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Self-DNA driven inflammation in
COVID-19 and after mRNA-
based vaccination: lessons for
non-COVID-19 pathologies
Martin Heil*

Departamento de Ingenierı́a Genética, Laboratorio de Ecologı́a de Plantas, Centro de Investigación y
de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented

concentration of economic and research efforts to generate knowledge at

unequalled speed on deregulated interferon type I signalling and nuclear factor

kappa light chain enhancer in B-cells (NF-kB)-driven interleukin (IL)-1b, IL-6, IL-18
secretion causing cytokine storms. The translation of the knowledge on how the

resulting systemic inflammation can lead to life-threatening complications into

novel treatments and vaccine technologies is underway. Nevertheless, previously

existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-

inflammatory damage-associated molecular pattern (DAMP) was largely ignored.

Pathologies reported ‘de novo’ for patients infected with Severe Acute Respiratory

Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven

inflammation in fact had been linked earlier to self-DNA in different contexts,

e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile

inflammation, and autoimmune diseases. I highlight particularly how synergies

with other DAMPs can render immunogenic properties to normally non-

immunogenic extracellular self-DNA, and I discuss the shared features of the

gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that

enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger

syncytia formation, inflict damage to their host’s DNA, and trigger inflammation –

likely for their own benefit. These similarities motivate speculations that similar

mechanisms to those driven by gp41 can explain how inflammatory self-DNA

contributes to some of most frequent adverse events after vaccination with the

BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e.,

myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis,

new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The

hope is tomotivate a wider application of the lessons learned from the experiences

with COVID-19 and the new mRNA vaccines to combat future non-COVID-

19 diseases.
KEYWORDS
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1259879/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1259879/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1259879/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1259879/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1259879&domain=pdf&date_stamp=2024-02-19
mailto:martin.heil@cinvestav.mx
https://doi.org/10.3389/fimmu.2023.1259879
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1259879
https://www.frontiersin.org/journals/immunology


Heil 10.3389/fimmu.2023.1259879
1 Introduction

“Nucleic acids are one of the few molecular patterns that can be

used to detect viruses”. Jacques Deguine, 2017 (1)

Coronavirus disease 2019 (COVID-19) caused by infection with

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 was

initially considered as an infectious inflammatory lung disease. Yet, it

became clear quite quickly that severe cases of COVID-19 comprise

systemic endothelial dysfunction and inflammation in respiratory

and non-respiratory organs that result from deregulated type I

interferon (IFN I) signalling (2–7). During the initial stage of

infection, a rapid production of IFN I and of IFN-stimulated genes,

including several inflammatory cytokines and chemokines (the so-

called IFN I response), can protect surrounding cells from infection

and thus, usually is sufficient to halt viral replication (8, 9). However,

during later stages of the infection cycle, SARS-CoV-2 triggers an

ongoing expression and/or activation of the transcription factor

nuclear factor kappa light chain enhancer in B-cells (NF-kB) and
downstream, of tumour necrosis factor (TNF)-a, interleukin (IL)-1b,
IL-6, IL-18 (hereinafter termed ‘pro-inflammatory cytokines’) and

IFN-g (the only type II IFN), with little contribution of antiviral IFN

I/III (3, 10). The resulting cytokine storm (11) sustains detrimental

inflammation and drives massive bystander cell death, thereby

generating endothelial damage in multiple organs and – most likely

– causing the progress to severe forms of COVID-19, with potentially

fatal outcomes (3, 7, 10, 12–16).

Several studies identified DNA-sensing pattern recognition

receptors (PRRs) as drivers of IFN I-driven inflammation and

massive cell death in severe COVID-19: cyclic GMP–AMP

synthase (cGAS), absent in melanoma (AIM)2, nucleotide-binding

oligomerization domain (NOD)-like leucine-rich repeat (LRR) and

PYRIN domain containing (NLRP)3, receptor for advanced glycation

end products (RAGE), and Toll-like receptor (TLR)9 (9, 13, 14, 17–

23): Upon detecting double stranded (ds)DNA, these PRRs activate
Abbreviations: ACE2, Angiotensin-converting enzyme 2; AIM2, Absent in

melanoma 2; ASC, Apoptosis-associated speck containing a caspase

recruitment domain (CARD); ATR, Ataxia telangiectasia and Rad3 related

protein; CHK1, Checkpoint kinase 1; cGAS, Cyclic GMP–AMP synthase;

cfDNA, cell-free DNA; COVID-19, Coronavirus disease 2019; DAMPs,

Damage-associated molecular patterns; DDR, DNA damage response; ds,

double stranded; eDNA, extracellular DNA; HMGB1, High-mobility group box

protein 1; HIV-1, Human Immunodeficiency Virus 1; ICU, Intensive care unit;

IFN I, Type I interferon; IL, Interleukin; IRF, Interferon regulatory factor 3;

MAPK, Mitogen-associated protein kinase; mtDNA, mitochondrial DNA;

MyD88, Myeloid differentiation primary response protein 88; nDNA, nuclear

(genomic) DNA; NF-kB, Nuclear factor kappa-light-chain-enhancer in B-cells;

NLRP3, Nucleotide-binding oligomerization domain (NOD)-like leucine-rich

repeat (LRR) and PYRIN domain containing; PBMCs, Peripheral blood

mononuclear cells; PRR, Pattern recognition receptor; RAGE, Receptor for

advanced glycation end products; ROS, Reactive oxygen species; SARS-CoV-2,

Severe Acute Respiratory Syndrome Coronavirus 2; SLE, Systemic lupus

erythematosus; ss, single stranded; STING, Stimulator of interferon genes;

TBK1, TNF receptor associated factor (TRAF) associated NF-kB activator

(TANK) binding kinase 1; TLR, Toll-like receptor; TNF-a, Tumour necrosis

factor a.
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the production of antiviral and pro-inflammatory cytokines and

chemokines and eventually, cell death, via two principal pathways

(reviewed in (24, 25)). While cGAS signals via stimulator of

interferon genes (STING) to induce predominantly IFN I, TLRs

signal via the adaptor protein myeloid differentiation primary

response (MyD)88 and the transcription factor NF-kB to activate

the expression of IL-1b, IL-6 and IL-18 and of AIM2, NLRP3 and

other elements of the inflammasome. Inflammasomes are

multiprotein complexes that control the massive release of pro-

inflammatory cytokines via pyroptosis, a pro-inflammatory cell

death (Figure 1, see refs (38–40) for reviews).

At first glance, the identification of dsDNA-sensors as players in

coronavirus disease seems difficult to understand. SARS-CoV-2 is a

single stranded (ss)RNA virus and, unlike retroviruses such as HIV-

1, coronaviruses do not reverse-transcribe their RNA genome to

DNA. So, if no viral cDNA is synthesized, which DNA activates

innate immunity in COVID-19? It turns out that fragments of the

host’s ‘self-DNA’ activate the before mentioned dsDNA sensors to

trigger - eventually detrimental - inflammation and cell death

(Figure 2). Several groups reported that SARS-CoV-2 infection

generates oxidative stress, damages the mitochondrial genome,

destabilizes the mitochondrial membrane and subsequently,

triggers a release of mitochondrial (mt)DNA to the cytosol (9, 13,

18, 41, 42). Thereby, mtDNA becomes accessible to cGAS, AIM2 or

NLRP3 (9, 18, 22). Second, SARS-CoV-2-infected cells can undergo

syncytia formation, a cell-to-cell fusion that generates multi-

nucleated cells and therefore, is associated with DNA damage,

nuclear membrane blebbing and a release of chromatin –

including nuclear (genomic) DNA (nDNA) - to the cytosol,

where it is sensed by cGAS (9, 13, 17, 23, 36). Moreover, the

DNA of dying infected cells can trigger inflammation and

pyroptotic cell death in immune bystanders, either because the

DNA of engulfed cells becomes exposed to TLR9, or because DNA

that these cells release to the extracellular space serves as an

inflammasome-activating signal (9, 13).

Elevated concentrations of cell-free (cf) self-DNA in blood or

plasma of COVID-19 patients have been reported repeatedly and in

most cases, cfDNA levels correlated with disease severity (13, 18–21,

42–56). This finding should not come as a surprise, because during

pyroptosis, pro-inflammatory cytokines are released together with

cellular content, including self-DNA and other damage-associated

molecular patterns (DAMPs) (6, 13, 14, 46, 54, 57, 58). DAMPs (or

alarmins) are endogenous molecules that adopt the additional

function of signalling danger when their fragmentation or

translocation to the ‘wrong space’ indicates damage to self (59–

61). Sensing self-DNA as a DAMP allows the detection of harmful

agents directly based on the harm they do (62). For example, the

rapid pyroptotic cell death of SARS-CoV-2-infected blood

monocytes or lung-resident macrophages prevents the virus from

completing its reproductive cycle (22, 28).

However, DAMPs-mediated signalling can also generate

detrimental effects, particularly when a massive release of pro-

inflammatory DAMPs from dying cells causes more cells to die: a

situation that strongly contributes to the CD4+ T cell depletion in

patients infected with HIV-1 (63, 64), reviewed in (65).

Extracellular self-DNA has been associated with multiorgan
frontiersin.org
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FIGURE 1

Sensors of dsDNA and downstream signalling pathways. (A) Double-stranded (ds)DNA sensors and signalling cascades reported in the context of
COVID-19. [1] Upon dsDNA binding, cyclic GMP-AMP synthase (cGAS) produces cyclic GMP-AMP (cGAMP) to activate stimulator of interferon genes
(STING): an adaptor protein that in homeostasis resides as monomer in the endoplasmic reticulum. [2] Upon activation by cGAMP, STING
oligomerises and [3] translocates to the Gologi Apparatus to recruit [4] TANK binding kinase 1 (TBK1). [5–7] Subsequently TBK1 phosphorylates itself,
STING, and interferon regulatory factor 3 (IRF3) (26), thereby [8] activating IRF3. [9] Activated IRF3 moves into the nucleus to [10] trigger the
transcription of type I and type III interferon (IFN I). In patients with COVID-19, cGAS/STING have been described to trigger a distinct response and
activate nuclear factor kappa light chain enhancer in B-cells (NF-kB), either [11] directly via the IkB kinase (IKK) complex (27), [13] which then
activates NF-kB, or [13] indirectly via a TBK1-dependent activation and [14] a mutual inhibition between TBK1 and IKK (27) along with a block of IRF3
nuclear translocation (15). More common activators of NF-kB are Toll-like receptors (TLRs), including the endosome-expressed TLR9, which is the
only known sequence-specific DNA sensor. [15] Upon activation by endosomal CpG-rich dsDNA, TLR9 – like most TLRs – associates with the
adaptor protein myeloid differentiation primary response (MyD)88 to [16] facilitate the formation of a complex with Interferon receptor-associated
kinases (IRAKs) and TNF receptor-associated factor (TRAF)6. [17, 12] Downstream, TAK1 and IKKs activate NF-kB. [18] A further receptor that signals
via NF-kB is the receptor for advanced glycation end products (RAGE), the only dsDNA sensor in the cell membrane. [219] Furthermore, RAGE can
internalize with its ligand and [20] deliver it to the endosome to facilitate sensing by TLR9, which ultimately activates NF-kB and – likely – amplifies
the inflammatory response. [21] Activated NF-kB translocates to the nucleus to [22] facilitate the expression of pro-IL-1b, IL-6, pro-IL-18, and of the
different elements of the inflammasome: AIM2, NLRP3, apoptosis-associated speck containing a caspase recruitment domain (CARD) (ASC)-like
protein, pro-caspase and pro-gasdermin D. Thereby, agonists of TLRs prime the cell for inflammasome formation. Activation of the inflammasome
requires a second signal. [23] RAGE can provide this signal by activating NADPH oxidase. [24] Alternatively, NADPH oxidase can be activated by the
P2X7 receptor in response to sending extracellular ATP (eATP). [25] The reactive oxygen species (ROS) formed by NADPH oxidase can function as
signal II [26] and activate the inflammasome. [27] Alternatively, cytoplasmatic DNA that is sensed by AIM2 or NLRP3 can act as signal II. (B) Upon
sensing signal II, AIM2 or NLRP3 associate with ASC and pro-caspase 1 to form the active inflammasome that liberates active caspase-1, thereby
facilitating the maturation of IL-1b and IL-18. Since these ILs don´t possess a secretion signal, active gasdermin D is also produced to form a plasma
membrane pore, which enables the release of these cytokines together with cellular content. See Figure 2 for graphical legend.
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FIGURE 2

Different forms of cell death associated with SARS-CoV-2 infection are driven by DNA. (A) Autonomous cell death of infected endothelial cells and
epithelial driven by cGAS or TLR9 (9, 15, 18). Infection with SARS-CoV-2 damages mitochondria and leads to the release of mtDNA to the cytosol.
[1–4] This mtDNA activates cGAS/STING signalling, which [5–6] activates NF-kB via TBK1 or [7–8] IKKs. A dominance of NF-kB over IRF3-dependent
signalling is favoured by [9] the mutual inhibition of TBK1 and IKKs and [10] SARS-CoV-2 blocking the translocation of IRF3 to the nucleus. [11] In
consequence, NF-kB moves into the nucleus to [12] trigger expression of NF-kB-dependent genes; an effect which - if sustained during the late
phase of the infection - leads to aberrant inflammation and poor clinical outcome (9). [13–16] Others reported mtDNA to become - via an unknown
mechanism – accessible to TLR9 and thereby trigger IRAK1/4 and TRAF6-dependent activation of IKKs. (B) Inflammasome-driven cell death of
infected monocytes and macrophages (22, 31, 32) typically requires a first, priming stage in which [1] a TLR ligand such as, e.g., endosomal dsDNA,
triggers the association of a TLR with the adapter protein MyD88 to [2–3] activate IKK via IRAK/14, TRAF6 and other downstream protein complexes.
[4] Subsequently activated NF-kB and [5] NF-kB-driven expression of the inflammasome components absent in melanoma2 (AIM2), (NOD)-like
leucine-rich repeat (LRR) and PYRIN domain containing3 (NLRP3), ASC-like protein, and the precursors of caspase 1, Gasdermin D, Il-1b and IL-18
allow the cell to enter the primed stage. The subsequent activation of the inflammasome can be initiated by diverse cytoplasmatic DAMPs, but also,
e.g., by extracellular ATP (eATP). [6] eATP is sensed by P2X7, [7] which subsequently activates membrane-bound NADPH oxidase to [8] generate
intracellular reactive oxygen species (ROS). Alternatively, [9] mitochondrion-derived cytoplasmatic ROS or [10] mtDNA have been suggested to act
as signal II (18) that [11] triggers the assembly of the inflammasome (as illustrated here for the AIM2 inflammasome). [12] Inflammasome-liberated Il-
1b and IL-18 [13] and IL-6 [14] are released via the membrane pore formed by Gasdermin D together with other cellular content, a process
culminating in pyroptosis. (C) Bystander cell death of macrophages. Self-DNA from dying infected endothelial cells that have been engulfed by
macrophages can activate TLR9 in these cells to trigger NF-kB-controlled inflammatory signalling. This pathway can be amplified when extracellular
DAMPs like mtDNA or nDNA are sensed by RAGE, which then directly activates NF-kB, or by a receptor-assisted transport of DNA or DNA-protein
complexes to the endosome, where these can be detected by TLR9 (33). It is likely that this mechanism explains the association of plasma levels of
RAGE in the blood of COVID-19 patients with poor clinical outcome (34, 35). (D) Graphical legend of Figures 1–3.
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failure after severe trauma (66–70), including sepsis-like systemic

inflammation (71), sepsis (72), can lead to myocarditis (73–76) or

lung inflammation (77), facilitates the reactivation of latent virus

infections, including Herpes Simplex Virus, Varicella Zoster Virus,

or HIV-1, and favours the development of autoimmune diseases

such as systemic lupus erythematosus (SLE) and psoriasis (67, 76,

78–86). Elevated plasma levels of cf nDNA or mtDNA are common

in HIV-1-infected patients (87–91) and might explain the chronic

inflammatory and autoimmune-related pathologies that frequently

develop in this group (65, 92–94): examples include

thrombocytopenia (95–98), diverse forms of vasculitis (99, 100),

myocarditis (101), psoriasis (102–104), rheumatoid arthritis (105,

106), SLE (102, 105, 106) and herpes zoster (107).

Considering the role of circulating DNA in these pathologies and

the similarity of some of the resulting symptoms, a role for circulating

self-DNA in severe COVID-19 appears highly likely. Nevertheless, it

seems that the potential importance of pro-inflammatory self-DNA

had to be discovered ‘de novo’ for COVID-19. The first studies that

associated increased serum levels of certain DAMPs with severe

COVID-19 appeared in 2020 (108–111). Correspondingly, a role of

immunogenic self-DNA in severe COVID-19 was hypothesised in

the same year (112) and indeed, a team from the University of

Missouri with first-author Alex Earhart were the first to publish on

30th of April 2020 empirical evidence for a role of extracellular DNA

in severe COVID-19: the authors used a DNase (Dornase a) to

dissolve DNA-containing neutrophil extracellular NETs - large,

extracellular webs formed by cytosolic proteins and decondensed

chromatin including histone and n/mtDNA that trap bacteria or

viruses (113–115) - in the lung of a COVID-19 patient (116),

Subsequently, others followed the rationale that the degradation of

extracellular DNA by Dornase a should reduce mucus rigidity and

accumulation and thereby lead to respiratory improvement (117–

122). Importantly, a group from S. Korea with first author Hee Ho

Park (119) reported on Oct 20th cfDNA concentrations of 0.41 mg

mL-1 in the blood of healthy individuals and of 0.85 and 2.83 mgmL-1

in the blood of patients with light and severe COVID-19,

respectively (119).

With exception of the before mentioned studies, however, there

is little evidence that existing knowledge on inflammatory self-DNA

guided the research towards mechanisms that lead to severe

COVID-19 or the trials aimed at repurposing pre-existing drugs

during the first phase of the COVID-19 pandemic. Even less

evidence indicates that knowledge on how and why certain

viruses trigger DNA damage had any influence on vaccine

development. Although one can only speculate about the reasons,

it seems possible that papers published in 2003 or 2004 were rated

outdated, at least by the younger generation of scientists, while

HIV-1 was possibly deemed ‘too distant’. In addition, it appears that

the immunogenic properties of self-DNA and its potential roles in

multiple pathologies has not yet been fully assimilated by the

immunological community, perhaps because self-DNA as a

paramount DAMP contradicts the immunological paradigm of

self-tolerance. As pointed out by the legendary immunologist

Andrea Ablasser, “such a ‘universal’ sensing mechanism violates

one of the most fundamental rules of the classical pattern
Frontiers in Immunology 05
recognition dogma, which is based on pathogen-specific structural

patterns instructing self- versus nonself discrimination” (123).

Therefore, the aim of the present work is to motivate a wider

application of the lessons learned from the experiences with COVID-

19 and the new mRNA vaccines to combat future non-COVID-19

diseases, providing preliminary and associational evidence for the

hypothesis: "Self-DNA-driven inflammation is one of the factors that

contribute to severe COVID-19 and to certain adverse events

subsequent to COVID-19 mRNA vaccination.

This hypothesis has mainly been formulated considering that:
1. Immunogenic self-DNA has been proposed as a driver of

inflammatory and autoimmune-related processes in HIV-

1-infected patients.

2. Similar, if not identical, symptoms have been observed

among HIV-1-infected and SARS-CoV-2-infected

patients as well as in vaccinated individuals who suffer

from severe adverse effects (12).

3. Elevated levels of cf nDNA or mtDNA have been detected

in plasma of HIV-1-infected patients (87–91) and of SARS-

CoV-2-infected patients (19, 20, 42–44, 47, 49, 52–56, 119),

as well as in the supernatant of SARS-CoV—infected

human airway epithelial cells (13, 18).

4. Elevated levels of autoantibodies, in particular anti-dsDNA

and antinuclear antibodies, have been reported from

patients with severe COVID-19 in various case reports,

but also in a study that compared 217 COVID-19 patients

in the ICU with 117 age- and sex-matched controls (124)

(for a review see (125)).

5. Multiple reports on elevated levels of anti-dsDNA

antibodies in the plasma of vaccinees (126–132) indicate

that increased cfDNA levels might be common in this

group, although direct evidence for elevated levels of

cfDNA in plasma of vaccinated individuals is scarce (but

see (127)).

6. A mouse model demonstrated that CoV-2 S expression

caused enhanced levels of autoantibodies and inflammatory

cytokines, which ultimately led to tissue destruction

(133), and

7. a long-lasting persistence of full-length CoV-2 S protein has

been reported from plasma of several individuals who

presented post-vaccination myocarditis, but not from

vaccinated individuals who did not suffer from adverse

effects (134).
To support this hypothesis, rather than providing a balanced

review, I discuss mechanisms by which self-DNA has been

reported – or suggested – to drive inflammation with potentially

detrimental effects in non-COVID-19 pathologies and which are

highly likely to apply also in COVID-19. I focus particularly on

HIV-1, because SARS-CoV-2 and HIV-1 share multiple features,

among others in the functions of CoV-2 S and the gp41 unit of the

envelope glycoprotein of HIV-1 (135). For parallels with

inflammaging see (136–139) and those with autoimmune

diseases see (86).
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2 Evidence from other pathologies

The role of various DAMPs in COVID-19 has been reviewed by

Søren Paludan and Trine Mogensen (140). Self-DNA, in particular,

has received less attention, although existing knowledge from

several non-COVID pathologies provides a solid basis to

hypothesize a similar role in COVID-19. Over decades, self-DNA

was considered as immunologically inert, although the cytokine-

activity of DNA was known many years before its identification as

the carrier of the genetic information (141). During homeostasis,

diverse cytosolic and extracellular DNases eliminate self-DNA that

appears outside the nucleus and in addition, the cytoplasmatic

expression of dsDNA sensors was believed sufficient to avoid

erroneous immune responses to self-DNA: dying cells will usually

release their DNA into the extracellular space, and DNA – being a

heavily negatively charged molecule – does not normally pass

through membranes. However, in complexes with positively

charged molecules, including certain DAMPs, DNA can become

immunogenic (61, 142).

As mentioned in the introduction, self-DNA has been associated

with multiorgan failure after severe trauma, myocarditis, the

reactivation of latent virus infections, including Herpes Simplex

Virus, Varicella Zoster Virus, or HIV-1, thrombocytopenia,

psoriasis (102–104), rheumatoid arthritis and SLE. Intriguingly,

these pathologies were also common among COVID-19 patients

(39, 137, 143), and the transcriptome of skin lesions from patients

with severe COVID-19 exhibited strong similarities with cutaneous

LE (9). Similar symptoms emerged among the most frequent severe

adverse events subsequent to COVID-19 vaccination, at least for

some of the platforms (144). For example, thrombocytopenia was

mainly observed among vaccinees who received the ChAdOx1

adenoviral-vector-DNA (AstraZeneca) vaccine (145, 146) and

cutaneous vasculitis was observed mainly in those receiving

ChAdOx1 (147) or the BNT162b2 mRNA (Pfizer-BioNTech)

vaccine (148, 149) (reviewed in (150)). Most of the other disorders

identified as severe adverse effects were reported predominantly from

individuals who received the BNT162b2 vaccine, followed bymRNA-

1273 (Moderna): examples include myocarditis (151–157), herpes

zoster (154, 158–160), rheumatoid arthritis (161, 162), autoimmune

nephritis or hepatitis (132, 163), new-onset SLE (126, 128, 130) or

neurological autoimmunity (164), and flare-ups of psoriasis (154,

165–168), or SLE (129, 152, 161, 162, 169).

All these pathologies could theoretically be driven – partly or

completely – by immunogenic self-DNA and in fact, all of them

have been related to self-DNA in the context of non-COVID-19

pathologies. Using trauma as an example, several prospective

observational studies reported elevated concentrations of free

cfDNA (66–68, 70), or of histone-complexed cfDNA (170), in the

blood of severely injured trauma patients. In all these studies, the

cfDNA concentrations correlated with poor clinical outcome (66–

68, 70, 170). The causal role cfDNA in the inflammatory response to

trauma was shown by the group of Carl Hauser at Harvard (67, 69).

Back in 2010, the group observed increased plasma levels of

mtDNA and nDNA in rats exposed to traumatic injury combined

with haemorrhagic shock and found that hepatocyte-derived
Frontiers in Immunology 06
mtDNA, but not nDNA, activated polymorphonuclear

neutrophils in vitro (69). The group compared the activation of

various mitogen-associated protein kinases (MAPKs) and used

endosome acidification assays to identify TLR9 as the most likely

receptor of this mtDNA. In vivo, mtDNA delivered via tail-vein

injection triggered liver inflammation at 1hr that was associated

with enhanced levels of IL-6 and TNF-a in whole liber homogenate

(69). More recently, the group demonstrated that treatment with a

nucleic acid scavenger (polymerous hexadimethrine bromide) can

rescue the rodents from severe multiple organ dysfunction (67).
3 Self-DNA as a DAMP in COVID-19

“Coming across extracellular DNA and RNA swimming around

when you are a cell is usually bad news”. Sophia Häfner, 2013 (171)
3.1 Signalling pathways triggered by dsDNA

As mentioned in the introduction, several PRRs sense DNA (see

Figure 1) and, with exception of TLR9, they do so in a sequence-

independent manner. This means that in principle, these PRRs do

not distinguish self- from nonself-DNA. This lack of a specificity for

any sequence motifs explains why cGAS is now considered one of

the elements that connect DNA damage to several autoimmune

diseases and cancer, but also the counterintuitive observation of

cGAS-controlled immunity against RNA viruses, including HIV-1,

human T cell-leukaemia virus type I and Dengue virus (172–174).

Active cGAS produces cyclic GMP-AMP to activate STING, which

dimerises and activates TNF receptor associated factor (TRAF)

associated NF-kB activator (TANK) binding kinase 1 (TBK1) and

downstream, interferon regulatory factor 3 (IRF3), which moves

into the nucleus and triggers the transcription of type I and type III

interferon (IFN). In the particular case of SARS-CoV-2, the cell-

autonomous activation of cGAS/STING signalling also contributes

to NF-kB-dependent cytokine production, at least in human

epithelial cells (15).

Besides cytosolic cGAS, endosomal TLR9 has been reported to

be activated by SARS-CoV-2 (18, 175). TLRs are membrane-bound

PRRs that sense a diverse array of extracellular or endosomal

DAMPs and PAMPs and form part of one of the most studied

examples of a DAMP-mediated immune priming: the activation of

inflammasomes in two steps (59, 176, 177). Upon binding by one of

these ligands, most TLRs signal via myeloid differentiation primary

response (MyD)88, Interferon Receptor-Associated Kinases

(IRAKs), TNF receptor-associated factor (TRAF)6, TBK1, and the

IKK complex (69, 178). Downstream, activated NF-kB translocates

to the nucleus to facilitate the expression of pro-IL-1b, IL-6 and

pro-IL-18 and of the different elements of the inflammasome:

AIM2, NLRP3, apoptosis-associated speck containing a caspase

recruitment domain (CARD) (ASC)-like protein, pro-caspase, and

pro-Gasdermin D (Figure 1A) (40, 58, 179). Thereby, TLR ligands

serve as signal 1 that primes the cell for fast responses to future,

more challenging threats, which are indicated by a second,
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intracellular signal 2. Both AIM2 and NLRP3 are dsDNA sensors

that bind to cytoplasmatic DNA, including phagocytosed DNA that

is released from lysosomes. AIM2 seems to exclusively sense DNA,

but NLRP3 senses multiple endogenous and exogenous molecules

that indicate threats, including reactive oxygen species (ROS), and it

is also activated when extracellular ATP (eATP) binds to a

purinergic receptor, e.g. P2X7 (38, 59, 180). In response to this

‘activation’ signal, AIM2 or NLRP3 associate with ASC and pro-

caspase 1 to form the active inflammasome, a multiprotein complex

that liberates active caspase-1 to facilitate the maturation of IL-1b
and IL-18. Since these ILs don´t possess a secretion signal, active

gasdermin D is also produced to form a plasma membrane pore,

which enables the release of these cytokines together with cellular

content (13, 181) (Figure 1B).
3.2 Pathways to DNA-driven inflammatory
cell death in COVID-19

In the context of COVID-19, the dsDNA sensors participate in

inflammatory processes that usually culminate in cell death, via

mechanisms that can be roughly grouped into three major

pathways: Cell-autonomous cell death, bystander cell death and

dying syncytia. Cell-autonomous cell death leading to aberrant

inflammation in COVID-19 (Figure 2A) has been described, e.g.,

by Andrea Ablasser ’s team in Lausanne (9) and Ralf

Bartenschlager’s team in Heidelberg (15) as an outcome of

mtDNA release from damaged mitochondria that results in an

‘aberrant’ cGAS/STING-pathway causing a specific activation of

NF-kB and a block of IRF3 nuclear translocation in SARS-CoV-2

infected endothelial cells and lung epithelial cells, and by a Brazilian

team with first author Tiago Costa (18) as the outcome of a

mitochondrial dysfunction that leads to a TLR9-dependent NF-

kB activation in human umbilical vein endothelial cells (Figure 2A).

Furthermore, a team at NIH in Bethesda and Georgetown

University in Washington (29) described autonomous cell death

to be caused NLRP3-inflammasomes activation by high levels of

oxidative stress that are associated with mitochondrial dysfunction

in human monocytes (29), and also Judy Lieberman’s and Richard

Flavell’s teams at Harvard Medical School and Yale (22, 28)

inflammasome-dependent pyroptosis of SARS-CoV-2 infected

macrophages and monocytes (Figure 2B). Doubts remain, and

several differences among these papers will have to be resolved by

future work. For example, Junqueira et al. observed ca.10 % infected

cells among the blood monocytes in COVID-19 patients (22), while

Lage et al. “were unable to detect productive infection of primary

human HC monocytes by SARS-CoV-2 in vitro” (29). Di Domizio

et al. (9) define endothelial cell death as STING-dependent but do

not offer a concrete mechanism that connects aberrant IFN I-

signalling to the death of infected cells and – curiously enough –

I could not find a single study that considered both cGAS/STING

signalling and inflammasomes together. Doubts also remain

concerning the signals I and II that are generated by SARS-CoV-

2 replication to activate inflammasomes in the same cell and

whether activation of TLR9 was caused by mtDNA or a direct

effect of the virus. Both mitochondrial ROS (29) and DNA from
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other dying cells (Lieberman, personal communication) were

suggested to activate inflammasomes as signal II, which in the

latter case would classify the cell death as bystander cell death.

Evidently, infected cells eventually die. Before or after doing so,

they can trigger inflammation and eventually, cell death, in

neighbouring immune ‘bystander’ cells. The team headed by

Andrea Ablasser (9) observed that activated, IFN I-producing

macrophages frequently surrounded those vessels that exhibited

strongest signals of endotheliopathy and concluded that “signals

derived from dying (endothelial) cells promote type I IFN

production by macrophages”. Similarly, a particularly nice and

detailed study performed in Jenny Ting’s Lab in Chapel Hill and

published by Katherine Barnett as first author (13) started from

immunohistochemical analyses of COVID-19 autopsy lungs, which

showed active inflammasomes and cell death in alveolar

macrophages directly adjacent to infected alveolar epithelial cells.

Subsequently, they used a co-culture system of human airway

epithelial cells and peripheral blood mononuclear cells to confirm

that inflammasome activation and cell death was limited to co-

cultured cells but absent in isolated cells. Both studies suggested

self-DNA (both mitochondrial and genomic) from the dying

infected cells as the signal that activated inflammation in the

immune cells, although Di’Domizio et al. favoured engulfed

endothelial cells (Figure 2C) while Barnett et al. suggest lytic cell

death as the mechanism allowing bystander cells to access DNA

from infected cells (9, 13).

Third, SARS-CoV-2-infected cells can fuse with non-infected

ACE2-expressing cells to form syncytia: multinucleated cell

complexes that facilitate viral spread without exposure to host

antibodies (23, 182, 183) (Figure 3). Various groups observed

syncytia as a common cytological feature of post-mortem lung

samples obtained from individuals who died of COVID-19 (23, 182,

184–186). A team from Beijing and Harvard with first author Zhou

Zhuo (17) focused on the switch from a suppression of type I IFN

signalling during the initial phase of infection to the (over-) induced

cytokine signalling at later stages and discovered that this shift is

associated with syncytia formation, which in turn is accompanied

by the release of chromatin – including nDNA to the cytosol (13,

17). Thereby, SARS-CoV 2 enhances the visibility of its’ hosts self-

DNA to the immune system (187).
3.3 Self-DNA as a DAMP in COVID-19:
preliminary evidence

Pharmacological attempts to support a causal role of DNA in

COVID-19 used DNA-scavenging nanomaterials or recombinant

DNase-I (Dornase a). Bruce Sullenger’s lab at Duke University

discovered that the plasma and endotracheal aspirate of COVID-19

ICU patients activated various TLRs, including TLR9. Aiming at

identifying DNA-containing DAMPs as these agonists, they treated

serum and ETA with DNA-scavenging MnO nanoparticles and

observed strong reductions of the content of DNA, RNA and

HMGB-1 and consequently, the activating effect on TLRs (14).

Unfortunately, the hypothesised ‘DNA-containing DAMPs’ were

not identified and serum, rather than individual DAMPs, was used
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in all TLR-induction tests. Although DNA/HMGB1 or DNA/

histone complexes were likely contributing to the fraction of

DNA-containing DAMPs, this study clearly shows that much

more research will be required until certain inflammatory effects

can be clearly related to specific DAMPs.

Several groups treated COVID-19 patients with recombinant

human DNase I, administered as DNase I-coated nanospheres or as

nebulized Dornase a, which is approved for the treatment of cystic

fibrosis (117, 119, 122). I already mentioned the team from the

University of Missouri (116). Subsequently, Hacer Kuzu Okur and

colleagues at Acibadem Altunizade Hospital in Istambul (117)

reported on 7th of September 2020 that treatment of patients with

Dornase a lead to significant clinical improvement in the

radiological analysis, oxygen saturation and respiratory rate.

These changes were associated with significantly decreased viral

loads when comparing nasopharyngeal and oropharyngeal samples

taken on the day before the treatment and after 7 days. In the same

study, Dornase a decreased viral load and the negative effects of

SARS-CoV-2 infection on cell proliferation in a realtime Vero cell

culture system as well as in vitro NETosis by thawed adult human

mononuclear cells (117). Three weeks later, Andrew G. Weber and

coauthors from New York (118) reported on significant reductions

in the production of proinflammatory cytokines by PBMCs and in

the fraction of inspired oxygen in five mechanically ventilated
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COVID-19-patients who were treated with nebulized Dornase a
and who were successfully extubated, discharged from hospital and

remained alive (118). A further month later (on 20th of October

2020), a multicentre team from S. Korea with first author Hee Ho

Park (119) reported that treating plasma of COVID-19 patients

with DNase-I significantly reduced the eDNA levels and NET

formation. Moreover, DNase-I-coated nanospheres decreased

eDNA concentrations in the blood, neutrophil activity, lung

damage and mortality in a septic mouse model (119).

A team from Sweden with first author Jane Fisher (120) treated

five severely ill COVID-19 patients with Dornase a and all of

them became independent of mechanical ventilation and could

be dismissed from the intensive care unit within 4 to 15 days of

treatment. Immunofluorescence microscopy of sputum produced

by these patients confirmed the infiltration by neutrophils and high

abundances of NET-forming neutrophils in COVID-19 sputum,

and ex-vivo treatment of the sputum from one patient

demonstrated the rapid (within 10 min) degradation of NETs. In

the same study, proteomic analyses of sputum allowed to identify

both subtypes of immunoglobulin A and mucins, blood

plasma proteins such as albumin, leukocyte proteins, and

inflammatory/antiviral response proteins such as interferon-

induced proteins as the most abundant proteins in COVID-19

and to reveal that the recovery due to Dornase a treatment was
FIGURE 3

Spike – the multipurpose locksmith. Common knowledge holds that the spike protein serves to recognize specific receptors on the surface of host cells,
but in fact, CoV-2 S has several roles: Binding to a cell membrane receptor, mediating membrane fusion between the viral and host membranes, which
results in the release of viral content, syncytia formation, and – likely – the destabilisation of the nuclear envelope (33–35). [1] Viral entry can occur via
endocytosis or membrane fusion. Both processes depend on CoV-2 S, [2] independently of whether entry occurs via the endosomal pathway (left) or
membrane fusion (right). After entry [3], viral RNA is released into the cytoplasm and [4] used for the replication of the RNA genome and protein
synthesis. This process is associated with DNA damage, a destabilization of the nuclear envelope, and nuclear membrane blebbing (→): processes that
likely benefit the virus because they liberate the nucleic acids that SARS-CoV-2 requires for its replication. [5-6] Subsequently, Spike protein expressed
on the cell surface (→) also controls syncytia formation: a process that usually serves to facilitate viral spread without exposure to the host immune
system (34, 36). The first virus for which nuclear membrane blebbing has been reported is HIV-1 (37). In the case of HIV-I, the bipartite envelope
glycoprotein (Ev)fusion performs the two essential functions of binding to receptors on the surface of target cells and fusioning the host-cell and viral
membranes, including the formation of a fusion pore to deliver the viral core into the cell cytoplasm.
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associated with a reduction in complement proteins, haemoglobin,

lipopolysaccharide protein, and C-reactive protein, that is, proteins

indicative of elevated innate immunity, cell damage and ongoing

infection (120). In a study conducted by Andrew Toma and co-

authors from Palm Beach Gardens Medical Centre (121), of 39

patients included in the study, 24 had reduced respiratory support

requirements and out of 8 patients initially requiring mechanical

ventilation, 7 were successfully extubated by the end of the

study period.

A Greek team with first author Efstratios Gavriilidis (122)

combined inhaled DNase with drugs aimed at controlling cytokine-

mediated hyperinflammation: an inhibitor of the IL-6-receptor and a

Janus Kinase (JAK)1/2 inhibitor. They report that the combined

treatment was associated with significantly lower in-hospital

mortality and intubation rate, shorter duration of hospitalization,

and prolonged overall survival. As a notion of caution, in a clinical

trial performed by the team at University of Missouri with 10

COVID-patients treated with Dornase a and 20 case controls and

published 2021 with first author Zachary Holliday (188), the

differences between treatment and control groups in static lung

compliance and NET abundance in BALF were not maintained

after terminating the treatment. The same study could detect on

effect on NETs in the blood (188). In summary, a positive effect of

Dornase a has so far only been shown for NETs on the surface, but

not in the blood vessels of human COVID-19 patients.

Additional, although indirect support for the detrimental effects

of DNA-driven inflammation is provided by the fascinating

explanation as to why coronavirus infection does not cause

disease symptoms in bats (189–193). The energy-demanding

flight of bats unavoidably damages their mtDNA (191, 192). As

an adaptation, bats have lost the inflammasome-forming PRRs

AIM2 and IFI 16 and other IFN I-related genes, and they exhibit

dampened transcriptional priming of several components of the

NLRP3-inflammasome (192). Consequently, bats show almost no

inflammatory immune response to cytoplasmatic or circulating self-

DNA (191–193).
4 DAMPs and inflammasomes – a
smart but dangerous liaison

“DAMPs and TLRs have not received much attention in COVID-

19” Luis A. Silva-Lagos et al., 2021 (194)
4.1 DAMPs in COVID-19

Apoptosis represents a form of cell death of somatic cells long

since known to be associated with abundant translocation of

nuclear contents to cell surface blebs and ultimately, to the blood

stream (195–197). Even more DAMPs are released when immune

cells undergo inflammatory forms of cell death such as pyroptosis

(22, 58, 181, 198, 199). The DAMP most frequently reported for

COVID-19 is lactate dehydrogenase, a central enzyme of anaerobic

glycolysis that is present in virtually all cells and that, therefore,
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in the extracellular space (200–202). Other DAMPs which have

been observed at elevated levels in the blood or plasma of patients

with severe COVID-19 comprise high-mobility group box protein

(HMGB)1 (51, 110, 111, 202–206), S100 proteins (108, 110, 202,

207–209), plasma hyaluronan (210), extracellular (e)ATP (211,

212), the antimicrobial peptide LL-37 (213, 214), histones (e.g

(215–217), reviewed in (218, 219) and circulating self-DNA,

including nDNA (13, 20, 21, 42, 46, 47), mtDNA (13, 18, 21, 42,

43, 48, 49), NET-associated cfDNA (201, 215, 220–222), histone-

DNA complexes (219), and cfDNA of non-specified subcellular

origin (45, 48, 50–54). As recently reviewed for sepsis (72), most of

these studies reported a positive correlation of the plasma levels of

at least some of the beforementioned DAMPs with the degree of

disease severity (e.g., mild versus severe cases, COVID-19 patients

at ICU admission versus healthy controls, ICU-admitted cases with

fatal outcomes versus surviving patients, poor oxygenation status,

patients with acute respiratory distress syndrome or with

multisystem inflammatory syndrome in children, etc.).

As predicted by Polly Matzinger (62, 223), DAMPs trigger the

activation of antigen-presenting cells, act as chemokines that recruit

dendritic cells, macrophages, or T cells to the site of injury, or prime

immune cells, i.e., they contribute to ‘trained immunity’ (58–60, 62,

224–226). The signalling function of lactate dehydrogenase remains

a matter of discussion (227), but DAMPS sensu strictu such as

HMGB1, eATP and cytoplasmatic and extracellular dsDNA prime

the immune system for stronger responses to current and upcoming

threats. One of the best studied examples of a DAMP-mediated

immune priming is the activation of inflammasomes in two steps

(59, 176, 177). Multiple lines of evidence support a critical role of

inflammasomes in COVID-19 and – likely - its autoimmune

complications (12, 13, 22, 29, 39, 181, 228–232) (for a review, see

(39)). The lung and spleen tissue obtained from patients who died

from COVID-19 exhibited higher densities of cells expressing

NLRP3, IL-18, NF-kB and gasdermin D, and even HMGB-1, than

age-matched controls who had died unexpectedly, but free of SARS-

CoV-2-infection (13, 233). This observation indicates that the cells

were already in the primed stage. Moreover, exosomes from

patients with severe COVID-19 (but not light COVID-19 or

healthy donors) induced the expression of NLRP3, pro-caspase-1

and pro-IL-1b in human endothelial cells, microvascular

endothelial cells and liver endothelial cells (232). This last study

appears to be the first empirical proof of concept showing that cell

content released locally from infected cells can trigger systemic

inflammatory effects in COVID-19. In addition, enhanced plasma

levels of pyroptosis markers were detected in COVID-19 patients,

and the levels of caspase -1 and IL-18 in serum correlated with the

degree of COVID-19 severity (12, 22, 29, 220, 221), particularly in

elderly patients (234). Neutrophils, macrophages and PBMCs from

SARS-CoV-2-infected patients also exhibited active AIM2 or

NLRP3 inflammasomes and enhanced expression of ASC-speck

protein, caspase 1 or gasdermin-D (12, 13, 22, 29, 199, 221, 233).

Correspondingly, specific inhibition of the NLRP3 inflammasome

suppressed immune overactivation and alleviated COVID-19-like

pathology in mice (235). Intriguingly, the SARS-CoV-2 N protein

interacts directly with NLRP3 and promotes its binding to ASC,
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thereby facilitating the assembly of the NLRP3 inflammasome

(236). Moreover, the E protein can form cation channels that

allow for pyroptosis in the absence of active gasdermin-D (237).
4.2 Positive DAMPs/DNA-sensing feedback

“Unless cell death is explicitly assayed in an experiment, the

contribution of dying cells to the generation of DAMPs and alarmins

may be missed”. Melinda Magna and David S. Pisetsky, 2016 (61)

For many years, self-DNA was considered as immunologically

inert, because self-DNA released from dying cells into the

extracellular space was believed to be inaccessible to the

intracellular DNA sensors. However, when bound to peptides or

proteins, extracellular DNA can translocate into specialized

compartments, including the endosome of pDCs, and then gain

immunogenic properties (61, 72), e.g. via recognition by TLR9

(238–241). As pointed out earlier for the HIV-1-context (65) or

sepsis (72), pyroptosis releases self-DNA together with cellular

content, including HMGB and histones, i.e., two types of DAMPs

which intrinsically possess DNA-binding properties. In fact, the

nuclei of cells that die via pyroptosis usually remain intact and only

show chromatin condensation, meaning that rather than as ‘naked’

DNA, genomic DNA is released as chromatin, hence, in an

immunogenic form (177). Intratracheal instillation of mouse

alveolar epithelia with the SARS-CoV-2 Spike protein and poly (I:

C), a synthetic RNA mimic, triggered lung tissue injury and

enhanced levels of circulating TNF-a and HMGB1 (203). The

crucial role of HMGB1 in this effect is underlined by the

observation that a treatment with anti-HMGB-1 antibody

reduced these detrimental effects (203). Thus, a DAMP can

increase the detrimental effects of virus-derived PAMPs, for

which reason it seems likely that the positive association of

diverse DAMPs with COVID-19 severity reflects a causal role,

rather than being merely correlative. Also in NETs, self-DNA is

bound to HMGB1 or histones, which prevents its degradation and

facilitates its passage through membranes or its active uptake via

endocytosis and/or receptor binding. In consequence, NETs are

known to cause sterile inflammation or small vessel vasculitis,

thereby generating microvascular damage that contributes to

injury in the brain and lung tissues or favours certain

autoimmune pathologies, including SLE (83, 242–244).

In addition, several host defence peptides (also termed ‘small

secreted antimicrobial peptides’) possess DNA-binding properties

(reviewed in (238)), and among these, LL-37 has been reported at

increased levels in plasma of COVID-19 patients (213, 214). LL-37

enhances the IL-1b-induced production of cytokines such as IL-6 in

monocytes, likely via a DNA-independent mechanism (238), while

extracellular histones induce the secretion of IL-1b, IL-6 and TNF-

a from circulating monocytes (245). These cytokines, in turn,

trigger a pro-inflammatory senescence-associated secretory

phenotype in human umbilical vein endothelial cells, at least

when they act in synergy (246). Thereby, cytokines that are

released via pyroptosis can trigger the pyroptosis-independent

release of cellular content from certain immune cells. Synergistic

effects can also occur via the inflammasome-mediated axis:
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activation and IL-1b–release from monocytes at 25 times lower

concentrations than each molecule alone, because they activate the

AIM2 inflammasome (247).

A further, universal DAMP that is well known to act in synergy

with other DAMPs or otherwise facilitates their perception is eATP.

Extracellular ATP was found at elevated concentrations in the blood

of patients with severe COVID-19 (211, 248). The increase in eATP

concentrations could be related to two mechanisms: reduced

activities of ectonucleotidases (211, 248) and opened pannexin

channels (249). The eATP-mediated activation of P2X7 and the

resulting production of intracellular reactive oxygen species (ROS)

(250) can activate the NLRP3 inflammasome and the release of IL-

1b, IL-12 and IFNg from macrophages (251).
4.3 Anti-dsDNA autoantibodies in
COVID-19

Anti-dsDNA autoantibodies represent a further class of

proteins that enhance the accessibility of extracellular DNA to

innate immune sensors. The release of cellular content during

pyroptosis arguably means a massive liberation of potential

autoantigens within an already pro-inflammatory environment.

Therefore, multiple lines of evidence link inflammasome-

mediated pyroptosis to the generation of anti-nuclear and/or anti-

dsDNA antibodies. The detailed mechanisms that lead to the

formation of these types of autoantibodies remain under

discussion, although it seems reasonable to argue that the

formation of antinuclear antibodies – a crucial pathogenic feature

of SLE that has also been reported for patients following vaccination

with BNT162b2 or mRNA-1273 (126) – is evidently facilitated by

the fact that the nuclei of cells undergoing pyroptosis usually

remain intact. More importantly in the context of the present

considerations, DNA-containing immune complexes - like other

DNA/protein complexes - present another means of facilitated

uptake of cfDNA into immune cells, e.g., into monocytes (252),

i.e., they allow for the sensing of self-DNA by TLR9 and thereby

stimulate cytokine production (241, 252–254). In other words,

pyroptosis releases self-DNA under conditions that are likely to

render immunogenic properties to extracellular DNA, generating

circulating self-DNA that is particularly prone to promote

inflammation and autoimmunity (83, 244).

An enhanced prevalence of autoantibodies against nuclear

self-antigens – including dsDNA - has been reported for patients

with severe COVID-19 (86, 125, 255–258), in particular those

patients who developed an autoimmune disease as a consequence

of COVID-19 (259, 260). In addition, these autoantibodies were

detected in the blood of patients who presented some of the

adverse effects of the mRNA vaccines (261). For example,

elevated levels of anti-nuclear and anti-dsDNA antibodies and,

in one case, even anti-histone antibodies, occurred in various

patients who developed autoimmune hepatitis after the first dose

(132) or new onset SLE after the second or third dose of the

BNT162b2 mRNA vaccine (129, 131, 132) or the mRNA-1273

vaccine (126).
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4.4 RAGE shuttles extracellular DNA

At least one PRR is capable of sensing dsDNA outside of the

cell: Although RAGE had been discovered as a receptor of advanced

glycation end products, it functions as a multi-ligand PRR that

senses diverse DAMPs, including HMGB1, S100 proteins and

dsDNA, to activate NF-kB. RAGE is a transmembrane protein

expressed in endothelial cells, pneumocytes, T and B cells, alveolar

macrophages, monocytes and dendritic cells (262). In addition,

proteolytic cleavage of the extracellular portion of membrane-

bound RAGE can release soluble forms of RAGE, a process which

is upregulated by inflammatory signals. Increased soluble RAGE in

serum is also a predictor of mortality among COVID−19 patients

(31, 32). The expression of RAGE was significantly increased in

patients with severe COVID-19, along with its ligands, including

S100 and HMGB-1 (263, 264), and a system-wide transcriptomic

analysis identified RAGE among the strongly upregulated genes in

the liver, and among the slightly, but significantly upregulated genes

in the heart and lymph nodes of COVID-19 patients

(Supplementary Table S2 to (265)). The causal involvement of

RAGE in vascular injury and severe disease in COVID-19

patients was underlined by the reduced systemic inflammation

and damage to blood vessels and increased survival of mice

treated with pharmacological inhibitors of RAGE (262). Of

particular interest in the context of the present work, RAGE can

trigger inflammation by activating NF-kB, and it can sequester

extracellular DNA to facilitate its transport to the endosome and

thus, its exposure to TLR9 (30). Moreover, RAGE can trigger a

prolonged activation of NF-kB that apparently overcomes several

endogenous negative feedback control mechanisms (reviewed in

(24)). Since RAGE itself is a NF-kB controlled gene, RAGE is

particularly prone to contribute to potentially fatal feedforward

scenarios, and NF-kB has been suggested to ‘universally enhance

STING-mediated immune responses’ (266).
5 Spike and dsDNA sensors in the
adverse events after COVID-
19 vaccination

Will scientists once again pursue “quick and easy solutions” in

the hopes of stimulating a protective antibody response despite

existing evidence that coronavirus vaccines (for animals) based on

the S or Spike surface protein have largely been ineffective?” Anne S.

De Groot, 2003 (93)
5.1 Spike is expressed in vaccinees

The SARS-CoV-2 Spike protein, CoV-2 S, is the target encoded

by the mRNA vaccines (267, 268). Although mRNA is normally

assumed to have a short persistence time, it is highly likely that

CoV-2 S is expressed on the cell surfaces of vaccinees over a

considerable timespan (2, 17, 36, 182, 186, 269, 270). Vaccine

mRNA has been detected at least 15 days after the first or second

dose of BNT162b2 (271). Since only one (negative) sample covered
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a later time point (27 days) in this study, it seems likely that the

persistence time of vaccine mRNA is longer than 15 days. In fact,

another group detected vaccine mRNA in blood samples from 10 of

108 Hepatitis C Virus-infected patients at 28 days after vaccination

(272), and in the germinal centres of axillary lymph nodes, vaccine

mRNA was even detected at significant abundances at 37 days post

vaccination and remained detectable at 60 days post vaccination

(273). Similarly, spike itself was detected in the endothelial cells

within inflamed areas of the brain and heart of a man who died

three weeks after receiving his third vaccine dose with BNT162b2

mRNA (274), and in the plasma of individuals who exhibited

postvaccination myocarditis, most of them within a week after

vaccination with the BNT162b2 or the mRNA-1273 vaccine (134).

In another study, circulating S1 was detected in the plasma of eleven

out of 13 participants and, although it peaked on average 5 days

after receiving the first dose of mRNA-1273, Spike was detected still

after 15 days (275). Plasma S protein levels of 10 ng ml-1 were

observed 10 days after vaccination in a woman with mRNA-1273-

induced thrombocytopenia, while S1 concentrations reported for

plasma of COVID-19 patients oscillate around 50 pg ml-1 and can

reach maximum levels about 1 ng ml-1 (reviewed in (276)).

Considering in addition that Spike expression in vaccinees is

likely to occur in tissues and organs that in SARS-CoV-2-infected

individuals are unlikely to be reached by circulating CoV-2 S,

potential effects of Spike on host immunity and other vital

functions must be taken seriously.
5.2 Syncytia formation and DNA damage
have beneficial effects (for the virus)

In 2020, Jiang Hui and Mei Ya-Fang presented the hypothesis

that CoV–2 S impairs DNA damage repair and thereby reduces the

efficiency of an essential step in antibody production: the adaptive

production of diverse antigen receptors via regulated dsDNA breaks

and their subsequent repair (277). This work has been heavily

criticised and finally was retracted. One of the critical voices was

Derek Lowe (278) who, among other points, highlights that Jiang &

Mei transfected DNA into specific and cultured cell lines, which do

not necessarily respond like cells in vivo. Lowe reassures that -

although “a lot of people are worried about Spike protein circulating

around through the body”, “there is no evidence (and no particular

reason to believe) that circulating Spike protein after vaccination,

such as it is, gets taken up into other cell types and then taken into

their nuclei” (278). Indeed, I am not aware of a report on CoV-2 S

entering the nucleus, and cytosolic S protein does likely not trigger

inflammation in epithelial cells (279). Still, I think that there is

enough evidence that (and how) CoV-2 S can damage cells and – in

particular – their DNA without entering the nucleus.

Evidence for a DNA-damaging effect of SARS-CoV-2 - and

perhaps CoV-2 S - is accumulating (23, 36, 280–283). Comet assays

and g-H2AX immunostaining revealed elevated levels of DNA

damage in SARS-CoV-2-infected Huh7 or Vero-6 (African green

monkey kidney) cells (66, 190, 284, 285), but also in lymphocytes

and cardiac tissue of deceased COVID-19 patients (286–288). In the

human studies, DNA damage levels correlated with Il-6 expression
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in infected cells (285) and serum levels of IL-6 (287) and of other

inflammatory ILs (286). Post-mortem transcriptomic analyses of

cardiac tissues of COVID-19 patients revealed an enrichment of

DNA damage and repair, heat shock, and cell cycle control among

the predominant upregulated genes (288). An increase in oxidative

stress and in the number of DSBs has been observed in PBMCs

from older individuals at 24 h after vaccination with BNT162B2

(280), and several p53-controlled genes, including those related to

apoptosis and DNA-repair, were overexpressed in PBMCs from a

patient who developed myocarditis after BNT162b2 vaccination

(hence, likely as a consequence of CoV-2 S expression in the

absence of infection) (289). The consequences of these alterations

comprise cell cycle arrest in the S1-phase, the activation of a pro-

inflammatory senescence-associated secretory phenotype that

exhibits elevated resistance to programmed cell death (190, 246),

and enhanced expression of NF-kB and of the ACE2 promoter

(290, 291).

In fact – as described earlier for HIV-1 (15, 292–294) - SARS-CoV-

2 induces NF-kB, which inhibits the DNA damage-activated

transcription factor p53. P53 is involved in cell-cycle control as part

of the DDR, including the decision ‘DNA repair versus elimination of

cells’ (295, 296). Correspondingly, p53-controlled genes were

overexpressed in leukocytes from patients with severe COVID-19

(297). Moreover, SARS-CoV-2 degrades checkpoint kinase (CHK)1

(190), an effector downstream to Ataxia telangiectasia and Rad3 related

protein (ATR) that earlier had been demonstrated to be induced in

SARS-CoV-2-infected Vero-6 cells (284). Consequently, an inhibitor of

ATR blocks the replication of SARS-CoV-2 after entering cells and

thus, was identified as a potential anti-COVID drug that exhibits

antiviral activity against SARS-CoV-2 in diverse cell types (298).

Zhou et al. (17) were among the first who discovered that the

switch from a suppression to an (over-)induction of cytokine

signalling associates with syncytia formation. Intriguingly, they also

reported that CoV-2 S expression is sufficient to fuse cells. Several

independent studies confirmed syncytia-formation by virus-free,

Spike-expressing cells (23, 186, 269, 299–302). Syncytia formation,

in turn, is inevitably associated with micronuclei formation, nuclear

membrane blebbing and therefore, DNA damage, which ultimately

leads to cell death (17, 23, 36). Later work confirmed that syncytia

formation triggers IFN I signalling (23).

If we swich from the human perspective to the perspective of the

virus, CoV-2 S-mediated detrimental effects of SARS-CoV-2 on host

DNA become something that one simply would expect. Common

knowledge holds that coronavirus Spike proteins control binding to

the ACE2 receptor and subsequent fusion of the viral and the plasma

- or endosomal membrane - of host cells, to facilitate viral entry (2,

186, 270) (Figure 3). However, viruses that replicate in the cytosol are

short of raw material, i.e., nucleic acids, viruses gain a fitness

advantage from supressing or escaping from the host immune

system, and all viruses are under selective pressure to make the

most efficient use of their small set of genes. Therefore, being a

protein evolved to facilitate membrane fusion and the formation of

pores, the Spike protein of SARS-CoV-2 has at least two additional

jobs: it is employed to destabilise the nuclear envelope, and for

syncytia formation (33, 34): a process associated with DNA damage,

including the exposure of chromatin to cytoplasmatic DNA sensors
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(34, 36). For the latter, CoV-2 S possesses a signal that facilitates

trafficking to the cell surface (269) and therefore is also expressed on

the membrane of infected cells (182, 186, 269). Both effects benefit the

virus: while nuclear membrane blebbing facilitates the liberation of

the required ‘raw material’ from the nucleus, syncytia allow for viral

spread without exposure to host antibodies, NETs or

macrophages (Figure 3).

Evidently, more research will be required in this context. Most

of the studies that reported syncytia-formation in virus-free systems

that employed widely used model cell lines like HEK293T (human

kidney cells), HeLa (human cancer cells), Calu-3 (human lung cells)

or Huh-7 (human liver cells), which are overexpressing ACE2, and

the used plasmid-based transfection systems further contribute to

generate artificial conditions that limit a direct translation of the

obtained results to realistic in vivo situations. On the other hand, the

Spike protein encoded by the mRNA vaccines is stabilised in the

prefusion-conformation to facilitate ACE2-binding and cell entry

(303). It would be interesting to investigate to which degree syncytia

formation is affected by this change versus ACE2 expression level

(17, 23, 36, 269). In short, the virus uses CoV-2 S to damage it´s

host´s DNA, and thereby enhances the lifetime of the infected cells

and at the same time, upregulates ACE2 expression to decorate

more cells with its entry receptor. By doing so, CoV-2 S activates

certain elements of innate immunity which are also induced

downstream to dsDNA sensing. Since CoV-2 S decorates more

cells with the SARS-CoV-2-entry receptor, expression of this

protein alone can be sufficient to trigger cell-to-cell fusion and

subsequent nucleus-to cytosol shuttling of chromatin (17, 23).

Therefore, a scenario in which vaccination leads to an

overstimulation of the innate immune responses downstream to

dsDNA-sensors that generate the mentioned adverse effects appears

definitively possible. In the following, I compile information on how

CoV-2 S and SARS-CoV-2 infection affect elements of the dsDNA-

sensing machinery and then develop a worse-case scenario

describing hypothetical effects of Spike expression in an innate

immune-environment that has already been primed by a prior

SARS-CoV-2 infection. To base this scenario on – admittedly

indirect – empirical evidence, I first highlight similarities between

SARS-CoV-2 and HIV-1 that are related to HIV-1’s effects on DNA

damage, dsDNA-sensing, inflammation, and autoimmunity.
5.3 Shared features: learning from HIV-1

“Although there is much to learn about SARS, many lessons can

already be drawn from our experience with HIV”. Anne S. De Groot,

2003 (93)

Interfering with the DDR or directly damaging their host’s

DNA, syncytia formation, and the induction of bystander cell death,

as drivers of inflammatory responses that harm the host and benefit

the virus: all these particularly important features are shared among

HIV-1 and SARS-CoV-2 (304–306). Several inflammatory and

autoimmune-related pathologies coincide among HIV-1-infected

individuals, COVID-19 patients and vaccinated individuals who

suffer from severe adverse effects. Based on the knowledge available

to far, it seems very likely that these similarities result from the same
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mechanisms acting in all three contexts. Likewise, an enhanced

prevalence of autoantibodies against nuclear self-antigens had

already been reported for patients with HIV-1, particularly for

HIV-1-infected patients presenting thrombocytopenia (91, 98, 307,

308). The present work is far from being the first one to highlight

HIV-1 as an example from which a lot can (or could have been)

learned for faster and more efficient response to the COVID-19

pandemic (93, 94, 309), and even the global phosphorylation

landscape of SARS-CoV-2 infection revealed extensive similarities

with the patterns in protein activation early during HIV-1

infection (310).

Since the early nineties of the last century, HIV-1 is known to

damage the DNA of its host and activate genes involved in the DNA

damage response (DDR) (294, 311–314), and HIV-1 is also well

known for its ability to fuse its host cells and thereby reach 4-5 times

higher reproduction rates (304, 315). In the case of HIV-I, the

bipartite envelope glycoprotein (Env) performs the two essential

functions of binding to receptors on the surface of target cells and

fusion among host-cell and viral membranes, including the

formation of a fusion pore to deliver the viral core into the cell

cytoplasm (306). Apparently, the virus employs the same protein to

destabilize the nuclear envelope. In this context, it seems important
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to recall that SARS-CoV and SARS-CoV-2 are closely related and

that consequently, the S2 domain of the SARS-CoV spike protein

and of CoV-2 S are highly similar (2, 34, 270). Importantly, SARS-

CoV spike, in turn, shares multiple structural similarities with the

gp41 unit of the envelope glycoprotein of HIV-1 (135, 316). Based

on these similarities, which are underlined by the cross-reaction of

CoV-2 S-directed non-neutralizing polyclonal antibodies with gp41

(317), these proteins can be expected to interact with cell

membranes via the same mechanism.

Furthermore, while there should be no need to repeat that HIV-1

infects mobile immune cells (in particular CD4+ T helper cells), it

seems worth to mention that evidence for SARS-CoV-2 doing the

same is accumulating. SARS-CoV-2 has been shown to infect

monocytes, macrophages and B-cells (22, 28, 318), and at least

Pontelli et al (318) present evidence supporting a successful

reproduction of the virus in these cells, although at low rates. Since

excessive infiltration of mobile pro-inflammatory cells such as

macrophages and T-helper 17 cells has been found in lung tissues

of patients with COVID-19 (11), it appears at least possible that SARS-

CoV-2 can apply a strategy that was considered unique to HIV-1:

triggering local inflammation to attract mobile immune cells and

infect these cells to achieve systemic distribution throughout the host.
TABLE 1 Shared features of HIV-1, SARS-Co-2 and their envelope proteins.

HIV-1 SARS-
CoV-2

Env
(gp41)

CoV-2 S References

HIV-1 SARS-CoV-2

Entire virus

Infection is associated with enhanced cf mtDNA or nDNA ✔ ✔ n/a n/a (87–91) (19, 20, 42–44, 47, 49,
52–56)

Triggers bystander cell death ✔ ✔ ✔ ✔ (306,
323, 324)

(9, 13, 163, 325)

Opens pannexin channels to facilitate the release of eATP
and cytokines

✔ ✔ ✔ (249)

Env/Spike-mediated functions

Syncytia formation ✔ ✔ ✔ ✔ (306,
323, 324)

(23, 182, 183, 269)

Destabilizes nuclear envelope ✔ ✔ ns ✔ (306, 326) (23, 190)

nDNA/chromatin release to cytosol ✔ ✔ ✔ (23, 190)

Mitochondrial membrane permeabilization ✔ (324)

mtDNA release ✔ ✔ (87,
327, 328)

DNA damage ✔ ✔ ✔ (306,
324, 326)

(23, 183, 190, 280)

Induces ATM, ATR and/or p53 activation ✔ ✔ ✔ ✔ (326) (265, 297)

Features of the proteins

Expressed on cell surface ✔ ✔ (306, 329) (182, 269)

Binds to cell surface receptors ✔ ✔

Controls fusion of virus and cell membrane ✔ ✔ (323, 330) (183)
n/a, not applicable; ns, not studied.
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A further shared element is the importance of eATP as a

DAMP: HIV-1-infected target cells release ATP, which then acts

on purinergic receptors to stimulate fusion between Env-expressing

and CD4+ expressing membranes (319). eATP also favoured the

infection of microglia with HIV-1, an effect that was associated with

elevated levels of IL-6 and IL-18 and with changes in p53 activity

(320). The relevance of this is underlined by the observation that an

inhibitor of P2X receptors effectively inhibited cell-to-cell transfer

of HIV-1 from productively infected CD4+ lymphocytes (321).

Therefore, therapeutic applications of P2X7R antagonists seem

promising tools to control infection with HIV-1 (322), but also

SARS-CoV-2, but also SARS-CoV-2 (Table 1).
5.4 Effects of COVID-19 and CoV-2 S on
innate immunity

Although viruses usually supress or avoid host immunity, CoV-

2 S has been suggested to induce inflammation via a TLR2 (or

TLR4) – and MyD88-dependent dependent activation of the NF-kB
pathway in human and mouse macrophages (279), and also to

trigger lung cancer progression, again via TLR2 (331). Likewise,

intravenous administration of Spike or a stimulation of cultured

cells with CoV-2 S induced the expression and release of TNF-a, IL-
1b, IL-6 and IL-18 in PBMCs, macrophages, monocytes, lung

epithelial cells, human umbilical vein cells as well as in lung, liver,

kidney, and eye tissues (279, 332, 333). In fact, the S1 subunit alone

was observed to induce an increased production of IL-6 and

activation of NF-kB and in consequence, inflammation in

endothelial cells (334), and circulating S1 induced the expression

of TLR2, TLR4, NLRP3, IL-1b, TNFa and HMGB1 in rats at 24 h

after treatment, and TLR2, TLR4, NLRP3 and IL-1b remained

overexpressed even after seven days (335). Spike also has been

reported to activate caspase 1 and the NLRP3 inflammasome in

hematopoietic stem/progenitor cells and endothelial progenitor

cells (336). Intriguingly, exposure to CoV-2 S of human umbilical

vein cells activated NF-kB and ACE2 (333), while vice-versa,

administration of an ACE2 inhibitor blocked the activation of

inflammasome components by Spike (336). Quantification of

lactate dehydrogenase (LDH) enzymatic activity in the culture

medium confirmed pyroptotic cell death of these cells (336). Most

of the beforementioned studies used commercially available,

recombinant spike proteins produced in human cells (279, 333,

335), hamster cells (332), or E. coli (334), which opens the

possibility of contaminations with immunogenic molecules that

originate from the expression system. For example, bacterial

lipopolysaccharides at very low concentrations as they have been

detected as contaminations in commercial proteins activated

human immune cells (337), and these endotoxins also signal via

TLR4 (338). However, at least Sung et al. (339) used a pseudotyped

lentivirus carrying the SARS-CoV-2 Spike protein, hence, a

situation that resembles the vaccines. Assuming the reported in

vitro-effects of CoV-2 resemble the situation in vivo, we can expect

them to apply also to an infection with SARS-CoV-2. Indeed,
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nasopharyngeal epithelial cells of COVID-19 patients exhibited

significantly higher expression of TLR2 and TLR4 as compared to

controls (340), and TLR4 and its downstream elements (including

Myd88, IRAK1 and TRAF6, and NF-kB - dependent genes) were

significantly upregulated in PBMCs from 20 human COVID-19

patients (341).
5.5 Spike acting post-COVID-19: sketching
the worse-case-scenario

The studies cited in 5.4. demonstrate that infection with SARS-

CoV-2 S can prime the innate immune system for faster and

stronger responses to any subsequent infection or other cell-

damaging event. Indeed, plasma from COVID-19 patients

exhibited increased in P2X7 expression (342). eATP can act as a

second signal that activates inflammasomes, as shown by the

observation that exposure to CoV-2 S followed by eATP triggered

a stronger expression of pro-IL-1b, ASC, NLRP3 and gasdermin D

in macrophages derived from COVID-19 patients than in SARS-

CoV-2 naïve cells, and only patient-derived macrophages exhibited

active ASC specks and increased secretion of TNF-a and IL-1b
(229). Importantly, altered inflammasome and stress responses

persisted after short-term patient recovery (29) and the

differential responsiveness was maintained even by macrophages

from fully convalescent COVID-19 patients after more than 50 days

(i.e., after several cycles of monocyte renewal) (229). Likewise, TLR4

and its downstream elements (including Myd88, IRAK1 and

TRAF6, and NF-kB - dependent genes) were significantly

upregulated in PBMCs from 20 human COVID-19 patients (341).

These studies confirm that infection with SARS-CoV-2 causes a

long-term reprogramming of the immune system, particularly in

macrophages. Thus, it seems plausible that in vaccinees who had an

infection before being vaccinated, the effects of SARS-CoV-2

expression (including DNA damage) occurred in the context of a

primed DNA-sensing machinery: a situation that can strongly enhance

its immunogenic potential. Others discovered that S1 and S2 proteins

administered intraperitoneally triggered enhanced concentrations of

IL-6, IL-1b, and TNFa (16 hr post treatment) in WT mice but not in

mice lacking TLR2, which indicates a role of TLR2, rather than TLR4

(279). In addition, CoV-2 S induced an enhanced release of ATP and

IL-1b from human lung epithelial cells (249) and cultured microglial

cells (BV2 line) and in the latter, it also induced the expression of the

purinergic eATP receptor P2X7 (343).

I conclude that SARS-CoV-2-mediated immune priming can

enhance the DNA-damaging and pro-inflammatory effects of CoV-

2 S and cause certain responses to pass a threshold or point of no

return, reaching those dimensions that we see in the severe adverse

effects of the Spike-based mRNA vaccines. Even phase III vaccine

trials usually exclude individuals who show preexisting immunity

due to previous infection, but the vaccination campaigns included

significant proportions of the entire population at a time point at

which many people had already passed through an infection with

SARS-CoV-2, and pre-existing immunity was seldom checked in
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these mass vaccination events. In summary, immune priming

represents an example of a mechanism that could generate

different outcomes of vaccination depending on an earlier –

perhaps non-symptomatic and not detected – infection with

SARS-CoV-2.
6 Lessons and recommendations

Altogether, these findings motivate several recommendations.
6.1 Consider the ‘old’ literature and
knowledge from other pathologies

Most of the published work on the SARS-CoV S protein and the

similarities of SARS-CoV-2 with HIV-1 was ignored in the searches

for new or pre-existing drugs to treat COVID-19 patients, and in

the scientific activities involved in vaccine development. Perhaps as

a consequence, on the one hand, patients were treated with IFN and

indeed, slightly (although not significantly) more people died in the

treatment group (344). On the other hand, DNases or DNA

scavengers were hardly considered: to the best of my knowledge,

all studies in which patients were treated with Dornase a are cited in

chapter 3.5 (116–119, 121, 188, 222), and the obtained results – in

particular the survival of all involved patients - clearly demonstrate

the beneficial effects of anti-DNA treatments. As suggested by Anne

de Groot and an international group with lead author Nevan

Krogan (93, 310), existing knowledge should be considered even

when it must be found in 20 years ‘old’ papers. Moreover, searches

for similar pathogens should define ‘similarity’ with a focus on

shared strategies or functions of the pathogen that generate similar

effects on the interactions with the host, rather than on ‘taxonomic

similarity’ defined at the level of sequences.
6.2 Don’t forget about the self-DNA!

“We did not expect an RNA virus like SARS-CoV-2 to be sensed

by the DNA sensor AIM2”. Caroline Junqueira et al., 2021 (345)

In addition to the beforementioned issues, it seems that the

dominance of the Janeway paradigm (346, 347) has significantly

hindered a full appreciation of the immunogenic and pro-

inflammatory effects of self-DNA. In fact, the author is aware of a few

concrete cases in which the publication of results supporting the

immunogenic effects of self-DNA or the danger model in general was

significantly slowed down (personal communications by Polly

Matzinger and Verena Kopfnagel, and own observations (348)). As a

consequence, it seems that cfDNA, and nDNA in particular, remains

strongly under-investigated. Even among those studies that originally

linked the inflammation-related complications in COVID-19 to dsDNA

sensors, only a single one has directly quantified mtDNA and nDNA

and none has treated cells with natural DNA, as done, for example, in

some of the studies that investigated the role of cfDNA in trauma (69).

Nevertheless, even among the classical studies on trauma, three studies

focused on mtDNA (66, 67, 170), although the fourth study found that
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serum IL-6 levels, inflammation and critical illness correlated with the

levels of nDNA, not mtDNA (68). Likewise, most of the clinical studies

that quantified plasma DNA concentrations as a possible marker of

severe COVID-19 have quantified only mtDNA, without citing any

empirical evidence for the assumed non-activity of nDNA.

Evidently, future work will have to provide definitive evidence

for a causal role of cfDNA in severe COVID-19 or the vaccine-

triggered adverse events. Still, beyond doubt, cfDNA levels in the

blood or plasma are a useful biomarker of disease severity in

COVID-19 patients and likely, a predictor of certain adverse

effects of the vaccines. Although it would be difficult to follow the

advice of The European Academy of Allergy and Clinical

Immunology (EAACI) that “all clinical and laboratory

information should be collected and reported…to understand the

specific nature of the reported severe allergic reactions” (349), it

seems mandatory to include cfDNA of both mitochondrial and

nuclear origin and anti-dsDNA antibodies in the list of standard

laboratory information that should be obtained for patients that

suffer from autoimmune-related or chronic inflammatory

pathologies and for all participants in future vaccination trials.
6.3 Consider synergies and other
mechanisms that create
context dependency

“…studies … are often performed using a single well-defined

ligand. However,…cells usually receive multiple inputs or experience

many environmental alterations simultaneously.” Andrea Ablasser,

2019 (123)

Multiple reports on stronger responses to a certain trigger

shown by cells from COVID-19 patients or in response to DNA

bound to other DAMPs provide examples of clinically important

synergistic effects. In particular, extracellular self-DNA gains

immunogenic properties when bound to other DAMPs or

extracellular vesicles, independently of the concrete pathosystem.

Therefore, the suggested effects can occur in basically all situations

that comprise tissue damage, particularly when this damage occurs

in the context of pre-activated innate immune signalling. The

antibody-assisted infection of cells and the priming of certain

immune responses by viral proteins represent further examples of

synergies that can create a significant level of context dependency in

the obtained results. As outlined by Andrea Ablasser, such effects

are likely to be overlooked in experiments that expose naïve cell

lines under controlled conditions to a single ligand (123). If we, e.g.,

study human defensin 5 (HD5) and the human cathelicidin known

as LL-37 each in an isolated manner, we will observe that LL-37

binds to the carboxypeptidase domain of human ACE2 even

stronger than HD5. From this observation, we could conclude

that LL-37 bears a great potential to be tested as an anti-SARS-

CoV-2 peptide, because it blocks the entry receptor of the virus

(350). However, in vivo, the release of LL-37 and human b-defensin
3 might take place in the presence of pyroptotic cells or other

sources of cfDNA. In case that – as shown earlier – these proteins

facilitate the uptake of self cfDNA into pDCs and monocytes (239)

and thereby potentiate its immunogenic potential to trigger pro-
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inflammatory effects through the TLR9 pathway (351), the net

outcome of treating severe COVID-19 patients at the later stages of

the disease with LL-37 might be fatal, as SARS-CoV-2 infection has

significantly declined, while the inflammatory response escalates

dramatically, becoming predominant (67).

7 Drawbacks and limitations of the
present work

8.1 First, and most importantly, the author of this contribution

has no medical degree but rather, is a plant ecologist who discovered

the immunogenic effects of self-DNA in plants. I can only hope that

the readers appreciate the non-specialist’s perspective to an

important medical topic and forgive me all the technical errors.

8.2 Second, although it seems a hackneyed wisdom, correlations

do not necessarily mean causality, and similar or even identical

symptoms do not necessarily result from the same mechanism.

8.3. Final evidence for a causal role of elevated levels of cytosolic

or extracellular self-DNA as a driver of systemic inflammation in

severe COVID-19 remains to be provided, and it will be difficult to

separate the TLR-mediated pro-inflammatory effects of CoV-2 S

from pro-inflammatory effects that are – as suggested by the present

work – caused by self-DNA release due to CoV-2 S-mediated

damage to genomic DNA and the nuclear envelope. However, the

results obtained by Park & col with their mouse model (119) and

Oku & col (117) and Weber & col (118) with human COVID-19

patients provide very strong evidence in favour of this role.

8.4 Third, most of the discussed adverse effects are not exclusive

for the mRNA-based COVID-19 vaccines but have also been

observed in patients that received adenovirus-based COVID-19 or

non-COVID-19 vaccines, although at much lower frequency. In

addition, all these effects were also present in COVID-19 patients,

and most were more frequent among COVID-19 patients as

compared to vaccinees. Even autoantibodies are also being

reported from COVID-19 patients (143, 256, 258). The other way

round, several of the studies that tested for plasma concentrations of

nDNA or mtDNA failed to detect a statistically significant

difference between light and severe cases or between deceased and

discharged patients (21). Likewise, I am only aware of a single

report that connects adverse effects of the COVID-19 mRNA

vaccine to inflammasome-activation (352).

8.5 If all the above was true, how do we explain that the vast

majority of vaccinees did not present adverse events, at least no

severe ones? And how can we explain contradictory reports, e.g.

that “chronic stimulation with SARS-CoV-2 Spike protein does not

trigger autoimmunity” (353).

8.6 As this paper focuses on DAMP/DNA-dependent

mechanisms shared by HIV-1 and SARS-CoV-2, various further,

alternative (but non-exclusive) explanations, including effects of the

longer activity of the mRNA or direct effects of blocking the ACE2

receptor, have not been ruled out. In addition, I have focused on the

mechanisms in order to discuss all interpretations of pro-

inflammatory and immunogenic effects of DNA, because

detrimental innate immune activation and inflammation

represent the shared element between HIV-1, COVID-19 and
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adverse vaccine effects. For example alternative interpretations

leading to different conclusions exist even for the observation of

elevated levels of cfDNA in vaccinee plasma, which has been

interpreted as a favourable indicator of the formation of memory

B cells after vaccination (127). In general, we must not forget that

DNA-induced inflammation and pyroptotic cell death usually

represent adaptive immune responses which benefit the host.
8 Conclusions and outlook

Several lines of - mainly correlative - evidence suggest that

extracellular self-DNA acting as a pro-inflammatory DAMP

represents a shared element that contributes to diverse life-

threatening complications in patients infected with HIV-1 and with

SARS-CoV 2, and that a contribution to some of the severe adverse

events after vaccination with the mRNA vaccines represents a

possibility that merits further investigation. Evidently, any attempt

to explain the outcomes of complex, systemic processes with a single

factor is determined to fail, and the present work by no means tries to

claim that immunogenic DNA is the only important factor. However,

self-DNA and other DAMPs have the specific features to prime

numerous elements of the innate immune response and to engage in

positive feedforward mechanisms and synergistic effects, including

the formation of closed loops that lead to self-induction phenomena.

For example, extracellular DNA at normally non-immunogenic

concentrations can gain immunogenic properties when binding to

HMGB1, then activate TLR9 which ultimately leads to pyroptosis and

the release of more DNA and HMGB1. Context-dependent processes

that eventually enter feed-forward dynamics are notoriously difficult

to monitor, and more so in unbiased screenings. Therefore,

immunogenic self-DNA represents a prime candidate of a

frequently overlooked important factor whose true role hardly

becomes evident in the classical one-treatment experimental

designs. In the light of this possibility, the general tendency to tone

down the adverse effects of SARS-CoV-2 vaccines as “often troubling

but may merely reflect transient production of type I interferons, a

normal physiological response to contact with invading

microorganisms” (354) appears in a different light.

Under certain conditions, usually transient effects might pass a

certain threshold and then become subject to very different dynamics.

Therefore, all those of the above-described mechanisms that can form

positive feedback loops can potentially lead fatal outcomes under

certain circumstances. Whether SARS-CoV-2 Spike causes DNA

damage or inhibits the DDR remains to be shown. However, the

consequences of DNA damage- even at low levels - on IFN I signalling

and inflammation could be potentiated if concurrent damage to the

nuclear envelope facilitates DNA release from the nucleus and

subsequent sensing by of cytosolic DNA or when damage to the cell

membrane facilitates the release of DNA together with other DAMPs

and thus, the formation of immune complexes.

At the very least, our question from 2019 “To what degree can …

the use of DNA scavengers developed as specific treatments for cancer

or diverse autoimmune diseases be adapted to treat individuals with

chronic HIV-1 infection?” (65) has now been answered for SARS-CoV-

2-infected patients, although only few patients received this kind of
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treatment and its transferability to intravascular NETs or other DNA-

dependent inflammatory pathologies remains to be investigated (117,

118). It would be encouraging if future research and vaccine

development efforts would reflect an increased awareness of the

potential detrimental effects of immunogenic self-DNA and of the

existence of treatment options which – as stated by Okur & col (117)

for Dornase a – “are being administered to human patents since

decades”, although in a different pathological context.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

MH: Conceptualization, Writing – original draft, Writing –

review & editing.
Funding

The author(s) declare no financial support was received for the

research, authorship, and/or publication of this article.
Frontiers in Immunology 17
Acknowledgments

Both referees are acknowledged for numerous comments that

helped to significantly improve the manuscript and - in case of

referee 1 - also eliminated several technical and conceptual errors. I

am also very grateful to Dr. June Kilpatrick Simpson for several rounds

of English corrections, to Dr. Judy Lieberman for various insightful

emails about the secret life of inflammasomes, to Emma Jokinen for her

encouraging messages and to Emma, Francesca Granucci and the

entire editorial team for the generosity to grant the likely longest

deadline extension in the history of Frontiers Research Topics.
Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Deguine J. Common senses. Trends Immunol (2017) 38:691–2. doi: 10.1016/
j.it.2017.09.001

2. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and
epidemiology of 2019 novel coronavirus: implications for virus origins and receptor
binding. Lancet (2020) 395:565–74. doi: 10.1016/S0140-6736(20)30251-8

3. Del Valle DM, Kim-Schulze S, Huang H-H, Beckmann ND, Nirenberg S, Wang B,
et al. An inflammatory cytokine signature predicts COVID-19 severity and survival.
Nat Med (2020) 26:1636–43. doi: 10.1038/s41591-020-1051-9

4. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of
coronavirus disease 2019 in China. New Engl J Med (2020) 382:1708–20. doi: 10.1056/
NEJMoa2002032

5. Huertas A, Montani D, Savale L, Pichon J, Tu L, Parent F, et al. Endothelial cell
dysfunction: a major player in SARS-CoV-2 infection (COVID-19)? Eur Resp J (2020)
56:2001634. doi: 10.1183/13993003.01634-2020

6. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired
type I interferon activity and inflammatory responses in severe COVID-19 patients.
Science (2020) 369:718–24. doi: 10.1126/science.abc6027

7. Torres Acosta MA, Singer BD. Pathogenesis of COVID-19-induced ARDS:
implications for an ageing population. Eur Resp J (2020) 56:2002049. doi: 10.1183/
13993003.02049-2020

8. Lin R, Xing J, Zheng C. Editorial: sensing DNA in antiviral innate immunity.
Front Immunol (2021) 12:644310. doi: 10.3389/fimmu.2021.644310

9. Di Domizio J, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, et al. The
cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature
(2022) 603:145–51. doi: 10.1038/s41586-022-04421-w

10. Awasthi S, Wagner T, Venkatakrishnan AJ, Puranik A, Hurchik M, Agarwal V,
et al. Plasma IL-6 levels following corticosteroid therapy as an indicator of ICU length
of stay in critically ill COVID-19 patients. Cell Death Discovery (2021) 7:55.
doi: 10.1038/s41420-021-00429-9

11. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the
current evidence and treatment strategies. Front Immunol (2020) 11:1708. doi: 10.3389/
fimmu.2020.01708
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