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Construction and validation
of a novel senescence-related
risk score can help predict
the prognosis and tumor
microenvironment of gastric
cancer patients and determine
that STK40 can affect the ROS
accumulation and proliferation
ability of gastric cancer cells

Weijie Sun1†, Yihang Yuan2†, Jiaying Chen1†, Qun Bao2†,
Mengsi Shang1, Peng Sun2* and Haixia Peng1*

1Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 2Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
Background: In recent years, significant molecules have been found in gastric

cancer research. However, their precise roles in the disease’s development and

progression remain unclear. Given gastric cancer’s heterogeneity, prognosis

prediction is challenging. This study aims to assess patient prognosis and

immune therapy efficacy using multiple key molecules.

Method: The WGCNA algorithm was employed to identify modules of genes

closely related to immunity. A prognostic model was established using the Lasso-

Cox method to predict patients’ prognosis. Single-sample gene set enrichment

analysis (ssGSEA) was conducted to quantify the relative abundance of 16

immune cell types and 13 immune functions. The relationship between risk

score and TMB, MSI, immune checkpoints, and DNA repair genes was examined

to predict the effectiveness of immune therapy. GO and KEGG analyses were

performed to explore potential pathways and mechanisms associated with the

genes of interest. Single-cell RNA sequencing was utilized to investigate the

expression patterns of key genes in different cell types.

Results: Through the WGCNA algorithm and Lasso-Cox algorithm selected KL,

SERPINE1, and STK40 as key genes for constructing the prognostic model. The

SSGSEA algorithm was employed to evaluate the infiltration of immune cells and

immune functions in different patients, and their association with the risk score

was investigated. The high-risk group exhibited lower TMB and MSI compared to

the low-risk group. MMR and immune checkpoint analysis revealed a significant

correlation between the risk score and multiple molecules. Finally, we also
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believe that STK40 is the most critical senescence-related gene affecting the

progression of gastric cancer. In vitro experiments showed that ROS

accumulation and cell proliferation ability of gastric cancer cells were impaired

when STK40 was knocked down.

Conclusion: In summary, we’ve constructed a prognostic model utilizing key

genes for gastric cancer prognosis, while also showcasing its efficacy in

predicting patient response to immunotherapy.
KEYWORDS

gastric cancer, senescence, prognostic model, immunotherapy, machine learning,
Stk40, reactive oxygen species, ScRNA-seq
1 Introduction

Gastric cancer is one of the most common malignant tumors of

the digestive system worldwide, ranking as the fifth most common

cancer and the third leading cause of cancer-related deaths globally

(1, 2). The incidence and mortality rates of gastric cancer are high,

but there are significant variations among different regions (3, 4).

Treatment options for gastric cancer include surgical resection,

chemotherapy, radiotherapy, and targeted therapy (5). With the

advancement of next-generation sequencing, treatment decisions

are now influenced by tumor subtypes, overall health status of the

patients, and individualized considerations (6, 7). Meanwhile, due

to the heterogeneity of gastric cancer tissue, treatment outcomes

can vary greatly. Therefore, new biomarkers and prognostic models

are needed to facilitate precise management for individual patients.

Immunotherapy is an emerging cancer treatment modality in

recent years, which harnesses various components of the immune

system to combat cancer (8, 9). Major therapeutic approaches in

immunotherapy include immune checkpoint inhibitors, T-cell

therapy, cancer vaccines, cytokine therapy, and CAR-T cell

therapy (10, 11). Immune checkpoint inhibitors, in particular, are

representative treatment modalities that have demonstrated

remarkable efficacy in a subset of patients. However, it is

regrettable that the clinical benefits of immune checkpoint

inhibitors remain limited in the majority of patients (12, 13).

Immune checkpoint blockade often works by enhancing immune

cell infiltration within the tumor microenvironment (14).

Increasing evidence supports the critical role of immune cell

infiltration in the tumor microenvironment for effective

immunotherapy (15).

Senescence is a gradual process of physiological and functional

changes that occur in an organism throughout its lifespan, resulting

in a progressive decline in its physical and functional capabilities.

Senescence is a natural biological phenomenon that affects nearly all

living organisms (16). Cellular senescence is characterized by

changes in gene expression and regulation, accumulation of DNA

damage, decline in mitochondrial function, and increased cellular

apoptosis (17, 18). Pancreatic cancer is a highly lethal and
02
aggressive malignancy with poor prognosis. Studies have revealed

the impact of CCNB1 silencing on the cell cycle, senescence, and

apoptosis of pancreatic cancer cells through the p53 signaling

pathway (19). Literature reports have demonstrated the close

association between cellular senescence-related models and the

prognosis of bladder cancer (20). Disruption of the liver

microbiota balance leading to activation of hepatic stellate cells

and acceleration of senescence processes contributes to the

progression from liver fibrosis to hepatocellular carcinoma (21).

Furthermore, the complete absence of the miR-200 family induces

EMT-associated cellular senescence in gastric cancer (22). However,

research on the relationship between gastric cancer and senescence

is currently limited to individual molecular studies, and

investigations focusing on multiple key senescence genes in

gastric cancer remain limited.

In this study, we used Weighted Gene Co-expression Network

Analysis (WGCNA) to screen three immune-related senescence-

related genes in gastric cancer and constructed a riskscore. This risk

score accurately predicted gastric cancer prognosis, and we also

explored the association of this model with immune cell infiltration

using bulk and single-cell RNA sequencing (scRNA-seq) analyses.

Furthermore, we assessed the therapeutic effect of immunotherapy

based on this risk score. Last but not least, we identified STK40 as a

key senescence-related gene in gastric cancer, and determined that

STK40 can affect ROS accumulation and cell proliferation in gastric

cancer cells.
2 Materials and methods

2.1 Data acquisition

Transcriptomic and clinical data for gastric cancer were

obtained from the TCGA database, consisting of 375 cancer

samples and 32 normal samples. The clinical data included

information on survival status, survival time, and other relevant

variables. For further model validation and analysis, gastric cancer-

related datasets (GSE84437) were downloaded from the GEO
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database. After data preprocessing, a total of 431 gastric cancer

samples were included in the subsequent analysis.
2.2 WGCNA analysis

WGCNA is a computational method used to analyze gene

expression patterns across multiple samples. It involves clustering

genes with similar expression patterns and examining the

relationships between gene modules and specific traits or

phenotypes. In this study, WGCNA was utilized to construct a

weighted correlation network using senescence-related genes.

Specifically, modules related to the immune system were selected

for subsequent analysis.
2.3 Modeling analysis

A risk score model was constructed using the selected key genes,

and the risk score for each gastric carcinoma patient was calculated.

The impact of these key molecules on the prognosis of gastric

cancer patients was then evaluated. Lasso-Cox regression analysis

was performed to build the prognostic model. The risk score for

each patient was calculated using the formula: riskScore =

[Expression of KL × coefficient] + [Expression of SERPINE1 ×

coefficient] + [Expression of STK40 × coefficient]. The TCGA

dataset was divided into a training set and a validation set, and

further model validation was conducted using the GSE84437

dataset. Kaplan-Meier (KM) curves were used for survival

analysis to assess whether there were differences in survival rates

between the high-risk and low-risk groups of gastric cancer patients

in both the training and validation sets. Subsequently, the risk

survival curves were used to evaluate the survival and mortality

status of patients in the high-risk and low-risk groups, as well as the

differences in the expression of key genes in the model between the

two groups. ROC curves were employed to assess the performance

of the predictive model. Univariate and multivariate Cox regression

analyses were performed to evaluate whether different clinical

indicators were valuable independent prognostic factors.

Nomograph plots were used to predict the probability of gastric

cancer occurrence.
2.4 Immune analysis and drug
sensitivity analysis

The abundance of various immune cell infiltrations in each

sample was quantified using the ssGSEA method. A total of 16

immune cell types and 13 immune functions were evaluated.

Spearman correlation analysis was conducted to assess the

relationship between the risk score model and tumor mutation

burden (TMB) and microsatellite instability (MSI), indicating the

model’s suitability for predicting the efficacy of immunotherapy.
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Mismatch Repair (MMR) and immune checkpoint analyses were

used to determine the correlation between the risk score and

immunotherapy. The “oncoPredict” package was utilized to

evaluate the sensitivity to drugs among different groups. We

assessed the relevance of chemotherapy drugs currently associated

with gastric cancer.
2.5 Functional enrichment analysis

To explore the underlying biological processes and signaling

pathways associated with differentially expressed genes, we utilized

the “clusterProfiler” R package to perform gene ontology (GO)

analysis, including biological processes (BP), cellular components

(CC), and molecular functions (MF). Additionally, we conducted

KEGG enrichment analysis using the Gene Set Enrichment Analysis

(GSEA) method. The gene set file used for GO analysis annotation

was “c5.go.v7.4.symbols.gmt”, and for KEGG analysis annotation,

we utilized the gene set file “c2.cp.kegg.v7.4.symbols.gmt”.
2.6 Single-cell data analysis

The scRNA-seq data were obtained from the GEO database

(GSE167297). The “Seurat” package was utilized for data analysis,

including PCA dimensionality reduction and t-SNE visualization,

to cluster cells based on their expression profiles. Cell types in the

scRNA-seq dataset were annotated using the “SingleR” package. To

investigate the intercellular communication within gastric cancer

tissue, we performed cell-cell interaction analysis using the

“cellchat” package. This allowed us to explore the interactions

between different cell types in gastric cancer tissue.
2.7 Machine learning analysis

Random Forest is an ensemble algorithm that combines multiple

decision trees to improve the accuracy and generalization

performance of the model. It does so by using voting or averaging

techniques. Both Random Forest and Lasso are well-known machine

learning methods that can be used for feature gene selection. In our

study, we utilized these two algorithms to identify core genes from the

pool of senescence-related genes.
2.8 Sample collection, RNA extraction and
real-time PCR reaction

10 pairs of gastric cancer tissues and adjacent normal tissues

were obtained from Tongren Hospital Affiliated to Shanghai

JiaoTong University and stored at -80°C for a long time. RNA

extraction and quantitative PCR reaction steps are described in our
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previous study. The primer sequences designed in this study are

detailed in Supplementary Table 1.
2.9 Cell culture and transfection

The gastric cancer cell lines HGC29 and AGS used in this study

were purchased from the Cell Bank of the Chinese Academy of

Sciences (Shanghai, China). All gastric cancer cells were cultured in

1640 medium containing 1% penicillin-streptomycin and 10% fetal

bovine serum in a 5% CO2 incubator at 37°C. Cell transfection was

performed as in our previous study. The sequence of siSTK40 is as

follows, siSTK40-1: sense-CGGAUGGUUAAGAAGAUGA(dt)

(dt), antisense-UCAUCUUCUUAACCAUCCG(dt)(dt). siSTK40-

2: sense-GGGAGACUGUGGUAAUCUU(dt)(dt), antisense-

AAGAUUACCAGUUCCCC(dt)(dt).
2.10 CCK8 experiment

The Cell Counting Kit-8 (CCK-8) assay is a widely used method

for assessing cell viability and proliferation capabilities. It indirectly

measures cell metabolic activity through a colorimetric reaction.

The basic steps of the CCK-8 assay are as follows: 2000 HGC29 cells

and AGS cells were planted in 96-well plates, and 10ul CCK8

reagent solution (Targetmol, USA) was added at 0h, 24h, 48h, 72h

and 96h, respectively, and incubated in the dark for 2h. The

absorbance was then detected at 450 nm using a microplate

reader. 5 replicate holes were set up in each group (23).
2.11 ROS measurement

We measured the ROS activity of gastric cancer cells by

detecting the fluorescence intensity of the fluorescent probe

DCFH-DA (Beyotime, Shanghai, China) by flow cytometry.

Briefly, gastric cancer cells were first collected in EP tubes,

washed 3 times with PSB, incubated with DCFH-DA probe

(probe: PBS=1:1000) for 30 minutes at room temperature, and

then washed with PBS to excess untreated cells. bound probe.

Finally, the fluorescence intensity of cells was monitored by flow

cytometry to reflect the content of intracellular ROS.
2.12 Data statistics

Differences between the two groups were assessed using the

Wilcoxon test, while correlation analysis was conducted using the

Spearman correlation test. Survival analysis comparing the two

groups was performed using Kaplan-Meier analysis and log-rank

test. Cox regression analysis was performed using the R package

“survival” to calculate hazard ratios (HRs) and 95% confidence

intervals (CIs). All p-values were two-tailed, and a p-value less than

0.05 was considered statistically significant. Statistical analyses were

conducted using R software (version 4.2.1).
Frontiers in Immunology 04
3 Result

3.1 Screening key genes through WGCNA
combined with differential analysis

Firstly, we draw a flow chart to explain the whole analysis

process (Figure 1). Considering the potential relevance of

senescence-related genes to gastric cancer, we utilized these genes

to construct a prognostic model. Firstly, we employed WGCNA to

cluster the senescence-related genes, resulting in the identification

of four modules (Figure 2A). Among these modules, MEblue

module demonstrated a close association with tumor immunity,

which was subsequently subjected to further analysis (Figures 2B,

C). Subsequently, differential analysis was conducted to identify

genes showing significant differences between cancer and adjacent

tissues (Figure 2D). By taking the intersection between the genes in

the MEblue module and the differentially expressed genes, a total of

57 genes were selected for subsequent analysis (Figure 2E).
3.2 Construction and validation of
Lasso-Cox model

PPI networks show the interactions between proteins

(Figure 3A). We further investigated the interactions between

different genes using the STRING database. Through Lasso-Cox

regression analysis, we identified “KL,” “SERPINE1,” and “STK40”

as key genes for model construction. The riskScore for each sample

was calculated based on the formula (Figures 3B, C). Considering

the correlation between this risk score and patient prognosis, we

validated the model using three datasets. The TCGA dataset was

divided into a training set and a validation set using the “caret”

package, while the GSE84437 dataset served as an additional

validation set. It can be observed that patients with high riskScore

had poorer prognoses in all three datasets (Figures 3D–F). To

further investigate the survival status of the two groups of

patients, we found that the high-risk group had a higher

mortality rate. Heatmap analysis revealed significantly higher

expression levels of the three key genes, “KL,” “SERPINE1” and

lower expression levels of “STK40” in the high-risk group compared

to the low-risk group (Figure 4A). ROC curve analysis showed that

the average AUC values for prognosis predictions on the TCGA

training set reached 0.648, while the AUC values for the validation

sets were 0.613 and 0.607 for the TCGA validation set and

GSE84437 dataset, respectively (Figure 4B). Subsequently, we

performed univariate and multivariate Cox regression analysis,

and the results showed that riskScore was the only independent

risk factor affecting the prognosis of gastric cancer patients

(Figures 5A, B). In addition, we combined common clinical

parameters and riskScore to construct a nomogram to predict the

1-year, 3-year, and 5-year survival rates of gastric cancer patients

(Figure 5C). ROC curves and calibration curves indicated that the

model had high accuracy and precision (Figures 5D, E).
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3.3 Immunological landscape and drug
sensitivity analysis of the model

To explore the relationship between riskScore and immune

cells, we investigated the abundance of 16 immune cell types in the

tumor microenvironment. The results showed that aDCs, Mast

cells, and Neutrophils were significantly higher in the high-risk

group compared to the low-risk group (Figure 6A). Next, we

evaluated whether there were differences in immune-related

functions between the high- and low-risk groups. We found that

APC_co_inhibition, CCR, and Type_II_IFN_Response was

significantly higher in the high-risk group compared to the low-

risk group (Figure 6B). TMB refers to the number or frequency of

mutations detected in tumor tissue. It is an indicator of the extent of

genomic alterations in tumors, and high TMB is considered a

potential predictor of immunotherapy response. We found that

the high-risk group had lower TMB compared to the low-risk group

(Figure 6C). High MSI is considered a potential predictor for

immune checkpoint inhibitor therapy, such as PD-1 antibodies.

Interestingly, our results showed that the low-risk group had higher

MSI (Figure 6D). To understand the differences in immunotherapy

between the high- and low-risk groups, we investigated whether the

riskScore was associated with MMR and immune checkpoint

markers. MMR analysis revealed a negative correlation between

riskScore and EPCAM, MSH2, and PMS2 (Figure 6E). Immune
Frontiers in Immunology 05
checkpoint analysis also identified several markers that were

significantly correlated with riskScore after adjusting the p-value

to 0.001. HHLA2, PDCD1LG2, CD276, TNFSF4, NRP1, CD200,

and TNFRSF14 remained closely associated with riskScore, while

the commonly known PD1, PDL1, and CTLA4 did not show

significant correlation (Figure 6F). Subsequently, we investigated

the sensitivity of the high- and low-risk groups to different

chemotherapy drugs. Interestingly, we found that Oxaliplatin,

Sapitinib, Paclitaxel, Ibrutinib, Sinularin, Lapatinib, Osimertinib,

Afatinib, and Gefitinib had higher IC50 values in the high-risk

group (Figures 7A–I), while Olaparib, Niraparib, and Dasatinib had

higher IC50 values in the low-risk group (Figures 7J–L).
3.4 Functional enrichment analysis

Functional enrichment analysis, such as Gene Ontology (GO)

analysis, allows us to further investigate the functional

characteristics of disease-related genes, differentially expressed

genes under specific conditions, and important functional

modules in gene regulatory networks. In the Biological Process

(BP) analysis, we observed enrichment in extracellular structure

organization (Figure 8A). The Molecular Function (MF) analysis

showed enrichment in extracellular matrix structural constituent

and growth factor binding (Figure 8B). The Cellular Component
FIGURE 1

Flow chart.
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(CC) analysis revealed enrichment in collagen-containing

extracellular matrix and cell-substrate junction (Figure 8C).

Furthermore, we performed Gene Set Enrichment Analysis

(GSEA) to further explore the pathways enriched in the high- and

low-risk groups. The high-risk group was enriched in pathways

such as CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION,

ECM_RECEPTORINTERACTION, and FOCAL_ADHESION,

while the low-risk group was mainly enriched in pathways such

a s K E G G _ B U T A N O A T E _ M E T A B O L I S M a n d

KEGG_CITRATE_CYCLE_TCA_CYCLE (Figure 8D).
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3.5 Single-cell data analysis

We downloaded scRNA-seq data of gastric cancer tissue from

the GEO database (GSE167297). After data processing, we obtained

a total of 10 gastric cancer samples for further analysis. PCA and

tSNE dimensionality reduction analyses were performed, resulting

in the identification of 17 clusters among the samples. Subsequent

heatmap analysis revealed differential gene expression patterns

between these clusters (Figures 9A, B). Next, we annotated the 17

cell clusters and classified them into 9 main cell types, including T
A

B

D E

C

FIGURE 2

Integration of WGCNA and differential analysis for core gene selection. (A) Gene clustering was performed using the WGCNA algorithm.
(B) Classification of all senescence-related genes into modules. (C) Identification of immune-related modules using the estimate algorithm.
(D) Exploration of differential genes between gastric cancer and adjacent normal tissues through differential analysis. (E) Venn diagram illustrating
the overlapping genes between WGCNA and differential analysis.
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cells, B cells, Monocytes, Epithelial cells, Smooth muscle cells,

Dendritic cells (DCs), Endothelial cells, NK cells, and Bone

Marrow (BM) cells (Figure 9C). We then examined the

expression levels of key genes used for modeling across different

cell types in gastric cancer tissue. Scatter plots clearly showed that

KL had the highest expression in Endothelial cells, SERPINE1 was

mainly expressed in Endothelial cells and Smooth muscle cells, and

STK40 was predominantly expressed in Monocytes (Figures 9D, E).
Frontiers in Immunology 07
Cellular communication is a fundamental process in which cells

within an organism interact and coordinate through the

transmission of molecular signals. It plays a paramount role in

the organism, serving as a crucial mechanism for intercellular

coordination and regulation. Furthermore, we investigated the

intercellular communication between different cell types. The

interactions between Smooth muscle cells and Monocytes, as well

as between Smooth muscle cells and Endothelial cells, were the most
A

B

D

E

FC

FIGURE 3

Lasso regression and Cox proportional hazards model. (A) Investigation of the association between genes within the MEblue module using the
STRING database. (B, C) Key gene selection for model construction using the Lasso-Cox algorithm. (D–F) Kaplan-Meier analysis of the prognosis
between high-risk and low-risk groups.
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abundant. Additionally, the interaction strength between Smooth

muscle cells and B cells was the strongest (Figures 9F, G, 10A–I).

Subsequently, we explored the molecular mediators of intercellular

interactions. The interaction between Smooth muscle cells and B

cells was primarily mediated through the MIF signaling pathway

involving CD74 and CXCR4. The interaction between Smooth

muscle cells and Monocytes was mediated through the MIF

signaling pathway involving CD74 and CD44 (Figure 9H).
3.6 Machine learning-based hub
gene selection

The Random Forest is an ensemble learning approach that enhances

predictive accuracy and stability by amalgamating the predictive outcomes

of individual decision trees. We further employed the random forest

machine learning algorithm to screen for key genes and identified a set of 7

genes (Figures 10J, K). Additionally, the Lasso regression algorithm

identified 20 key genes (Figure 10L). Taking the intersection of the two

algorithms, we obtained four common genes, namely ID4, IGFBP5,

NUAK1, and STK40. Interestingly, STK40 was also one of the three key

genes identified in the previousmodeling process (Figure 10M). Therefore,

we believe that STK40 is one of the most critical senescence-related genes

in gastric cancer, which needs further study.
Frontiers in Immunology 08
3.7 STK40 expression verification and in
vitro function exploration

First, we explored the expression of STK40 in 10 pairs of gastric

cancer tissues, and the results showed that the expression of STK40

in gastric cancer tissues was significantly higher than that in

adjacent normal tissues (Figure 11A). Then, we deeply explored

the biological function of STK40 in gastric cancer. When we

knocked down STK40 expression in gastric cancer cells using

siSTK40-1 and siSTK40-2, the proliferation ability of gastric

cancer cells was significantly impaired (Figures 11B–E). More

importantly, we also detected the effect of reduced expression of

STK40 on ROS content. The results showed that the accumulation

of ROS in gastric cancer cells was significantly impaired after the

expression of STK40 was reduced (Figures 11F, G).
4 Discussion

Gastric cancer is a common and highly lethal malignant tumor

that primarily originates from the epithelial cells of the gastric

mucosa (24). Due to its diverse subtypes and molecular subgroups,

the diagnosis and treatment of gastric cancer pose significant

challenges (5). Immunotherapy has emerged as a revolutionary
A

B

FIGURE 4

Model performance validation. (A) Risk curve demonstrating the differences between high-risk and low-risk groups. (B) ROC curve analysis
evaluating the specific performance of the model.
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cancer treatment modality, demonstrating promising efficacy in a

subset of patients. However, numerous studies have indicated that

immunotherapy is effective only in a proportion of individuals (12,

13). In order to gain further insights into the prognosis of different

gastric cancer patients and the efficacy of immunotherapy, we

constructed a prognostic model using hub genes and utilized it to

predict the therapeutic response to immunotherapy.

Considering the potential association between senescence-

related genes and gastric cancer, we employed the WGCNA

algorithm to identify immune-related senescence gene modules.
Frontiers in Immunology 09
Subsequently, a Lasso-Cox model was constructed using the

senescence-related genes within this module, including KL,

SERPINE1 , and STK40 . Our findings revea l ed tha t

downregulation of KL gene expression promotes cell proliferation

and contributes to the progression of gastric cancer (25).

Furthermore, SERPINE1 is typically upregulated in gastric cancer

tissues and its overexpression is associated with increased tumor

invasiveness and poor prognosis (26). High expression of STK40

has been closely correlated with the occurrence and development of

esophageal cancer (27). These research findings provide further
A B

D E

C

FIGURE 5

COX regression analysis and nomogram analysis. (A) Univariate COX regression analysis was conducted to evaluate valuable independent prognostic
indicators. (B) Multivariate COX regression analysis was performed to assess valuable independent prognostic indicators. (C) The nomogram plot was
used to estimate the probabilities of 1-year, 3-year, and 5-year survival rates for gastric cancer patients. (D) The calibration curve demonstrated
satisfactory accuracy and predictive performance of the model. (E) ROC curve analysis was employed to evaluate the performance of the
nomogram score assessment. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. "ns" denotes not statistically significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1259231
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1259231
validation for the reliability of our selected genes and are consistent

with our prediction results. Subsequently, we performed survival

analysis of the model using three independent datasets. The results

revealed a significantly poorer prognosis for patients in the high-

risk group compared to the low-risk group. Furthermore, the

predictive performance of the model was assessed using ROC

curve analysis, which demonstrated good accuracy. Moreover,

additional COX regression analysis confirmed that the risk score
Frontiers in Immunology 10
derived from the model was an independent prognostic factor

of significance.

Using the ssGSEA algorithm, we investigated the relationship

between the risk score of our model and 16 immune cell types and

13 immune-related functions. We observed that aDCs, Mast cells,

and Neutrophils exhibited significantly higher expression levels in

the high-risk group compared to the low-risk group. Previous

studies have shown that under the stimulation of IL33, activated
A

B

D

E F

C

FIGURE 6

Immunological analysis between high and how-risk groups. (A) The ssGSEA algorithm was used to calculate the relationship between risk score and
various immune cells. (B) The ssGSEA algorithm was employed to assess the relationship between risk score and different immune-related functions.
(C) Tumor mutational burden (TMB) analysis was performed to evaluate the differences between high and low-risk groups. (D) Microsatellite
instability (MSI) analysis was conducted to examine the differences between high and low-risk groups. (E) Mismatch repair (MMR) analysis revealed a
strong association between risk score and MMR status. (F) Immune checkpoint analysis demonstrated a significant correlation between risk score
and immune checkpoint expression. *p < 0.05, **p < 0.01, ***p < 0.001.
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Mast cells can activate macrophages, thereby promoting the

development of gastric cancer (28). Additionally, Wang et al.

found a significant increase in the infiltration of Neutrophils in

tumor tissues of gastric cancer patients (29). Immunotherapy has

emerged as a revolutionary approach for cancer treatment;

however, its efficacy varies among different solid tumor types.

Therefore, identifying biomarkers that can predict patient

response to immunotherapy is of utmost importance (13). TMB

and microsatellite MSI are commonly used indicators for predicting

immunotherapy response (30, 31). In our study, we found that the

high-risk group had lower TMB and MSI levels compared to the

low-risk group. Previous studies have indicated that high TMB and

MSI are associated with increased mutational load and neoantigen

production, suggesting that the high-risk group may have a reduced

response to immunotherapy. MMR status is another commonly

used predictor of immunotherapy response (32). We observed a
Frontiers in Immunology 11
strong correlation between risk score and MMR-related markers,

including EPCAM, MSH2, and PMS2. Among these markers,

EPCAM showed the highest correlation with the risk score.

Previous studies have also demonstrated a close association

between EPCAM and the prognosis of gastric cancer (33).

Furthermore, we assessed the relationship between risk score and

immune checkpoints. The results revealed a close correlation

between risk score and immune checkpoints such as HHLA2,

PDCD1LG2, CD276, TNFSF4, NRP1, CD200, and TNFRSF14.

However, commonly studied immune checkpoints like PD1,

PDL1, and CTLA4 did not exhibit significant correlations. This

suggests the importance of considering other immune checkpoints

beyond PD1, PDL1, and CTLA4 when making clinical

treatment decisions.

To investigate the differences between the high-risk and low-

risk groups, we conducted GO and KEGG analyses to explore
A B

D E F

G IH
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C

FIGURE 7

Relationship between riskScore and treatment sensitivity. (A–L) Analysis of differences in sensitivity to 12 drugs between high-risk and low-risk
groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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potential mechanistic pathways. The GO analysis primarily revealed

enrichment in extracellular matrix organization, highlighting the

crucial role of the extracellular matrix (ECM) in the initiation and

progression of gastric cancer (34, 35). Notably, the KEGG analysis

i d e n t ifi e d s e v e r a l e n r i c h e d p a t hw a y s , i n c l u d i n g

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION,

ECM_RECEPTOR_INTERACTION, FOCAL_ADHESION,

K E G G _ B U T A N O A T E _ M E T A B O L I S M , a n d

KEGG_CITRATE_CYCLE_TCA_CYCLE. Remarkably, these

findings align closely with our GO analysis, further emphasizing

the significant involvement of the ECM. Specifically, these pathways

underscore the importance of cytokine signaling, ECM-receptor

interaction, focal adhesion, as well as metabolic processes like
Frontiers in Immunology 12
butanoate metabolism and the citrate cycle (TCA cycle) in GC

development. Taken together, our findings provide compelling

evidence for the pivotal role of the ECM in GC and support the

notion that ECM-related processes contribute significantly to the

molecular landscape and potential therapeutic targets in GC.

Single-cell sequencing is a high-resolution genomics technique

that enables the characterization of cellular heterogeneity and

differences across different cell types (36). In order to investigate

the expression patterns of key molecules used in model construction

across different cell types, we conducted single-cell analysis using

the GSE167297 dataset. We observed relatively low expression

levels of the KL gene in various cell types, with the highest

expression observed in Endothelial cells. On the other hand,
A B

D

C

FIGURE 8

Functional enrichment analysis. (A–C) The results of Gene Ontology (GO) analysis illustrate the enriched functions in Biological Processes (BP),
Molecular Functions (MF), and Cellular Components (CC). (D) The Gene Set Enrichment Analysis (GSEA) is employed to explore potential
mechanisms and pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
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SERPINE1 was mainly expressed in Endothelial cells and Smooth

muscle cells, while STK40 showed predominant expression in

Monocytes. Previous studies have indicated a close association

between the proportion of Monocytes and the prognosis of
Frontiers in Immunology 13
gastric cancer (37). Cellular communication plays a crucial role in

mediating molecular signaling and regulation between cells, and is

essential for maintaining normal cellular functions, tissue

development, and homeostasis (38, 39). We analyzed the
A B
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F G

H

C

FIGURE 9

ScRNA-seq Data Analysis. (A) t-SNE clustering algorithm is used to classify cells into 17 clusters. (B) Heatmap visualizes the differentially expressed
genes among the identified clusters. (C) “SingleR” package is employed to annotate different cell types, including T cells, B cells, Monocytes,
Epithelial cells, Smooth muscle cells, Dendritic cells, Endothelial cells, NK cells, and Bone marrow cells. (D, E) ScRNA-seq analysis reveals the
expression patterns of key genes across different cell types. (F) The “cellchat” package is utilized to investigate the number of interactions between
different cell types. (G) The “cellchat” package is employed to study the strength of interactions between different cell types. (H) The analysis focuses
on exploring the molecular mechanisms underlying the interactions between different cell types.
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communication between different cell types in gastric cancer tissues

and explored potential interacting molecules. This provided

valuable insights for further exploration of the underlying

mechanisms. Subsequently, we employed two machine learning

algorithms, namely random forest and lasso, to identify key genes

associated with senescence. By intersecting the results from both
Frontiers in Immunology 14
algorithms, we identified four core genes, namely ID4, IGFBP5,

NUAK1, and STK40. It is worth noting that STK40, as a key gene in

model construction, still lacks relevant research in gastric cancer.

Therefore, we further explored whether STK40 acts as one of the

factors affecting gastric cancer progression. The results showed that

the proliferation ability of gastric cancer cell lines was significantly
A B D E

F G IH

J K

L M

C

FIGURE 10

Gene selection using machine learning algorithms. (A–I) Communication network diagram between different cells (J, K) Key genes were selected
using the random forest algorithm. (L) Key genes were selected using the Lasso algorithm. (M) The VENN diagram illustrates the intersection of
genes identified by both algorithms, including ID4, IGFBP5, NUAK1, and STK40.
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weakened after the expression of STK40 was reduced. ROS often

play adouble-edged sword role in cancer, andwhether andhowSTK40

affects ROS accumulation was previously unknown. Therefore, we

further exploredwhether STK40 affects intracellular ROS content, and

the results showed that reduced expression of STK40 could

significantly reduce ROS accumulation in gastric cancer cells. This

provides a partial reference for themechanism bywhich STK40 affects

the proliferation ability of gastric cancer cells.

Certainly, this study carries significant clinical implications as it

utilizes a comprehensive approach combining bulk sequencing and

scRNA-seq analyses. The risk score derived from the integration of
Frontiers in Immunology 15
WGCNA and Lasso-Cox algorithms emerges as a robust and

independent biomarker with prognostic value for gastric cancer

patients. Moreover, the ability to evaluate differential drug sensitivity

between high- and low-risk groups based on the risk model holds

promise for tailoring personalized chemotherapy regimens.

Furthermore, the utilization of scRNA-seq analysis allows for a more

detailed exploration of the expression patterns of hub genes across

distinct cell types. This comprehensive understanding enhances our

insights into the intricate cellular landscape of gastric cancer.

Additionally, through functional enrichment analysis, we gain deeper

insights into the underlying molecular mechanisms and downstream
A B

D E

F

G

C

FIGURE 11

Biological function of STK40 in CRC. (A) Differential expression of STK40 in CRC. (B, C) Knockdown efficiency of siSTK40-1 and siSTK40-2 in gastric
cancer cells. (D, E) The proliferation ability of gastric cancer cell lines is impaired after STK40 knockdown. (F, G) Reduced ROS accumulation in
gastric cancer cell lines after STK40 knockdown. *p < 0.05, **p < 0.01.
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pathways associated with the risk model, providing a foundation for

further mechanistic investigations.

In conclusion, we have developed a model based on key genes

that can predict the prognosis of gastric cancer. Furthermore, this

model demonstrates effectiveness in predicting the immunotherapy

response of patients.
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