.1038/s41577-022-00746-9
https://doi.org/10.1136/gut.52.1.65
https://doi.org/10.1136/gutjnl-2011-301668
https://doi.org/10.1038/s41577-020-00452-4
https://doi.org/10.1002/eji.200425124
https://doi.org/10.1038/nri3007
https://doi.org/10.1038/nri3007
https://doi.org/10.1111/j.1365-2249.2012.04649.x
https://doi.org/10.1038/s41467-021-22164-6
https://doi.org/10.1038/s41467-021-22164-6
https://doi.org/10.1053/j.gastro.2012.07.084
https://doi.org/10.1016/j.cytogfr.2010.09.001
https://doi.org/10.1073/pnas.1415675112
https://doi.org/10.3892/mmr.2012.1111
https://doi.org/10.3892/mmr.2012.1111
https://doi.org/10.1136/gut.2007.130112
https://doi.org/10.1038/s41591-020-1003-4
https://doi.org/10.1023/A:1005617302718
https://doi.org/10.1186/1756-0500-6-431
https://doi.org/10.1038/s41586-019-1082-x
https://doi.org/10.3389/fimmu.2019.00647
https://doi.org/10.4049/jimmunol.1600960
https://doi.org/10.4049/jimmunol.1301757
https://doi.org/10.4049/jimmunol.1700105
https://doi.org/10.1016/j.immuni.2019.03.017
https://doi.org/10.1016/j.immuni.2019.03.017
https://doi.org/10.1053/j.gastro.2006.02.055
https://doi.org/10.1038/ni.2604
https://doi.org/10.1038/nature10863
https://doi.org/10.1038/s41385-019-0240-7
https://doi.org/10.1038/emm.2014.16
https://doi.org/10.1038/ni.3408
https://doi.org/10.1126/science.1091334
https://doi.org/10.1126/science.1091334
https://doi.org/10.3389/fimmu.2023.1260266
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zogorean and Wirtz 10.3389/fimmu.2023.1260266
104. Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL.
Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal
molecule via both innate and adaptive mechanisms. Cell Host Microbe (2014) 15
(4):413–23. doi: 10.1016/j.chom.2014.03.006

105. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents
intestinal inflammatory disease. Nature (2008) 453(7195):620–5. doi: 10.1038/
nature07008

106. Wiechers C, Zou M, Galvez E, Beckstette M, Ebel M, Strowig T, et al. The
microbiota is dispensable for the early stages of peripheral regulatory T cell induction
within mesenteric lymph nodes. Cell Mol Immunol (2021) 18(5):1211–21. doi: 10.1038/
s41423-021-00647-2

107. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of
Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses
colonic inflammation and carcinogenesis. Immunity (2014) 40(1):128–39. doi:
10.1016/j.immuni.2013.12.007

108. Wu W, Sun M, Chen F, Cao AT, Liu H, Zhao Y, et al. Microbiota metabolite
short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is
mediated by GPR43.Mucosal Immunol (2017) 10(4):946–56. doi: 10.1038/mi.2016.114

109. Wang S, Charbonnier LM, Rivas Noval M, Georgiev P, Li N, Gerber G, et al.
MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal
tolerance and enforces commensalism. Immunity (2015) 43(2):289–303. doi: 10.1016/
j.immuni.2015.06.014

110. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, et al. The
antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and
host in the intestine. Science (2011) 334(6053):255–8. doi: 10.1126/science.1209791

111. Ramanan D, Tang MS, Bowcutt R, Loke P, Cadwell K. Bacterial sensor Nod2
prevents inflammation of the small intestine by restricting the expansion of the
commensal Bacteroides vulgatus. Immunity (2014) 41(2):311–24. doi: 10.1016/
j.immuni.2014.06.015

112. Nigro G, Rossi R, Commere PH, Jay P, Sansonetti PJ. The cytosolic bacterial
peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut
epithelial regeneration. Cell Host Microbe (2014) 15(6):792–8. doi: 10.1016/
j.chom.2014.05.003

113. Danne C, Ryzhakov G, Martı́ nez-López M, Ilott NE, Franchini F, Cuskin F,
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