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fibroblasts in the epithelial
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the single-cell era
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and Yuanjie Zhu*

Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
The skin is exposed to environmental challenges and contains heterogeneous

cell populations such as epithelial cells, stromal cells, and skin-resident immune

cells. As the most abundant type of stromal cells, fibroblasts have been

historically considered silent observers in the immune responses of the

cutaneous epithelial immune microenvironment (EIME), with little research

conducted on their heterogeneity and immune-related functions. Single-cell

RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have overcome

the limitations of bulk RNA sequencing and help recognize the functional and

spatial heterogeneity of fibroblasts, as well as their crosstalk with other types of

cells in the cutaneous EIME. Recently, emerging single-cell sequencing data

have demonstrated that fibroblasts notably participate in the immune responses

of the EIME and impact the initiation and progression of inflammatory skin

diseases. Here, we summarize the latest advances in the role of fibroblasts in the

cutaneous EIME of inflammatory skin diseases and discuss the distinct functions

and molecular mechanisms of activated fibroblasts in fibrotic skin diseases and

non-fibrotic inflammatory skin diseases. This review help unveil the multiple

roles of fibroblasts in the cutaneous EIME and offer new promising therapeutic

strategies for the management of inflammatory skin diseases by targeting

fibroblasts or the fibroblast-centered EIME.

KEYWORDS

fibroblasts, epithelial immune microenvironment, inflammatory skin diseases, single-
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1 Introduction

The skin contains heterogeneous cell populations, such as epithelial cells, skin-resident

immune cells, and stromal cells, and acts as both a physical barrier and an immune organ

that can defend against external damage and adverse factors (1, 2). Based on the current

knowledge of skin structure, immune responses predominantly develop in the epithelial

immune microenvironment (EIME), situated in the epidermis and papillary dermis of the
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skin (3, 4). Facing ever-changing internal and external stimuli, the

cutaneous EIME develops an intricate system for immune

responses, including the proliferation and differentiation of

multiple cell types and the local interactions among activated

immune cells, keratinocytes, and stromal cells in the EIME (4).

Disruptions in the cutaneous EIME lead to dysregulated immune

responses, inducing various inflammatory skin disorders.

Fibroblasts, characterized by collagen alpha-1 chain and

decorin, are the major type of stromal cells in the cutaneous

EIME and can be spatially categorized into papillary and reticular

fibroblasts (5–7). Fibroblasts are the fundamental cellular

component supporting the cutaneous framework because they

can produce collagens to form the extracellular matrix (ECM) (8,

9). Historically, fibroblasts have been regarded as silent observers

occupying a secondary role within the cutaneous EIME. Studies on

the heterogeneity and immune-related functions of fibroblasts are

limited (10, 11). Recently, the newly developed single-cell

technologies have significantly facilitated our exploration of the

morphological and functional heterogeneity of dermal fibroblasts,

including single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics (ST), which can recognize unique alterations in

gene expression for each cell and provide quantitative visualization

of the distribution of gene expression within tissue sections (12–15).

Emerging evidence has revealed the dynamic changes and specific

functions offibroblasts in the cutaneous EIME during inflammation

progression (16–18).
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Under different pathological conditions, such as wound healing,

malignancy, or other inflammatory disorders, normal fibroblasts

can be activated and secrete cytokines to interact with other cells.

Fibroblasts and other types of cells in the cutaneous EIME, such as

epithelial cells, endothelial cells, pericytes, and adipocytes, can

develop into myofibroblasts, or cancer-associated fibroblasts

(CAFs) which are a heterogenous population of activated

fibroblasts playing key roles in tumor microenvironment and

affecting tumor proliferation, metastasis, and chemotherapy

resistance (Figure 1) (19, 20). The activation states of fibroblasts

are closely involved in the pathogenesis of diverse inflammatory

skin diseases. Based on the distinct roles of fibroblasts in the

cutaneous EIME, we divided inflammatory skin diseases into two

major categories: (I) fibrotic skin diseases like keloid and systemic

sclerosis (SSc), in which fibroblasts act as hallmark cells (21–23);

and (II) non-fibrotic inflammatory skin diseases like psoriasis,

atopic dermatitis (AD), vitiligo, and systemic lupus erythematosus

(SLE), in which fibroblasts act as fundamental and active

participants in the immune response by interacting with other

types of cells in the cutaneous EIME (24–27).

In this review, we summarize the latest advances in the role of

fibroblasts in the cutaneous EIME of inflammatory skin disorders

and discuss the distinct functions and potential molecular

mechanisms of activated fibroblasts in fibrotic skin diseases and

non-fibrotic inflammatory skin diseases. We aim to unveil the

multiple roles of fibroblasts in the cutaneous EIME and explore
FIGURE 1

The activation states of fibroblasts and their precursors in the cutaneous epithelial immune microenvironment (EIME). Under different pathological
conditions, such as wound healing, malignancy, or other inflammatory disorders, normal fibroblasts and other types of cells in the cutaneous EIME,
including epithelial cells, endothelial cells, pericytes, and adipocytes, can be activated to develop into myofibroblasts or cancer-associated fibroblasts
(CAFs). These activated fibroblasts can result in the abnormal accumulation of extracellular matrix (ECM), or secrete cytokines to interact with other
types of cells. Created with Figdraw.
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new promising therapeutic strategies targeting fibroblasts or

fibroblast-centered EIME in inflammatory skin diseases.
2 Fibroblasts act as hallmark cells in
fibrotic skin diseases

Fibrotic skin diseases, including local and systematic fibrotic

diseases, are characterized by the excessive accumulation of

fibroblasts and the abnormal buildup of the ECM and exert a

major healthcare burden worldwide (28, 29). Fibroblasts act as the

hallmark cells in fibrotic skin diseases. Under pathological

conditions, normal fibroblasts and other types of cells can be

stimulated to develop into fibroblastic activation states, resulting

in excessive collagen accumulation and abnormal tissue fibrosis (19,

30). This section summarizes recent studies on the functions and

underlying molecular mechanisms of fibroblasts in various fibrotic

skin diseases to provide potential targets for treating refractory

fibrotic skin diseases.
2.1 Local fibrotic skin diseases

Keloid is a typical local fibrotic skin disorder characterized by

hypervascularity and excessive accumulation of the ECM (31, 32).

Associated with progressive tissue fibrosis and a high recurrence

rate, keloid leads to heavy burden and psychological issues for

patients. Abnormal activation and excessive proliferation of

fibroblasts are the core pathological manifestations in keloid.

However, the underlying mechanisms and molecular changes

remain unclear.

In a recent study, Yang et al. conducted a scRNA-seq analysis

on dermis tissues from keloid and normal scar samples. They

obtained transcriptomes of 40,655 cells (keloid: 21,488; normal

scar: 19,167) and identified 13 fibroblast subclusters with further

heterogeneity (17). Among the identified fibroblast subsets, a

notable increase in the proportion of mesenchymal fibroblasts

was observed in keloids compared to regular scars, along with a

consistent upregulation of genes related to ECM formation, such as

collagen type I alpha 1/2 (COL1A1/2), periostin (POSTN) and

fibronectin 1 (FN1). Although prior research has documented the

increased expression of certain proteins, including POSTN and

FN1, the precise cellular origins of these proteins were uncertain.

The use of scRNA-seq offers a valuable approach to unveil the cell-

specific molecular alterations and mechanisms involved in keloid

pathogenesis, a task that conventional bulk RNA sequencing and

microarray techniques have struggled to achieve. In that study,

keloid exhibited marked increases in the interaction between

transforming growth factor-b (TGFb) and its receptor as well as

the interaction between POSTN and integrin alpha-V (ITGAV)/

ITGB5 compared to normal scars, suggesting that the TGFb
pathway and POSTN may actively participate in the initiation

and progression of keloid. These results were further validated

through immunofluorescence staining assay. Consequently,

inhibiting mesenchymal fibroblasts by blocking the TGFb
Frontiers in Immunology 03
pathway or targeting POSTN might potentially serve as viable

therapeutic approaches for treating keloid. The notable

upregulation of mesenchymal fibroblasts and ECM-related genes,

namely COL1A1, POSTN, COL1A2, FN1 and ASPN, in keloid was

similarly documented in a distinct scRNA-seq study conducted by

Huang et al. (33). Additionally, the researchers observed that

mesenchymal fibroblasts can promote the differentiation and

proliferation of macrophages, significantly contributing to the

macrophage-centered regulatory network within the EIME of

keloid. These findings substantially advanced our comprehension

of the immunological characteristics of keloid.

As the key contributor to keloid, mesenchymal fibroblasts can

originate from several types of cells, such as normal fibroblasts,

adipocytes and endothelial cells. Endothelial-to-mesenchymal

transition (EndoMT) is an intrinsic transdifferentiated process

that remarkably participates in the occurrence and development

of tissue fibrosis under different pathological conditions (34, 35).

The EndoMT process involves the reduction of specific endothelial

markers, such as CD31 and vascular endothelial (VE)-cadherin, and

the acquisition of mesenchymal markers, such as fibroblast-specific

protein (FSP1) and alpha-smooth muscle actin (a-SMA) (Figure 2).

Endothelial cells (ECs) can be stimulated by TGFb, secreted by

activated immune cells, and transdifferentiate into myofibroblasts

or other overactive fibroblasts, leading to collagen accumulation

and tissue fibrosis. For a long time, EndoMT has been commonly

observed in cardiac fibrosis and kidney fibrosis, yet few studies have

been conducted on its occurrence in skin fibrosis. Lee et al. recently

performed a scRNA-seq analysis on 35,424 cells from two keloid

samples and five normal skin samples. They use the single-cell data

from a previously published cohort as normal skin control (36).

Remarkably, mesenchymal activation, marked by dysregulated

TGFb/Smad signaling, was widely observed in keloid ECs, which

is a characteristic of EndoMT. Moreover, the integration of ST

allowed them to observe that the disease-related mesenchymal

fibroblasts predominantly clustered around the endothelial

regions and colocalized with the keloid ECs. These findings

further suggested the potential involvement of fibroblast-EC

communication and the EndoMT process in the pathogenesis of

keloid. However, given the relatively limited sample size in this

study and the lack of extensive prior research on the EndoMT

process in keloid, further investigation is necessary to fully

understand the impact of EndoMT on the occurrence and

progression of keloid.

Endothelin-1 (ET-1), a powerful vasoactive peptide responsible

for regulating vascular tone and produced by ECs, was observed to

be highly expressed in keloid (37). Notably, the RhoA/Rho-kinase

(ROCK) pathway can be activated by ET-1 to promote

myofibroblast differentiation and ECM accumulation in the

dermis, thereby markedly participating in the pathophysiology of

abnormal scar/keloid formation. Therefore, targeting the expression

of ET-1 or blocking the RhoA/ROCK pathway may provide

powerful approaches for inhibiting ET-1-induced keloid (38).

CAF-like fibroblasts, with the increased expression of CAF-

related genes, such as COL11A1, POSTN, WNT5A, and ASPN, is

another key subset enriched in fibrotic diseases (33, 39). This
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fibroblast subset can originate from epithelial cells though the

epithelial-to-mesenchymal transition (EMT) process (Figure 2) or

the activation of normal fibroblasts under various inflammatory

stimuli (30, 40, 41). Several recent studies have confirmed that CAF-

like fibroblasts can remodel and boost the accumulation of the ECM

or interact with other types of cells, resulting in the progression and

expansion of fibrotic lesions in the EIME (42–44). These findings

help us understand the mechanisms of tissue fibrosis and provide

potential new targets for preventing and treating keloid and other

skin diseases characterized by fibrosis.
2.2 Systematic fibrotic diseases involving
the skin

Systemic sclerosis is a complicated disorder characterized by

excessive fibrosis of the skin and multisystem organs. Continuous

activation of fibroblasts into myofibroblasts is the core process in the

pathogenesis of SSc (45, 46). However, the specific origins of

myofibroblasts and their molecular changes in the skin of SSc

patients remain uncertain. Recently, Lafyatis et al. performed a

scRNA-seq analysis on mid-forearm skin biopsies from 12 patients

with SSc and 10 healthy controls (47). They identified a new

fibroblast subcluster mainly in SSc skin, named SFRP2hi

(expressing high levels of SFRP2) PRSS23+ fibroblasts, which might

be associated with the ECM and extracellular structure organization.

Moreover, the researchers used pseudotime analysis to ascertain the

differentiation trajectory of cells and demonstrated a linear

progression from SFRP2hi WIF+ to SFRP2hi PRSS23+ WIF1− and
Frontiers in Immunology
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to SFRP2hi PRSS23+ SFRP4+ fibroblasts during the progression of

SSc. Additionally, a series of transcription factors (TFs) implicated in

myofibroblast differentiation was elucidated, including fos-like

antigen 2 (FOSL2), runt-related transcription factor 1 (RUNX1),

signal transducer and activator of transcription (STAT1), forkhead

box prote1 (FOXP1), and interferon regulatory factor 7 (IRF7). These

findings not only revealed a significant shift in fibroblast phenotypes

but also unveiled the underlying alterations in gene expression in SSc

skin, which can broaden our comprehension of the pathogenesis of

SSc and help explore the origin and differentiation of myofibroblast in

other fibrotic diseases.

The involvement of EndoMT in dermal fibrosis of SSc was

determined through in vitro and in vivo experiments (48). CD31/a-
SMA and VE-cadherin/a-SMA colocalization was markedly higher

in SSc lesional dermis than in healthy skin dermis. Additionally, the

ECs in SSc lesions showed a functional phenotype similar to that of

myofibroblasts, indicating the potential participation of EndoMT in

the progression of SSc. Furthermore, in vitro experimental results

indicated that healthy dermal microvascular ECs (H-dMVECs)

exposed to SSc sera developed a myofibroblast-like appearance,

marked by a decrease in endothelial indicators and the activation of

mesenchymal indicators. This phenotypic transition of H-dMVECs

treated with SSc sera was consistent with that of H-dMVECs treated

with TGFb, a universally acknowledged stimulus for EndoMT,

further suggesting the key role played by EndoMT in the

progression of SSc. These studies revealed the close link between

EC dysfunction and the progression of fibrosis, and thus, inhibiting

EndoMTmay be an effective approach for managing skin fibrosis in

patients with SSc.
FIGURE 2

Sketch map of the endothelial to mesenchymal transition (EndoMT) and epithelial to mesenchymal transition (EMT) processes. In response to diverse
inflammatory stimuli, endothelial cells or epithelial cells can be activated, transdifferentiating into mesenchymal cells, known as EndoMT or EMT
respectively. These intrinsic processes entail the gradual loss of endothelial/epithelial markers, including CD31, vascular endothelial (VE)-cadherin or
epithelial (E)-cadherin, and b-catenin, and the acquisition of mesenchymal markers, including fibroblast-specific protein (FSP1) and alpha-smooth
muscle actin (a-SMA).
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2.3 Other inflammatory skin diseases with
focal fibrosis

In addition to conventional fibrotic skin disorders, certain

inflammatory skin conditions exhibit focal fibrosis, such as

prurigo nodularis (PN). As a chronic inflammatory skin

disorder, PN is characterized by stubborn pruritic firm nodules

on the extremities and trunk and has recently been associated

specifically with the follicular epithelium in the cutaneous EIME

(49–51). In the epidermis, it presents as orthohyperkeratosis,

hypergranulosis, and acanthosis, occasionally reaching the

extent of pseudoepitheliomatous hyperplasia (52). However,

recent studies have provided new evidence indicating the unique

fibroproliferative characteristics of PN compared with other

inflammatory skin diseases, such as psoriasis and atopic

dermatitis (23, 53). That reminds us the activated fibroblasts

might potentially play a key role in the formation of PN lesions,

which is consistent with its cl inical features of firm

fibrotic nodules.

Gudjonsson et al. conducted a scRNA-seq analysis on 72,782

cells from the skin of 15 healthy donors and the nonlesional and

lesional skin of 6 patients with PN (54). They observed the presence

of a specific fibroblast subset in the papillary dermis of PN skin,

characterized by elevated expression levels of COL11A1, POSTN,

and serine protease 23 (PRSS23). This subset, identified as

COL11A1+ fibroblasts, demonstrated distinct profibrotic

properties in the cutaneous EIME of PN. Additionally, the

researchers also found that the receptor of interleukin-31 (IL-31),

which is a favorable immune mediator in PN, was expressed in

diseased fibroblasts, and therapy targeting IL-31R (Nemolizumab)

could revert the changes in PN lesions. This finding provides

convincing evidence of the critical role of immune-fibroblast

crosstalk in the pathogenesis of PN. Remarkably, that study also

used ST to ascertain the spatial heterogeneity and cell-cell

interaction of fibroblasts in the cutaneous EIME. The

incorporation of suitable controls and the integration of ST and

scRNA-seq enhance the reliability and importance of these findings.

A separate single-cell analysis conducted by Kwatra et al.

revealed a significant increase in CAF-like (WNT5A+ POSTN+)

fibroblasts within PN lesions compared with nonlesional skin of PN

patients (55). Moreover, ligand-receptor analyses demonstrated

that the WNT5A and POSTN expressed by fibroblasts could

frequently interact with the neuronal receptors MCAM and

ITGAV in PN lesions, further suggesting the potential role of the

fibroblast-neuronal axis in the initiation and progression of PN.

However, this study solely focused on patients diagnosed with PN,

without incorporating healthy individuals as a control group.

Therefore, further extensive research is necessary to acquire a

more comprehensive and persuasive understanding of the specific

roles of fibroblasts in the development of PN.

The above studies at single-cell level enhanced our

understanding of the roles of morphologically and functionally

heterogeneous fibroblasts in the pathogenesis of PN. For a long

time, most studies on prurigo nodularis focused on “itch”, and

limited studies were conducted on firm “nodules”. Hence, exploring

fibroblast-related molecular mechanisms of firm nodules may
Frontiers in Immunology 05
provide optional and promising strategies for treating

refractory PN.
3 Activated fibroblasts-entangled
crosstalk in non-fibrotic inflammatory
skin diseases

In addition to playing a central role in fibrotic skin diseases,

fibroblasts also actively participate in the cutaneous EIME of non-

fibrotic inflammatory skin diseases, such as psoriasis, AD, SLE, and

vitiligo, mostly by frequent crosstalk with immune cells, epithelial

cells, and others. Single-cell data provides a unique opportunity to

analyze cell-cell communication mediated by ligand-receptor

interactions. This section discusses the new insight into the role

of crosstalk between fibroblasts and multiple types of cells in non-

fibrotic inflammatory skin diseases to discover novel and powerful

targets for managing diverse inflammatory skin diseases.
3.1 Fibroblast-immune cell crosstalk

Psoriasis is one of the most common immune-regulated skin

diseases, exerting a substantial medical burden on patients and

society (56, 57). Previous studies have confirmed that psoriasis is

closely related to T-cell immune dysregulation, and IL-17 and IL-23

are regarded as the core initiators of the pathogenesis of psoriasis

(58). Recently, researchers have combined scRNA-seq and ST to

identify several novel fibroblast subsets in the cutaneous EIME of

psoriasis that may drive and participate in the progression of

psoriasis. Meanwhile, the crosstalk between fibroblasts and

immune cells has also been demonstrated as the key contributor

to psoriatic inflammation.

Hu et al. conducted a scRNA-seq analysis on full-thickness skins

obtained from the psoriatic lesions of 3 patients and the

corresponding regions of 3 healthy individuals, and a total of

24,234 cells were further clustered into 35 cellular subsets (59).

They analyzed cell-specific gene expression and observed that the

expression of MHC molecules, including HLA-A/B/C and HLA-

DRA, was greatly increased on the surface of fibroblasts under

psoriatic-inflammation conditions, which can stimulate the

activation of T and NK cells by interactions with CD4, CD8, and

CD94 (60, 61). Additionally, fibroblasts in psoriatic lesions showed a

significant increase in the release of key chemokines and cytokines,

including C-C motif chemokine ligand 26 (CCL26), IL-6, leukemia

inhibitory factor (LIF), IL-17B, CCL19, and stromal cell-derived

factor 1 (SDF-1), which greatly enhanced the accumulation of a

variety of immune cells around fibroblasts. The release of a series of

cytokines further confirmed the proinflammatory roles exerted by

fibroblasts. Notably, these key molecules, such as CCL26, IL-6, IL-

17B, and CCL19, have been previously considered active participants

in the inflammatory process and are solely secreted by immune cells.

In contrast, single-cell data help to reveal that fibroblasts can also

secrete inflammatory cytokines and contribute to the immune

responses of psoriasis.
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Perivascular fibroblasts, an important subtype of fibroblasts, are

widely distributed in human tissues and involved in various

inflammatory diseases, such as myocardial infarction and fibrotic

diseases. In contrast, their roles in psoriasis are rarely studied. By

combining scRNA-seq and ST, a novel subset of PDGFRb+

perivascular fibroblasts was identified in psoriatic lesions. This

subset exhibited a remarkable increase in the release of IL-17B

and activation of dendritic cells (DCs). The presence of PDGFRb+

fibroblasts might be relevant to the surface expression of CD80/86

proteins in DCs, thereby promoting the progression of psoriatic

inflammation (62). Nevertheless, the underlying mechanisms by

which PDGFRb+ fibroblasts secrete cytokines and affect the

expression of CD80/86 proteins in DCs remain to be elucidated.

These findings confirmed that fibroblasts could interact with

immune cells by secreting a series of inflammatory factors and

significantly regulate the immune responses in the EIME of

psoriasis, providing promising targets and pathways for

treating psoriasis.

Atopic dermatitis is a refractory inflammatory skin disease with

clinical features of dry skin, intense itching, and eczema-like rashes

(63–66). Although the etiology and underlying mechanisms have

not yet been fully elucidated, AD has been consistently

characterized by a robust stimulation of TH2 immune

dysfunction in skin lesions and normal skin (67, 68). Compared

to conventional bulk transcriptomics, single-cell analysis offer a

more precise, comprehensive, and reliable characterization of

immune subsets in AD. Researchers have identified novel

fibroblast subpopulations in the cutaneous EIME that might

contribute to the progression of inflammation and pathological

disruption of AD.

Recently, Guttman et al. conducted a comprehensive scRNA-

seq analysis on 39,042 cells obtained from lesional and nonlesional

skin samples from 5 patients with moderate-to-severe AD and from

healthy individuals. The inclusion criteria for the patients were

strictly defined. Using cell lineage markers, the researchers

identified a novel COL6A5/18A1+ fibroblast subset uniquely

distributed in the AD lesions, associated with a higher release of

the CCL2, CCL19, and IL-32 (25). COL6A5, also present in other

locations of individuals with allergic conditions, has been identified

as a gene involved in the development of AD (69). The potential

contribution of COL6A5 in AD may be attributed to the creation of

unstable heterotrimers, resulting in abnormal fibroblast adhesion

and barrier dysfunction (70). COL18A1 can strongly bind to the

ECM component and potentially disrupt and destabilize the ECM

in AD lesions. Interestingly, they also observed that CD3+ T cells

accumulated mostly around COL6A5/18A1+ fibroblasts, indicating

that these fibroblasts may be involved in the recruitment and

organization of T cells by secreting a series of cytokines.

Additionally, as the best indicator of TH2 immune responses (71,

72), CCL26 upregulated the expression in COL6A5/18A1+ and

MFAP5+ FBN1+ fibroblasts, further suggesting the critical roles of

these fibroblast subsets in the TH2 immune responses of AD (25).

As an important chemokine involved in several inflammatory

processes, CCL26 has been widely studied and might be a

favorable target for addressing inflammatory skin disorders (73,

74). Nevertheless, the cell-cell interactions and underlying pathways
Frontiers in Immunology 06
by which CCL26 contributes to the pathogenesis of AD remain

unclear and need further investigation. In addition to COL6A5/

18A1+ fibroblasts, AD lesions also exhibited higher infiltration of

CCL2+ fibroblasts, with consistent patterns observed for CCL19 and

POSTN. The CCL2+ fibroblasts are mostly distributed next to CD3+

T cells and can interact with macrophages and DCs via the

receptors CCR1 and CCR2, further suggesting the critical roles of

CCL2+ fibroblasts in the recruitment and organization of T cells,

macrophages, and DCs. Despite the relatively small sample size, this

study represents the initial comprehensive scRNA-seq analysis

covering all cell types and expression conditions within the skin

tissues of AD patients compared to healthy individuals. Therefore,

the findings in this research are reliable, representative, and of

substantial value.

Combining scRNA-seq with a series of in vivo experiments, Ko

et al. first identified a unique paired related homeobox-1 (Prx1+)

fibroblast subpopulation in AD lesions in a classical experimental

mouse model, in which the IKKB-NF-kB pathway was disrupted

under homeostatic conditions (75). These Prx1+ fibroblasts can

overexpress CCL11 and lead to skin inflammation of AD, which is

characterized by the infiltration of eosinophils and followed by TH2

immune responses. The effectiveness of monoclonal antibody

therapy against CCL11 in reducing eosinophilia and TH2

inflammation confirmed the proinflammatory effect of CCL11

(75). Additionally, the researchers also examined human AD

samples and confirmed that the perturbation of IKKB-NF-kB

could upregulate CCL11 in human AD fibroblasts, further

suggesting the critical roles of Prx1+ fibroblasts and CCL11 in the

pathogenesis of AD. However, as a key chemokine and medium in

the crosstalk between fibroblasts and immune cells, CCL11 has

never been studied in inflammatory skin diseases other than AD

(76). Hence, the underlying pathway by which CCL11 stimulates

eosinophil infiltration and the TH2 immune response in the human

dermis deserves further investigation (77).

In previous studies, the C-X-C motif receptor (CXCR4)/C-X-C

motif ligand 12 (CXCL12) axis was reported to participate in

psoriasis-like inflammation both by promoting keratinocyte

proliferation and recruiting T cells (78). Likewise, the

upregulation of CXCL12 was also identified in AD lesions. Sun

et al. reported that thymic stromal lymphopoietin (TSLP) could

induce fibroblasts to produce CXCL12 and stimulate the trafficking

and migration of natural killer T cells (NKT) via CXCR4, resulting

in inflammation progression in AD skin lesions (79). Thus,

blocking CXCR4/CXCL12 could also be a feasible treatment

option for individuals with AD.

SLE is a severe inflammatory disease characterized by diverse

clinical and immunopathological manifestations (80, 81).

Dysregulated activation of immune cells and aberrant secretion of

autoantibodies and proinflammatory cytokines participate in the

pathogenesis of SLE (82, 83). As a critical type of lupus

erythematosus (LE), cutaneous lupus erythematosus (CLE) has

been commonly studied, and the cellular heterogeneity and

underlying mechanisms in cutaneous lesions have been revealed

at single-cell resolution (84–86). Recently, Zhao et al. reported the

scRNA-seq data of 23 skin biopsy samples from 8 discoid lupus

erythematosus (DLE), 10 SLE patients, and 5 healthy controls (85).
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The researchers observed that CXCL1+ fibroblasts and HLA+

fibroblasts were the most abundant fibroblast subtypes in

cutaneous lesions, and CXCL1, known for its ability to facilitate

the infiltration of immune cells, was highly expressed in these

activated fibroblasts. Additionally, the receptors of fibroblast-

secreted CCL19, CXCL12, and tumor necrosis factor superfamily

member 13b (TNFSF13B), which participate in the immune

responses of the cutaneous EIME, exhibited higher expression in

the immune cells of LE cutaneous lesions compared with healthy

skin. These findings were also validated by immunofluorescence

staining assay, indicating that the crosstalk between fibroblasts and

immune cells contributes to the pathological processes of lupus

cutaneous lesions.

In addition to releasing cytokines and chemokines, researchers

found that activated fibroblasts might interact with immune cells by

presenting antigens. HLA-DRB1 and HLA-DRA1, typically marked

in antigen-presenting cells, were found to be highly expressed in

HLA+
fibroblasts, suggesting the potential role of HLA+

fibroblasts

as nonclassical antigen-presenting cells in immune responses (59).

Nevertheless, the underlying pathways by which HLA+
fibroblasts

present antigens and the specific types of involved immune cells

remain to be elucidated.
3.2 Fibroblast-epithelial cell crosstalk

Keratocytes are the most abundant cell type in the epidermis,

chiefly involved in the immune responses in the cutaneous EIME

(87, 88). Consistent with immune cells, abundant crosstalk between

fibroblasts and keratinocytes has also been confirmed in the

pathogenesis of psoriasis. Using a skin equivalent model

containing both psoriatic and healthy cells, researchers observed

that psoriatic fibroblasts could stimulate the excessive proliferation

of healthy keratinocytes, which is the main pathological

manifestation of psoriasis (89). Moreover, the epidermis isolated

from psoriatic skin continued to be hyperproliferative for at least 15

days, with no inhibition by normal fibroblasts, further

demonstrating the key roles played by psoriatic fibroblasts in

keratocyte hyperproliferation (90). However, revealing the

underlying molecular mechanisms and signaling pathways by

which fibroblasts interact with keratinocytes is critical for studies

on psoriasis.

More recently, Miossec et al. observed that fibroblasts from

individuals with psoriasis exhibit a significant increase in

proliferation and enhance the growth of keratinocytes through

the expression of SDF-1, also named CXCL12 (90, 91). SDF-1, a

protein specific to fibroblasts, possesses the ability to trigger the

ERK pathway and acts as a growth factor to induce the proliferation

of epidermal keratinocytes. In-depth studies also confirmed that the

overexpression of SDF-1 could significantly increase the quantity of

keratinocyte layers and the thickness of the epidermis (92). SDF-1

has been widely studied as a stable chemokine that induces the

migration and activation of various cell types, and SDF-1/CXCR4

targeted therapies have been successfully developed and applied in

diverse diseases (93, 94). Thus, although SDF-1 is less studied in

psoriasis than in tumors, and the underlying molecular mechanisms
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remain unclear, SDF-1 is still a promising target in the cutaneous

EIME to inhibit keratinocyte proliferation and subsequently treat or

prevent the occurrence of psoriasis.

Fibroblasts can alter the proliferation and differentiation of

keratinocytes in a series of inflammatory diseases, but their role

in AD has not been fully elucidated (90, 95). Recent studies

confirmed the contribution of crosstalk between fibroblasts and

keratinocytes to the pathogenesis of AD in the cutaneous EIME.

Through atopic-like organotypic culture (OTC) skin models, Gitta

et al. first revealed that atopic fibroblasts could impact the

characteristics of the epidermis by promoting cell proliferation

and hindering the layering of keratinocytes (18). Furthermore,

atopic fibroblasts significantly downregulate the expression of LIF,

a key regulator of the cytokine cascade (96), and release several

cytokines, including IL-4, IL-3, and IL-31. These cytokines can

diminish filaggrin expression in keratinocytes, leading to

dysfunctions of the epidermal barrier in AD skin (97, 98).

Notably, filaggrin is a major protein in maintaining the normal

function of the epidermal barrier, and the lack or dysfunction of

filaggrin can result in a range of skin disorders (99, 100). Hence, the

phenomenon that filaggrin expression in keratinocytes can be

downregulated by atopic fibroblasts and restored by healthy

fibroblasts offers promising strategies for treating AD.
3.3 Fibroblast-other cell crosstalk

Melanocytes are an unremarkable cell type situated at the basal

layer of the epidermis, and they can secrete melanin to maintain the

appearance of the skin and protect it from ultraviolet damage (101,

102). Vitiligo is a unique inflammatory skin disease in which the

immune system targets melanocytes, leading to the formation of

depigmentation (103, 104). However, whether fibroblasts

participate in the immune responses in vitiligo remains unclear.

Recently, Chen et al. conducted an extensive investigation into

the distinct functions of fibroblast subsets in the pathogenesis of

vitiligo (105). Using scRNA-seq, cell-type-specific knockouts, and

engraftment experiments, the researchers demonstrated the

importance of interferon g (IFNg) responsive fibroblasts in the

recruitment and activation of CD8+ T cells. The CD8+ T cells

subsequently attacked melanocytes, leading to the loss of

melanocytes and skin depigmentation (105, 106). This subset of

IFNg-responsive fibroblasts and its pivotal role in the cutaneous

EIME of vitiligo lesions have never been elucidated in prior

research. Additionally, the researchers revealed that the activated

IFNg-responsive fibroblasts can recruit CXCR3+ T cells and interact

with melanocytes by secreting chemokines CXCL9/CXCL10 in

vitiligo lesions (105, 107). The CXCL9/CXCL10-CXCR3 axis is

closely involved in the progression of vitiligo and deserves further

attention. The highlight of this study lies in its comprehensive and

logical experimental design. In addition to conducting scRNA-seq

analysis on skin specimens obtained from vitiligo patients, the

researchers employed a diverse range of in vitro and in vivo

experiments, such as gene knockouts, engraftment experiments,

and transwell migration assays, to investigate the specific functions

of different fibroblast subsets in vitiligo. These comprehensive
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approaches enhance the credibility and validity of the research

findings. Consequently, the triangulated crosstalk between

fibroblasts, T cells, and melanocytes in the EIME of vitiligo

provide promising methods and targeted strategies for preventing

and treating vitiligo.

(Note: The identified fibroblast subsets and their crosstalk with

other types of cells in the cutaneous EIME of diverse inflammatory

skin disorders are illustrated in Figure 3)
4 Conclusions and future outlook

Thanks to the newly comprehensive analysis of the

morphological and functional heterogeneity of fibroblasts by

combining scRNA-seq and spatial transcriptomics, new insights

can be obtained into the multiple roles of fibroblasts in the

cutaneous EIME of inflammatory skin disorders. The present

review discussed the distinct roles of fibroblasts in two major

categories of inflammatory skin diseases.

In fibrotic skin diseases, the fibrous hyperproliferation and

overaccumulation of the ECM caused by overactivated fibroblasts,

as a hallmark, are crucial in the progression of these diseases.

Therefore, strategies directly targeting fibroblasts or blocking the

activation of fibroblasts are valuable for treating fibrotic skin

diseases. In fact, new drugs or therapies targeting fibroblasts have

emerged in recent years, especially in cancer research.

In the past few years, there has been a significant increase in the

investigation of cancer-associated fibroblasts (108, 109). CAFs are

commonly considered nonmutant cells within the tumor
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microenvironment that can significantly regulate cancer

progression and metastasis (110, 111). Here, we summarize the

current research on the roles of CAF-like fibroblasts in

inflammatory skin disorders beyond the conventional

understanding of CAFs in cancer research. We think CAFs are

not a unique phenotype of tumors but a special phenotype or state

of activated fibroblasts during wound healing or other

inflammatory processes. Therefore, strategies targeting CAF-like

fibroblasts may provide promising approaches for managing

inflammatory skin diseases. Currently, although the phenotypes,

origin, and functions of CAFs remain controversial, a series of novel

drugs or biologics have been developed and prepared for anticancer

clinical practice, such as galunisertib, JNJ-42756493, AMD3100,

and PT630 (Table 1). These drugs can inhibit CAF activation or

action by targeting a series of key molecules, such as fibroblast

growth factor receptor (FGFR), TGFb, CXCR4, ROCK, and

fibroblast activation protein-a (FAP) (110, 123, 124). Given the

crucial roles of CAFs/CAF-like fibroblasts in the cutaneous EIME of

inflammatory skin diseases, these novel drugs targeting CAFs may

also provide promising therapies for various inflammatory skin

diseases with CAF-like fibroblasts, such as keloid, PN, and other

diseases characterized by excessive fibrosis: this deserves

further research.

Activated fibroblasts can also release chemokines or other

proinflammatory substances to interact with other types of cells in

the cutaneous EIME (Figure 3). The crosstalk between fibroblasts and

multiple types of cells significantly participates in the pathogenesis of

fibrotic and non-fibrotic inflammatory diseases. It would be a

valuable strategy to disrupt the crosstalk between fibroblasts and
FIGURE 3

Crosstalk between fibroblasts and other types of cells in the cutaneous epithelial immune microenvironment (EIME) of inflammatory skin diseases.
Blue, red, green, purple, black and golden words represent psoriasis-specific, atopic dermatitis (AD)-specific, prurigo nodularis (PN)-specific, keloid-
specific, vitiligo-specific and systemic lupus erythematosus (SLE)-specific inflammation, respectively. SDF1, stromal-derived factor 1; TGF-b,
transforming growth factor-b; CXCL, C-X-C motif ligand; CCL, C-C motif chemokine ligand; LIF, leukemia inhibitory factor; CAF, cancer-associated
fibroblast; COL6A5, collagen type VI alpha 5; POSTN, periostin; TNFSF13B, tumor necrosis factor superfamily member 13b. IFNg, interferon-g; EMT,
epithelial-mesenchymal transition; EndoMT, endothelial to mesenchymal transition.
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TABLE 1 Current drugs that potentially target CAFs in clinical or preclinical trials (108, 110).

Drugs Targets Mechanisms Status Refs

Target CAF activation

Galunisertib TGFb Prevents CAF activation and immunosuppression Phase III (112)

Ruxolitinib JAK-STAT3 JAK-STAT3 pathway inhibition Phase II (113)

JNJ-42756493 FGFR Prevents CAF activation FDA approved (114)

IPI-926 Hedgehog Hedgehog pathway inhibition Preclinical (115)

Target CAF action

AT13148 ROCK Reduces contractility Phase II (116)

AMD3100 CXCR4 Blocks the SDF1-CXCR4 interaction Preclinical (117)

Defactinib FAK Reduces signaling downstream of integrins Clinical trials ongoing (118)

Simtuzumab LOXL2 Anti-crosslinking Preclinical (119)

FG-3019 CTGF Blocks binding to receptors, including integrins Preclinical (120)

PEGPH20 Hyaluronic acid ECM degradation to increase the access and efficacy of cytotoxic therapies and immunotherapies Phase III completed (121)

PT630 FAP Blocks FAP+ CAF function, promoting T-cell function Phase I (122)
F
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CAF, cancer-associated fibroblast; TGF-b, transforming growth factor-b; JAK, Janus kinase; STAT, signal transducer and activator of transcription; FGFR, fibroblast growth factor receptor;
ROCK, RhoA/Rho-kinase; CXCR4, CXC-chemokine receptor 4; SDF1, stromal-derived factor 1; FAK, focal adhesion kinase; LOXL-2, lysyl oxidase-like 2; CTGF, connective tissue growth factor;
FAP, fibroblast activation protein-a.
TABLE 2 Summary of potential targets of fibroblasts in the cutaneous EIME for the management of diverse inflammatory skin diseases.

Targets Functions Diseases Refs

Fibrotic skin diseases (fibroblasts as hallmark cells)

TGFb/Smad signaling Inducing mesenchymal fibroblasts and CAFs activation Keloid, PN, SSc (17, 36)

POSTN/ITGAV Enhancing ECM formation and profibrotic effects Keloid, PN (17)

ET-1/ROCK pathway Promoting myofibroblast differentiation and ECM accumulation Keloid (37)

PRSS23/IL-31 Key profibrotic molecules PN (54)

Non-fibrotic inflammatory skin diseases (fibroblasts interact with other cells)

HLA-A/B/C and -DRA Antigen presentation Psoriasis, AD (60)

CCL26 Classical type 2 chemokines Psoriasis, AD (25, 59)

CCL19 Recruiting DCs and T cells by CCR7 Psoriasis, AD, SLE (25, 59, 85)

CCL2 Polarizing TH2 response by CCR2 AD (25, 125)

IL-6/LIF Key inflammatory cytokines Psoriasis (126)

IL-17B Involved in surface expression of CD80 and CD86 protein in DCs Psoriasis (62)

CXCL12 (SDF-1) Recruiting NKT and inducing TH2 responses via CXCR4/CXCL12 axes Psoriasis, AD, SLE (79, 92)

IL-4/IL-3/IL-31 Diminishing filaggrin expression in keratinocytes AD (97, 98)

CCL11 Inducing eosinophil infiltration and TH2 immune responses AD (92)

CXCL1/TNFSF13B Inducing the infiltration and activation of immune cells SLE (85)

CXCL9/10/11 Recruiting CXCR3+ T cells to kill melanocytes Vitiligo (105)
TGF-b, transforming growth factor-b; CAF, cancer-associated fibroblast; POSTN, periostin; ITGAV, integrin alpha-V; ROCK, RhoA/Rho-kinase; ET-1, endothelin-1; PRSS23, serine protease 23;
interleukin-31, IL-31; CCL, C-C motif chemokine ligand; LIF, leukemia inhibitory factor; CXCL, C-X-C motif ligand; CXCR4, CXC-chemokine receptor 4; SDF1, stromal-derived factor 1; IFNg,
interferon-g; TNFSF13B, tumor necrosis factor superfamily member 13b. AD, atopic dermatitis; PN, prurigo nodularis; SLE, systemic lupus erythematosus.
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other cells for managing non-fibrotic inflammatory diseases. These

findings at the single-cell level broaden our understanding of the roles

of fibroblasts in the cutaneous EIME under inflammatory conditions

and provide new targets and pathways to prevent and treat diverse

inflammatory skin diseases (Table 2).

Although single-cell technologies are available with perfect

accuracy, we still need wide dynamic observation of the identified

cell “subtypes”. The cell “subtypes” may indicate varying reactions

to internal and external stimuli or damages instead of consistent

functional specializations in a stable condition. This concept is

similar to that established for a group of functionally unique

subcategories of T cells, including Tregs, CD8+ T cells, CD4+ T

cells, and double-negative T cells. Moreover, single-cell analyses via

scRNA-seq and spatial transcriptomics cannot completely reflect

the cellular protein levels or posttranslational protein modifications

of molecular complexity and heterogeneity (127–129). Hence, the

single-cell data should be analyzed more objectively and

comprehensively, and other approaches should be integrated to

reach a relatively precise conclusion.
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