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Gliomas account for the majority of brain malignant tumors. As the most

malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated

by traditional therapies (surgery combined with radiochemotherapy), resulting in

poor prognosis. Meanwhile, due to its “cold tumor” phenotype, GBM fails to

respond to multiple immunotherapies. As its capacity to prime T cell response,

dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a

therapeutic method, dendritic cell vaccine (DCV) has been immensely

developed. However, there have long been obstacles that limit the use of DCV

yet to be tackled. As is shown in the following review, the role of DCs in anti-

tumor immunity and the inhibitory effects of tumor microenvironment (TME) on

DCs are described, the previous clinical trials of DCV in the treatment of GBM are

summarized, and the challenges and possible development directions of DCV

are analyzed.
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1 Introduction

Diffuse glioma is diagnosed in approximately 100,000 people worldwide each year.

Although it accounts for a small proportion (~1%) of all newly diagnosed cancers, diffuse

glioma is related to high morbidity and mortality (1). According to the fifth edition of the

World Health Organization (WHO) Classification of Tumors of the Central Nervous

System, adult diffuse gliomas consist of three types: astrocytoma, IDH mutant (IDHmut);

oligodendroglioma, IDHmut and 1p/19q co-deletion; glioblastoma (GBM), IDH wild type

(IDHwt) (2). Glioblastoma is the most fatal subtype of glioma, accounting for 70 to 75% of

all diffuse gliomas diagnosed, with a median overall survival range from 14 to 17

months (1).

Currently, first-line therapy for GBM typically consists of maximally safe resection

followed by adjuvant temozolomide chemotherapy, concurrent fractionated radiotherapy,

and maintenance temozolomide chemotherapy (3). This multimodality approach
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significantly improves survival. However, the prognosis is still quite

poor and the relapse of GBM is common, with a median survival of

only 6.2 months after relapse. To date, the main treatment options

for recurrent GBM, including tumor-treating field (TTF) therapy,

lomustine, carmustine, and the antiangiogenic agent bevacizumab

(4, 5), are barely effective. Therefore, there is an urgent need to find

more effective treatments for GBM.

Dendritic cells (DCs) are a kind of professional antigen-

presenting cells (APCs) that are essential for the T cell response.

They present extracellular antigens to CD4+ T helper (TH) cells via

major histocompatibility complex (MHC) class II molecules, and

present intracellular antigens to CD8+ T cells via MHC class I

molecules. This so-called “cross-presentation” phenomenon, takes

an important part in antitumor immune responses (6). DC vaccine

is a kind of immunotherapy based on the effect of DC. The blueprint

is that patients are administrated with DCs activated by tumor-

associated antigens (TAAs), inducing an antitumor T cell response.

This response eliminates tumor cells selectively and prevents tumor

relapse because of immunologic memory (7, 8) (Figure 1).

In recent decades, many advances have been achieved in the use

of DC vaccines (DCV) in anti-tumor therapy. Since DCV made its

debut in a B cell lymphoma clinical trial in 1996 (9), a large number

of preclinical and clinical trials have been conducted using DCV for

various tumors (10, 11). However, to date, only one tumor-targeted

DCV therapy, sipuleucel-T, has Food and Drug Administration

(FDA) approval to treat metastatic castration-resistant prostate

cancer (12). The number of clinical trials using DCV has

decreased significantly in recent years. This partly results from

the rapid development of alternative immunotherapeutic methods,

such as immune checkpoint inhibitors (ICIs) (13–15), and partly

results from the disappointing clinical performance of DCV.

Nevertheless, due to the unique immune microenvironment of

GBM, many immunotherapies that have successfully treated other

tumors do not work in GBM (16, 17). As a result, there has been
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renewed interest in using DCV for treating GBM, particularly when

it is combined with conventional therapies (e.g., chemotherapy,

radiation) or other immunotherapies (e.g., ICIs) (18–20). Clinical

trial results have varied widely, with clinical responses ranging

from minimal to significant. Overall, although there are some

promising results, conclusive evidence is still lacking. In this

review, we analyze the role DC plays in antitumor immunity and

the immunosuppressive effect of the tumor microenvironment

(TME) on DC, summarize clinical trials that have used DCV for

treating GBM in recent years, and propose the challenges and

possible development directions of DCV.
2 DCs in anti-tumor immunology

At present, our understanding of DC subsets and functions

comes mainly from murine models, while recently the number of

studies aimed at assessing the biological properties of human DCs

has significantly increased. According to the differences in

development, phenotype, and function (See Table 1), DCs can be

classified into several subtypes: classical, or conventional DCs

(cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs

(MoDCs), etc (7). cDCs, which consist of two major subsets: cDC1s

and cDC2s, develop from common DC precursor cells (CDPs) in

the bone marrow (21). In humans, cDC1s can be recognized by

highly specific cell surface markers such as CD141, XCR1, CLEC9A,

and DEC205 (7, 21–23). cDC2s are more heterogeneous in cell

surface markers and can be further classified into CD5+ cDC2s

(DC2s) and CD5- cDC2s (DC3s) based on the presence or absence

of CD5 expression (22, 24). It remains unknown whether DC3s are

derived from CDPs (22). In addition, some studies have suggested

the existence of other subsets of cDC2, such as DC4 (CD1C-

CD141-) and DC5 (AXL+ SIGLEC6+), whose classification and

function require further study (24). Although still controversial,
FIGURE 1

The concept of DC vaccination. In clinical trials, autologous monocytes are commonly used as the source of DC vaccines with differentiation and
maturation in vitro. After loaded with tumor associated antigen, DC vaccines are infused to activate T cell response.
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current studies suggest that pDCs arise from both CDPs and

lymphoid progenitors and that pDCs from different sources have

different functions. During acute or chronic viral infection, mature

pDC subsets of both different origins can secrete type I interferon,

but only bone marrow-derived pDCs can process and present

antigens (25, 26). Furthermore, pDCs are involved in the

progression of autoimmune diseases (27), and the high frequency

of pDCs in tumors is highly correlated with poor prognosis (28). In

contrast to cDCs and pDCs, MoDCs originate in monocytes. Under

the context of inflammation, monocytes in the blood are recruited

through CC chemokine 2 (CCR2)-dependent pathways and

differentiate into MoDCs in peripheral tissues (23). In response to

inflammation, MoDCs allow CD4+ T cells’ differentiation into TH1,

TH2, or IL-17-producing TH cell (TH17) phenotypes, depending

on the context (29). Some investigators have suggested that CD16+

non-classical monocytes are also a type of DC, particularly those

expressing carbohydrate-modified P-selectin glycoprotein ligand 1

(slanDCs) (23), which have potent pro-inflammatory properties.

DCs remain immature when pathophysiological stimuli are

absent, and are crucial to immune surveillance (30, 31). Immature

DCs (iDCs) are indispensable for maintaining tolerance to

peripheral autoantigens (32). They can eliminate autoreactive T

cells (33), and facilitate the expansion and differentiation of
Frontiers in Immunology 03
regulatory T cells (Tregs) (34). iDCs mature when they encounter

microbial stimuli or endogenous stimuli associated with

inflammation (35). Reduced phagocytic activity, increased

expression of costimulatory ligands and MHC class I/II molecules

on the cell surface, expression of chemokine receptors involved in

lymph node homing and retention, and increased secretion of

chemokines and proinflammatory cytokines are the main

differences between mature DCs (mDCs) and iDCs (10).

cDC1s are of great importance in anti-tumor immunity and are

the mere type of APC that effectively primes tumor-specific CD8+ T

cells (36). In both murine and humans, cDC1s are crucial for the

recruitment of CD8+ T cells to tumors (37). cDC1 is a major

producer of IFN-l, which induces TH1 responses (38, 39). cDC1s

can also mediate TH type 1 (TH1) polarization of CD4+ T cells (40).

Thus, the abundance of cDC1 in the tumor microenvironment

(TME) has a positive correlation with patient survival (37). On the

contrary, the understanding of the functions of cDC2s in antitumor

responses is relatively new. cDC2s secrete a variety of cytokines,

some of which are anti-inflammatory while some of which are pro-

inflammatory, including interleukin-12 (IL-12), which is essential

for the expansion and survival of T cells and natural killer (NK) cells

(41, 42). cDC2s and MoDCs may also have the ability to cross-

present antigens, and cDC2s appear to be required for initiating
TABLE 1 DC subsets in human.

DC
subset

Origin Main
surface
markers

Main functions

cDC1s CDPs CD11clow,
HLA-DR+,
CD141+,
XCR1+,
CLEC9A+,
DEC205+

Recruit CD8+ T cells to tumors, induce TH1 responses by IFN-l production, mediate TH type 1 (TH1) polarization of
CD4+ T cells.

cDC2s CDPs CD11c+,
HLA-DR+,
CD1c+,
CD11b+,
CD172a+,
CD1a+,
CD14,
CD5

Secrete proinflammatory and anti-inflammatory cytokines, including IL-12. Required for initiating antitumor CD4+ T
cell responses.

pDCs CDPs/
lymphoid
progenitors

CD11c-,
HLA-DRlow,
CD123+,
CD303+,
CD304+,
CCR2+,
CXCR3+

Have the strongest type I IFN responses, the major producers of IFN-a, related to poor prognosis in various cancers. Only
bone marrow-derived pDCs can process and present antigens, involved in the progression of autoimmune diseases.

MoDCs Monocytes CD11c+,
HLA-DR+,
CD1c+,
CD11b+,
CD14+,
CD64+,
CD206+,
CD209+,
CD172a+,
CD1a+,
CCR2+

Depending on the context, allow CD4+ T cells` differentiation into TH1, TH2, or IL-17-producing TH cell (TH17) phenotypes.
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antitumor CD4+ T cell responses (7, 43). In addition, cDC2 and

MoDC underlie direct or cross-presentation of TAAs after

chemotherapy in some cancers (7, 44, 45). Among all the DC

subtypes, pDCs have the strongest type I IFN responses and are the

major producers of IFN-a (46). In anti-tumor immunity, type I

IFNs are thought to be critical for immunogenic responses to anti-

tumor therapies. However, high frequencies of pDCs in tumors are

related to poor prognosis in a variety of cancers (47, 48). Persistent

IFN-I response may be a key factor in immunodeficiency and

treatment resistance, although the mechanism is not yet fully

understood (49, 50).
3 The glioma microenvironment
and DCs

3.1 The glioma microenvironment

Gliomas, especially GBM, have a unique TME compared to

tumors at other sites. The central nervous system (CNS) used to be

regarded as an immunologically privileged site. One of the reasons

for this understanding is that the lymphatic drainage system of the

brain has not been discovered for a long time. Another reason is the

existence of the blood-brain barrier (BBB) (51). Recently, the

discovery of the glial-lymphatic pathway has proposed a

mechanism for connecting the parenchyma and interstitium with

the cerebrospinal fluid space (52); meanwhile, the discovery of

functional lymphatic vessels in the meninges confirms the existence

of a direct drainage pathway for cerebrospinal fluid that contains

solutes and immune cells from the brain to the cervical lymph

nodes (53, 54). The brain is protected from pathogenic

microorganisms by the BBB, consisting of pericytes, astrocyte

processes, vascular endothelial cells, and extracellular matrix.

Meanwhile, it makes it harder for drugs and peripheral immune

cells to enter the CNS, facilitating tumor invasion and growth (55).

However, it has been shown in recent studies that T cells can enter

the brain and provide immune surveillance (56, 57), challenging the

notion that the BBB is sealed to immune cell entry. Simultaneously,

damaging the BBB by GBM itself can also limit the BBB’s ability to

function (58). In summary, during inflammation, specific antigens

are recognized by microglia, then microglia present them to

activated lymphoid cells through the glial-lymphoid pathway, and

subsequently more immune cells penetrate the BBB, leading to a

more intense inflammatory response and following immune

responses. Thus, CNS immunity is not so much “privileged” as it

is “unique”.

However, compared to other tumor types, CNS tumors have

lower levels of tumor-infiltrating lymphocytes (TILs) and other

types of immune effector cells (59). This “cold tumor” phenotype

has been related to poor response to immunostimulatory therapies

such as ICIs (17, 60). Even when inducing T cells to respond to CNS

cancer, the number of antigen-specific TILs remains relatively low,

and the TILs present often exhibit a depleted phenotype (18, 61).

Upon inflammatory stimulation, brain stromal cells produce high

levels of classical immunosuppressive cytokines such as TGFb.
Frontiers in Immunology 04
These cytokines neutralize inflammatory factors to maintain

homeostasis (62). Glioma cells produce high levels of

indoleamine-2,3-dioxygenase (IDO), which, besides promoting

Treg accumulation, inhibits T-cell activity by depleting

microenvironmental tryptophan (63). Microglia and tumor-

infiltrating myeloid cells reduce the arginine level in the tissues by

producing high levels of arginase, which further suppresses the

proliferation and functions of T cells (64). Additionally, the

compromised BBB suppresses glioma patients’ adaptive immune

response by upregulating programmed death ligand 1/2 (PD-L1/2)

expression to prevent effector T-cell from activation (65).
3.2 DCs in the glioma microenvironment

Normally, peripheral circulating DCs reach the vascular-rich

compartment through the central lymphatic vessels and are

virtually absent in the brain parenchyma (66). However, a recent

study found that CD141+ cDC1 can infiltrate the region of GBM

and present antigens to T cells in deep cervical lymph nodes

(dcLNs) (67). Nonetheless, extracranial antigen presentation

failed to facilitate tumor eradication in the absence of

immunotherapy in a melanoma brain metastasis model (68). This

indicates that the presentation of antigens in the periphery is

probably not sufficient to induce immunity against brain tumors.

A major barrier to the application of DCs for the treatment of

GBM is that DCs must have the capacity to induce anti-tumor

immune responses under immunosuppressive conditions. The

mechanism of immunosuppression in GBM involves both the

glioma cells themselves and the cells in the TME (Figure 2).

3.2.1 glioma cells
Glioma cells secrete cytokines like TGFb, IL-10, VEGF, and

CSF-1, which inhibit the differentiation of DCs (69). Glioma cell-

produced PGE2 can promote DC-producing IL-10, inhibiting

effector T-cell responses (70). Tumor cells release IL-6, inhibiting

the CD34+ cell differentiation into DCs and promoting the

transition of these cells to the monocytic lineage with deficient

APC function (71). Some glioma cell products are linked to DC

dysfunction, including R-2-hydroxyglutarate (R-2-HG), fibrinogen-

like protein 2 (FGL2), Nrf2, etc. In high grade glioma (HGG)

patients with IDHmut, reprogramming mediated by the tumor

metabolite R-2-HG leads to poor antigen presentation of DCs (66).

FGL2 inhibits GM-CSF-induced CD103+ DC differentiation

through inhibition of NF-kB, STAT1/5, and p38 activation (72).

Glioma cells can induce DCs to overexpress Nrf, which inhibits DC

maturation and reduces effector T-cell activation (73). Glioma cells

can affect DC lipid metabolism, leading to lipid accumulation in

DCs and limiting T-cell activation (74). The Warburg effect of

glioma cells can lead to lactic acid accumulation, and low pH affects

immune cell metabolism and function (75).

3.2.2 Cells in the glioma microenvironment
TME components such as Tregs, myeloid-derived suppressor

cells (MDSCs), and tumor-associated macrophages (TAMs) can
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suppress antitumor immunity by reducing DC responses and

causing T cell dysfunction, which is also known as “T

cell exhaustion”.

Treg is an immunosuppressive T cell subset that helps to

maintain immune tolerance, limits inordinate immune responses,

and promotes homeostasis and tissue regeneration. In various solid

tumors, the frequency of tumor-infiltrating effector Tregs is high,

and the high proportion of Tregs: CD8+ T cells is inversely

correlated with prognosis (76). Tregs are not detectable in normal

brains and are seldom found in low-grade brain tumors.

Intriguingly, despite lymphopenia, GBM patients have increased

Treg frequencies in TME and blood (77). Treg frequencies vary by

glioma subtypes, with higher frequencies in IDHwt than in IDHmut

(78). In a murine model of astrocytoma, Tregs accumulate time-

dependently after tumor cell implantation. The quantity of Tregs

first increases in blood and then in tumor tissue during the

asymptomatic phase (79). It can be seen that Tregs are recruited

to tumors at an early stage when the number of tumor cells is still

low. CD27(TNFRSF) expressed by Tregs can downregulate the

expression of CD70 on the membrane of DCs, thereby limiting

the activation of CD8+ T cells (80). The immune checkpoints BTLA,

PD-1, Tim-3, and CTLA-4 expressed on Tregs also limit functions

of DCs (65).

MDSCs are a population of immature bone marrow cells that

are of high heterogeneity. In the TME, with their strong

immunosuppressive activity, they continuously interact with

infiltrating T cells, especially cytotoxic T lymphocyte (CTLs),

inhibiting their function and thus promoting the growth and

progression of tumors (81). MDSCs can be detected in patients

with cancer or the setting of chronic inflammation when sustained
Frontiers in Immunology 05
low-level stimulation of bone marrow cell generation leads to the

development of immunosuppressive bone marrow cells (82, 83).

First develop in the bone marrow, they then infiltrate and

accumulate in solid tumors via factors such as GM-CSF, G-CSF,

M-CSF, VEGF, IFN-g, IL-6, and IL-4, which are secreted by tumor

cells or other TME components. In GBM, MDSC is one of the

major immunosuppressive components of the TME (84). Recent

studies have shown that MDSCs are present in GBM patients’

blood, but not in patients with low-grade gliomas or healthy people

(85). MDSCs can prevent CTL entry into tumors and T cell

responses to HLA stimulation through ROS- and NO-dependent

pathways (86). Like Tregs, MDSCs produce immunosuppressive

cytokines such as IL-10 and TGFb. In addition, MDSCs express

immune checkpoint regulatory pathway ligands, such as PD-L1/2

and CD155. These ligands inhibit T-cell responses. When

interacting with receptors on T cells, they can even induce T cell

apoptosis (87, 88).

TAMs, representing 50% of the total number of living cells in

the entire GBM tumor, are the largest immune cell population in

the TME of GBM (89). TAMs are a highly heterogeneous cell

population, and overall, in both murine and human models, the

majority of TAMs in brain tumors seem to originate in circulating

monocytes, while approximately 15% of TAMs originate in brain-

resident microglia (51, 90). In GBM, however, this heterogeneity

depends on the context (e.g., Microglia are relatively abundant in

primary GBM, whereas monocyte-derived macrophages

predominate in recurrent GBM.) (89). In general, TAMs are

thought to promote tumor growth, and the number of TAMs is

correlated with tumor grade (91). As is shown in previous in vitro

studies, macrophages can be classified into two groups: M1 and M2,
FIGURE 2

The immunosuppressive glioma microenvironment. In GBM, tumor cells, Tregs, M2-like tumor-associated macrophages (TAMs) as well as myeloid-
derived suppressor cells (MDSCs) directly or indirectly inhibit the effect of DC by limit its differentiation and function, or inhibit recruitment,
proliferation and function of T cells. Meanwhile, these cells upregulate immune checkpoint expression and interact with receptors on CTLs, thus
lead to so called “T cell exhaustion”. There is also a crosstalk in the TME between those cells that secrete chemokines such as CCL20, CCL22, and
CXCL12, which further enhancing immunosuppression.
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and the growth-promoting activity of TAM correlates with the M2

macrophage phenotype that is anti-inflammatory. However, TAMs

are neither M1-like nor M2-like but exhibit a mixed phenotype (91).

In the TME, the majority of TAMs were M2-like cells. Yet, there are

also proinflammatory TAMs capable of engulfing tumor cells (92).

Immunosuppressive cytokines, such as TGFb and IL-10, which are

expressed by M2-like TAMs, suppress T cell proliferation and

function. Meanwhile, they promote extensive crosstalk with Tregs

and MDSCs, along with chemokines like CCL20, CCL22, and

CXCL12, further enhancing immunosuppression (93, 94).
4 Overview of DCV clinical trials

4.1 The source of DCs

A large majority of DC vaccines in clinical trials are based on

MoDCs. In particular, DCV trials in GBM now all use MoDCs. The

common method is to collect autologous monocytes from patients,

induce them to differentiate into immature DCs in vitro, expose

them to TAAs after induction of maturation, and then transfuse

them into the same patient. In trials that used mDCs, DC

maturation was mostly induced by GM-CSF combined with IL-4,

PGE2, TNF-a, or IFN-g (95–99). There are couples of trials that

induce DC maturation by using IL-6, IL-1b, TNF-a, or PGE2

without GM-CSF (100–102). Although cDCs may be superior to

MoDCs in their ability to stimulate T cells (7, 103), there are

currently no established protocols for isolating or differentiating

these cells in vitro. Nonetheless, in some diseases, most notably

melanoma, the use of cDCs and pDCs as DC vaccines has shown

some encouraging early results that may be extended to GBM

research in the future (104–107).

In addition, since iDCs are less capable of stimulating T cells

than mDCs and may even induce tolerance, mDCs are used in most

DCV trials. However, there are trials using iDCs that have reported

clinical benefits (108, 109).
4.2 Tumor-associated antigens

By priming CD8+ T cells against TAA, DCs are an important

part in antitumor immunity. Thus, the efficacy of DCV is related to

the existence of TAAs, also known as neoantigens, in individual

tumors. The overall mutational burden of GBM is very low, but

patients who relapse after TMZ chemotherapy have an increased

mutational burden (110).

Previous trials using DCV used tumor lysates, tumor cell

apoptotic bodies, irradiated tumor cells, DC-tumor cell fusion,

and tumor cell surface eluted peptides as whole tumor cell TAAs.

Whole tumor cell-derived TAAs contain numerous TAAs, assuring

the diversity of antigens and reducing the risk of TAA-loss variants

escaping (111). However, due to the immunosuppressive factors

produced by glioma cells, whole tumor cell-derived TAAs may

inhibit the DC differentiation and maturation or alter the function

of generated DCs (112). Furthermore, whole tumor cell-derived
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TAA vaccines produced using current methods are poorly

immunogenic and difficult to induce potent and durable T cell

responses (113).

Some DCV studies use molecularly defined TAAs, including

specific peptides, proteins, and DCs transfected with TAA-coding

mRNA. The source of molecularly defined TAAs is more

standardized and reproducible, making it easier to monitor

target-specific responses. In addition, they can be personalized for

different individuals (114). However, compared to TAAs derived

from whole tumor cells, molecularly defined TAAs lack diversity.

Therefore, to reduce the risk of escape of TAA-loss mutants, several

molecularly defined TAAs should be used.
4.3 Dose and route of application

To induce a T cell response in a healthy subject, the minimum

DC dose is 2×10^6 DC/vaccine (115), while no study to date has

achieved dose-limiting toxicity. While several clinical studies

aiming at determining the best dose of DCV therapy have been

conducted previously, and some of them have been completed (e. g.

NCT00612001, NCT01171469, NCT00068510, NCT00107185), the

relationship between clinical outcomes and DC dose, and the dose-

response relationship of the optimal dose have remained

inconclusive. Studies have shown that patients receiving lower

doses of DC have longer survival (116); while some studies

suggest that improving the efficiency of DC migrating to lymph

nodes may increase patient survival (117). This may be because the

DCV used in these studies was handled differently as well as the

status of DC, making it difficult to compare to derive the optimal

dose of DC. In the existing clinical trials, almost all patients received

multiple vaccinations, mainly using the prime-boost method (18).

Several studies have reported a trend toward improved survival in

booster recipients (102).

Different routes of injection of DCV result in different

distributions of DC in vivo (118, 119). Currently, the routes of

administration used in clinical trials of DCV include intravenous

injection, subcutaneous injection, and nodal injection.

Subcutaneous injection is by far the most common route of

administration, with up to 4% of DCV reaching the draining

lymph nodes. Irrespective of the routes of administration, high

numbers of DCs remained at the injection site, lost viability, and

were eliminated by infiltrating CD163+ macrophages within 48

hours (120). The intranodal injection may allow more DCs to

migrate to the T-cell region, but whether it is more effective in

inducing antigen-specific immune responses remains to be

determined (120).
4.4 Treatment options

Most patients underwent cytoreductive surgery before DCV,

while some patients underwent biopsy alone or without surgery.

The extent of surgical resection is positively associated with survival

(121), while minimal residual disease status also favors DCV
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therapy (121, 122), which may be related to a reduction in local

immunosuppression (123). Yet, other studies have shown that the

extent of resection is not related to survival in DCV treatment (124).

Therefore, in addition to the absolute volume of the residual tumor,

other factors such as the composition of the residual tumor may

influence the effect of DCV.

DCV treatment is often combined with radiotherapy or

chemotherapy, or both. Tumor cell death after chemoradiotherapy

releases tumor antigens, then the brain endothelium presents MHC

class I antigens to circulating CD8+ T cells, which can enhance the

tumor-specific effector CTL homing to brain tumors (125). The most

widely used chemotherapeutic agent combined with DCV is TMZ,

which has been used in all current DCV-controlled trials. TMZ can

improve immunoreactivity by reducing Tregs and interfering with

their recruitment to tumors (126). Although TMZ often induces

lymphopenia, the lymphocyte zone restored after chemotherapy can

still induce an antitumor response (117, 127). The specific efficacy is

related to the dose of TMZ: for example, lower doses of TMZ help

deplete Tregs, whereas myelosuppressive doses enhance the response

to peptide vaccines (128). However, there is also evidence that CD8+

T cells expanded by DCV previously may be depleted by TMZ (100,

129). Moreover, only in the absence of TMZ was DCV able

to generate IFN-g-producing effector memory T cells, which

was positively related to survival (130). Thus, the effect of TMZ

on DCV efficacy remains inconclusive.
4.5 Safety

By far, no serious vaccine-related adverse events have been observed,

except for a few studies that reported severe adverse events (grade ≥3)

according to the National Cancer Institute Common Toxicity Criteria

(NCI CTC). Some of these adverse events were severe peritumoral

edema leading to other neurological symptoms (96, 131); some were

allergies following co-injection of DCV and GM-CSF (132).

Commonly observed adverse reactions attributed to DCV are

generally mild (≤ grade 2), including induration, pain, pruritus, and

erythema in injection sites, as well as meningeal irritation, lymph

node swelling, flu-like symptoms, edema, etc (95, 97, 98, 101, 102,

116, 133–143). These symptoms may be caused by disease

progression or other concomitant therapies as well. All in all,

DCV therapy was well tolerated as a therapeutic method (for a

brief introduction of DCV clinical trials registered in clinical trials.

gov, see Table 2 and Table 3).
5 Optimizing DCV therapy

5.1 Develop Other DC-derived vaccines

Although most DCVs use MoDCs that have been induced to

differentiate in vitro, long-term in vitro culture can result in

decreased MoDC migration and functional loss (7). Therefore,

MoDC is probably not the best DC subpopulation for vaccine

manufacturing, and the development of vaccines based on naturally

circulating DC subtypes such as cDC, pDC, or Langhans cell may
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achieve better results. Among these DC subsets, it has been proven

that cDCs have a stronger ability to induce CD8+ T cell response (7,

103). To date, the difficulty of producing cDC1/2 in large quantities

from patients remains an obstacle to cDC-based DCVs. Therefore,

future efforts should focus on solving the technical and cost issues of

generating large numbers of cDCs.
5.2 Screen specific immune biomarkers

ICIs have achieved clinical success in effectively treating various

cancers, which are related to specific immune biomarkers to guide

application. Immune biomarkers such as tumormutation burden and

PD-L1 positivity provide accurate and non-invasive means

for patient preselection (13, 15, 144), which are of great value to

the success of antitumor immunotherapy. Unfortunately, the

lack of strong patient-preselected biomarkers immensely limits the

guide of application of DCV; therefore, there is a surge in urgency to

screen out biomarkers that are most likely to predict a positive patient

response to DCV. The selection of patient subgroups by specific

biomarkers that improve the likelihood of a subject’s response to

DCV will help guide the design of clinical trials.
5.3 Improve the function of DC in the
glioma microenvironment

The glioma microenvironment is composed of various

immunosuppressive cells, all of which are of great importance in

disease progression. Targeting only one type of cell is not sufficient

to modify the entire TME. Therefore, to improve DC function in the

TME, it may be necessary to combine it with a variety of other

immunotherapy methods to get over the negative effects of

immunosuppression and immune checkpoint modulation.

In preclinical models, anti-CD25 antibodies are commonly used

to deplete Tregs (145–147) or limit their immunosuppressive

function by blocking molecules like PD-1, CTLA-4, and Tim-3 or

enzymes such as IDO (146, 148, 149). However, it has been reported

in murine models that high-dose unfractionated radiotherapy or

low-dose TMZ or cyclophosphamide chemotherapy can deplete

Tregs (150, 151). An encouraging approach is reducing the effect of

Tregs by combining radiotherapy with anti-IDO, which eventually

improves the survival of mice (152). When anti-CD25 therapy is

combined, beneficial effects on survival caused by DCV have been

reported by several other studies, especially when Tregs are depleted

before vaccination (145, 153).

In vitro, paclitaxel promoted MDSC differentiation into DCs in

a TLR4-independent manner (154). Docetaxel induces the

transformation of MDSCs into M1-like macrophages and

selectively enhances CTL responses (155). All-trans retinoic acid

can promote MDSC maturation (156). In addition, low doses of 5-

FU (157), capecitabine (158), etc. can deplete MDSCs. Pexidatinib

reduced MDSCs and M2-like TAMs by blocking CSF-1 receptor

signaling (159), while STAT3 inhibitors reduced MDSCs and

impaired their function (160).
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Blocking the CSF-1/CSF-1R axis prevents monocyte differentiation,

thereby reducing the number of TAMs, while also reducing the survival

of existing TAMs (161, 162). Blockade of the CCL2/CCR2 axis inhibited

monocyte recruitment but did not affect the TAMs formed (163, 164).

CD47 is a “don’t eat me” signal, and blocking CD47/SIRP enhances

TAM phagocytosis of tumor cells (165). Oncolytic virotherapy

repolarizes M2-like TAMs to M1-like TAMs (166, 167).
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Although ICIs have achieved impressive results in various

tumors, and immune checkpoint inhibitors have improved

survival in a mouse GBM model (146, 148, 149, 168), ICIs alone

have not been effective in the treatment of GBM (17, 169). However,

the combination of ICI and DCV was more effective than DCV

alone. Currently, the most commonly used target of ICIs is PD-1,

followed by CTLA-4 (10).
TABLE 2 Completed clinical trials registered on clinicaltrials.gov concerning dendritic cell vaccine in glioma patients.

Clinical
trial

Strategy Condition Phase Combinatorial treatment

NCT00576446 Autologous DCs loaded with tumor lysate Malignant glioma I Gliadel Wafer

NCT01792505 Autologous DCs loaded with tumor lysate Malignant glioma I Imiquimod

NCT01808820 Autologous DCs loaded with tumor lysate Malignant glioma I Imiquimod

NCT00766753 Autologous DCs loaded with TAA or TAA-derived
peptides

Recurrent malignant glioma I/II Poly-ICLC

NCT00576641 Autologous DCs loaded with TAA or TAA-derived
peptides

Brain stem glioma and
glioblastoma

I N/A

NCT00576537 Autologous DCs loaded with tumor lysate Glioblastoma II N/A

NCT01213407 Autologous DCs loaded with tumor lysate Glioblastoma II Standard therapy

NCT00612001 Autologous DCs loaded with TAA or TAA-derived
peptides

Malignant glioma I N/A

NCT01171469 Autologous DCs loaded with TAA or TAA-derived
peptides

Malignant glioma I Imiquimod

NCT02010606 Autologous DCs loaded with tumor lysate Glioblastoma I Temozolomide, radiotherapy, bevacizumab

NCT00068510 Autologous DCs loaded with tumor lysate Malignant glioma I N/A

NCT01006044 Autologous DCs loaded with tumor lysate Glioblastoma II Standard therapy

NCT02709616 Autologous DCs pulsed with TAA-coding RNAs Glioblastoma I Temozolomide, concurrent radiotherapy

NCT00323115 Autologous DCs Glioblastoma II Temozolomide, radiotherapy

NCT01635283 Autologous DCs loaded with tumor lysate Low-grade glioma II N/A

NCT00107185 Autologous DCs loaded with tumor lysate Malignant glioma I N/A

NCT01291420 Autologous DCs pulsed with TAA-coding RNAs Glioblastoma I/II N/A

NCT02049489 Autologous DCs loaded with TAA or TAA-derived
peptides

Recurrent glioblastoma I N/A

NCT03615404 Autologous DCs pulsed with TAA-coding RNAs Malignant glioma I Temozolomide, standard radiotherapy,
GM-CSF

NCT02820584 Autologous DCs loaded with GSCs Glioblastoma I N/A

NCT00846456 Autologous DCs pulsed with TAA-coding RNAs Glioblastoma I/II Standard therapy

NCT03360708 Autologous DCs pulsed with tumor lysate Recurrent glioblastoma I N/A

NCT00626483 Autologous DCs pulsed with TAA-coding RNAs Glioblastoma I Basiliximab, GM-CSF

NCT02366728 Autologous DCs pulsed with TAA-coding RNAs Newly-diagnosed glioblastoma II Basiliximab, tetanus-diphtheria toxoid

NCT00890032 Autologous DCs pulsed with TAA-coding RNAs Recurrent glioblastoma I N/A

NCT01280552 Autologous DCs loaded with tumor-derived peptides Glioblastoma II Chemotherapy

NCT00639639 Autologous DCs pulsed with TAA-coding RNAs Newly-diagnosed glioblastoma I Tetanus toxoid

NCT01522820 DC-protein fusion Glioma I Rapamycin

NCT00693095 Autologous DCs pulsed with TAA-coding RNAs Glioblastoma I Temozolomide, radiotherapy
N/A, Not available.
frontiersin.org

https://www.clinicaltrials.gov
https://doi.org/10.3389/fimmu.2023.1259562
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2023.1259562
TABLE 3 Ongoing clinical trials registered on clinicaltrials.gov concerning dendritic cell vaccine in glioma patients.

Clinical
trial

Status Strategy Condition Phase Combinatorial treatment

NCT04911621 Not
recruiting

Autologous DCs pulsed with TAA-
coding RNAs

Pediatric high-grade glioma, diffuse
intrinsic pontine glioma

I/II Temozolomide, conventional next-
line treatment

NCT03334305 Not
recruiting

Autologous DCs pulsed with TAA-
coding RNAs

Pediatric high-grade glioma I Temozolomide, GM-CSF

NCT04837547 Recruiting Autologous DCs pulsed with TAA-
coding RNAs

Newly-diagnosed diffuse intrinsic
pontine glioma

I Autologous T cells

NCT01204684 Not
recruiting

Autologous DCs loaded with tumor
lysate

Glioma II resiquimod, poly-ICLC

NCT04552886 Recruiting Autologous DCs Glioblastoma I N/A

NCT04388033 Recruiting DC-cancer cell fusion Glioblastoma I/II IL-12, temozolomide

NCT00045968 Not
recruiting

Autologous DCs loaded with tumor
lysate

Glioblastoma III N/A

NCT04523688 Recruiting Autologous DCs loaded with tumor
lysate

Glioblastoma II Temozolomide

NCT02649582 Recruiting Autologous DCs pulsed with TAA-
coding RNAs

Glioblastoma I/II Temozolomide

NCT05457959 Not yet
recruiting

Autologous DCs loaded with TAA or
TAA-derived peptides

Recurrent and/or progressive diffuse
hemispheric glioma

I Nivolumab, Ipilimumab

NCT03879512 Recruiting Autologous DCs loaded with tumor
lysate

Recurrent pediatric high-grade glioma I/II Metronomic cyclophosphamide,
nivolumab/Ipilimumab

NCT03548571 Not
recruiting

Autologous DCs pulsed with TAA-
coding RNAs

Glioblastoma II/III Temozolomide

NCT04801147 Recruiting Autologous DCs loaded with tumor
lysate

Glioblastoma I/II Temozolomide, radiotherapy

NCT04115761 Recruiting Autologous DCs loaded with TAA or
TAA-derived peptides

Glioblastoma II Radiotherapy, chemotherapy

NCT03395587 Recruiting Autologous DCs loaded with tumor
lysate

Newly-diagnosed glioblastoma II Standard therapy

NCT03396575 Recruiting Autologous DCs pulsed with TAA-
coding RNAs

Brain stem glioma I Radiotherapy, temozolomide, GM-
CSF

NCT02465268 Not
recruiting

Autologous DCs pulsed with TAA-
coding RNAs

Newly-diagnosed glioblastoma II Tetanus-diphtheria toxoid, GM-CSF

NCT03400917 Not
recruiting

Autologous DCs loaded with TAA or
TAA-derived peptides

Newly-diagnosed glioblastoma II GM-CSF, chemoradiotherapy

NCT04963413 Recruiting Autologous DCs pulsed with TAA-
coding RNAs

Newly-diagnosed glioblastoma I GM-CSF

NCT01957956 Not
recruiting

Autologous DCs loaded with tumor
lysate

Glioblastoma I Temozolomide

NCT04201873 Recruiting Autologous DCs loaded with tumor
lysate

Recurrent glioblastoma I Pembrolizumab, poly-ICLC

NCT05100641 Not yet
recruiting

Autologous DCs loaded with TAA or
TAA-derived peptides

Glioblastoma III Temozolomide, radiotherapy

NCT04968366 Recruiting Autologous DCs loaded with TAA or
TAA-derived peptides

Newly-diagnosed glioblastoma I Temozolomide

NCT03688178 Recruiting Autologous DCs pulsed with TAA-
coding RNAs

Glioblastoma II Temozolomide, varlilumab

NCT04888611 Recruiting Autologous DCs loaded with TAA or
TAA-derived peptides

Recurrent glioblastoma II Carilizumab
F
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5.4 New routes of administration

To date, there haven’t been any reported clinical trials for glioma

using intratumoral injection of DCV yet. It has been shown that in an

orthotopic GL261 glioma murine model, compared with subcutaneous

injection of GL261 lysate-loaded DCs, intratumoral injection is less

effective; however, combining these two administration routes is more

effective than subcutaneous injection alone (170). Intratumoral injected

DCs could be detected in the tumor parenchyma while not in the

cervical lymph nodes. Therefore, intratumoral injection of DC may

have a distinct mechanism to improve survival. This may be because

intratumoral DC injection enhances the anti-tumor immune response

induced by subcutaneous injection of DC by pro-immunomodulating

cytokines in the TME, reducing Treg cells, and directly inhibiting

tumor proliferation by TNF (170, 171). Therefore, combining the two

in clinical trials may lead to better results.
6 Conclusion

Thousands of glioma patients have been treated with DCV over

the past few decades. During this period of time, the methods of

production and treatment of DCV have also been gradually

diversified. Due to the weak immunogenicity of DCV produced

by conventional methods, which cannot induce strong and durable

T-cell responses, many efforts have been made to improve their

immunogenicity (172, 173). Yet, those DCVs with higher

immunogenicity don’t seem to be as clinically successful as

expected. Thus, whether there is a better way to improve

immunogenicity or whether immunogenicity doesn’t take a

crucial part in the effect of DCV remains a question. Although no

definitive conclusion can be made about the efficacy of DCV, some

promising results still show the great potential of DCV as a

therapeutic tool for GBM. To conclude, the reasons why the

clinical application of DCV is not as good as expected may be

related to the limitation of DC function by the immunosuppressive
Frontiers in Immunology 10
microenvironment, the lack of optimal dosage standards, and the

lack of specific immune biomarkers. Either way, if future studies

address the above issues, DCV will have a significant impact on

GBM treatment and significantly improve patient outcomes.
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