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The spatial dynamics of immune
response upon virus infection
through hybrid dynamical
computational model

Yanan Cai, Zhongrui Zhao and Changjing Zhuge*

Department of Mathematics, Faculty of Science, Beijing University of Technology, Beijing, China
Introduction: The immune responses play important roles in the course of

disease initiation and progression upon virus infection such as SARS-CoV-2. As

the tissues consist of spatial structures, the spatial dynamics of immune

responses upon viral infection are essential to the outcome of infection.

Methods: A hybrid computational model based on cellular automata coupled

with partial differential equations is developed to simulate the spatial patterns and

dynamics of the immune responses of tissue upon virus infection with several

different immune movement modes.

Results: Various patterns of the distribution of virus particles under different immune

strengths and movement modes of immune cells are obtained through the

computational models. The results also reveal that the directed immune cell

wandering model has a better immunization effect. Several other characteristics,

such as the peak level of virus density and onset time and the onset of the diseases,

are also checked with different immune and physiological conditions, for example,

different immune clearance strengths, and different cell-to-cell transmission rates.

Furthermore, by the Lasso analysis, it is identified that the threemain parameters had

themost impact on the rate of onset timeof disease. It is also shown that the cell-to-

cell transmission rate has a significant effect and is more important for controlling

the diseases than those for the cell-free virus given that the faster cell-to-cell

transmission than cell-free transmission the rate of virus release is low.

Discussion: Our model simulates the process of viral and immune response

interactions in the alveola repithelial tissues of infected individuals, providing

insights into the viral propagation of viruses in two dimensions as well as the

influence of immune response patterns and key factors on the course of

infection.
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1 Introduction

The consequences of infecting SARS-CoV-2 relies on host-virus

interaction, which includes a complicated processes such as

replication and invasion of virus, and the triggering of immune

response [Wadman et al. (1)]. Mathematical modeling of viral

infection within the host is commonly employed as a research

approach [Perelson et al. (2); Nowak et al. (3); Elaiw and Agha (4)].

These studies typically build upon classical viral kinetic models,

extending their applications to determine the basic reproduction

number of SARS-CoV-2 during host growth and analyze the

dynamic evolution of viral density and different cell populations

[Elaiw and Almuallem (5); Li et al. (6)]. The immune response plays

a crucial role in controlling the long-term spread of the virus, but it

undergoes decay over time, and reinfection can occur in the human

body. Therefore, it is of utmost importance to comprehend the

mechanisms governing immune control and the dynamics of

immune memory in response to the virus. This understanding is

vital for studying the propagation of SARS-CoV-2 within the host

and conducting experiments to explore its interactions with the

immune system [Du and Yuan (7); Ghosh (8); Wang et al. (9);

Mondal et al. (10)].

Based on the evolution, development, and immune effector

mechanisms of the individual immune system, immunity is

typically divided into innate immunity and adaptive immunity

[Cao and He (11)]. The innate immune system recruits immune

cells to phagocytose and eliminate infected cells by recognizing

pathogens and inducing the production of pro-inflammatory

factors and chemokines. It plays a crucial role in clearing viruses

during the early and middle stages of the immune response

[Chowdhury et al. (12)]. However, it has been shown that

unregulated expression and signaling of interferons and excessive

production of pro-inflammatory cytokines can exacerbate the

disease in infected individuals if not properly regulated [Lowery

et al. (13)].

Simultaneously, the initiation of innate immunity triggers

adaptive immunity response involving both humoral and cellular

immunity. For extracellular viruses, antibodies specifically recognize

the antigenic components of the virus, neutralizing them and

preventing the invasion of healthy cells. In the case of intracellular

viruses, where specific antibodies cannot directly enter cells and bind

to them, T cells are required to mediate cellular immunity. This

cellular immunity involves directly lysing and destroying infected

virus cells for clearance or enhancing the immune response of T cells,

macrophages, and B cells to the virus through the lymphokines they

secrete, ultimately removing the virus from the cells [Hernandez-

Vargas and Velasco-Hernandez (14)].

Therefore, in contrast to previous studies focusing on innate or

adaptive immunity components, this paper places greater emphasis

on the role of humoral and cellular immunity to the virus during the

middle and late stages of infection. These aspects are incorporated

as influencing factors in the hybrid model we constructed to

simulate the spread and dissemination of novel coronaviruses

in humans.

Viral transmission within the host exhibits complex

spatiotemporal dynamics and evolutionary behavior [Cilfone et al.
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(15); Juhasz et al. (16)]. Some studies primarily focus on specific

time scales and lack the necessary cross-scale communication to

capture biochemical reaction processes adequately [Baris Hancioglu

and Swigon (17); Howat et al. (18); Graw and Perelson (19);

Kyrychko et al. (20)]. Conversely, hybrid multiscale modeling has

been extensively utilized in tumor growth dynamics and influenza

virus kinetics, with a particular emphasis on the cell spreading

process and drug inhibition [Bravo et al. (21); Anderson (22);

Gerlee and Anderson (23); Rejniak and Anderson (24)].

To enhance the exchange of information between the spatial

scale of immune response and viral dynamics, we developed a

hybrid kinetic model combining partial differential equation theory

with Metacellular Automata, a tool capable of capturing

spatiotemporal effects. This model enables us to analyze the

impact of different forms of immunity on the diffusion pattern,

peak virus levels, and infection cycles of novel coronaviruses [Peter

et al. (25); Macal and North (26); Arduin et al. (27); Bar-On et al.

(28); Carcaterra and Caruso (29); Mason (30)].

Furthermore, the relationship between SARS-CoV-2 viral

density and the risk of disease progression remains poorly defined

[Fajnzylber et al. (31); Zou et al. (32)]. Exploring this relationship is

crucial for stratifying the severity of COVID-19 in infected patients.

In contrast to available clinical data, we attempted to establish an

onset baseline by determining the percentage of infection and

simulating the relationship between the time of onset and some

critical parameters in our model. These parameters can be obtained

via Lasso analysis and OSL regression analysis. Thereore, we can

further analyze the spreading process of the virus under different

modes of immunity as well as the susceptibility factors affecting the

pathogenic nodes.
2 Materials and methods

2.1 Model description

Upon infection, the virus enters the throat through the nasal

and oral cavities. This is a complicated spatiotemporal process

involving many cells distributed along respiratory tract and alveoli,

it is necessary to simulate the processes by taking the spatial effects

into consideration. Although the real tissue is organized as a three

dimensions of cell architectures, the free virus to initialize the

processes of the infection are distributed on the surface of

epithelium which is approximately a thin 2-dimension layer of

cells. And furthermore, cells show the phenotype of an epithelial

monolayer and exhibit lung-progenitor-like expression patterns

under 2-dimensional culture in vitro experiments as well as many

computational models show consistence results of 2-dimensional

models, [Tran et al. (33); Heydemann et al. (34); Yang et al. (35);

Wessler et al. (36)]. So we choose the 2-dimensional model in the

current study.

The model consists of four layers of cellular automata, each of

which represents the immune cells, the epithelial cells, the

distribution of virus and the distribution of antibody (Figure 1).

For the layers of immune cells and epithelial cells. We define a

planar bounded region Ω to represent the infection region of the
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alveolar epithelial cell tissue in the context of the novel

coronavirus.The region Ω is partitioned into 250 × 250 grid

using two sets of parallel lines, where the coordinates x = i and

y = j (i, j =1, 2,…, 250) represent the indices of the grid squares.

Each grid square in the partition corresponds to one epithelial cell,

resulting in a total of 62,500 epithelial cells. This chosen value falls

within a reasonable range for the simulation, allowing for a

comprehensive representation of the cellular landscape in the

tissue [Juhasz et al. (16); Marino and Kirschner (37)]. Each grid

square is denoted as Ωi,j, where i represents the row index and j

represents the column index. All pictures of model description

can be skeched by Figure 1.

In reality, grid square’s state transition is a highly random

process, so in our model, the meta-automaton incorporates two

parameters: the infection rate (PI) for healthy grid square and the

mortality rate (PD) for infected cells. During each time unit, the

meta-automaton iterates over all grids. For a healthy grid square,

the cell automaton generates a random number between 0 and 1,

denoted as rIi,j. If the infection rate PI of that healthy cell is greater

than rIi,j, the healthy grid will turn into an infected grid. Otherwise,

the grid state remains unchanged. Similarly, another random

number rDi,j is generated between 0 and 1 for an infected grid. The

mortality rate PD is compared with this random number, and if PD
is greater than rDi,j, the infected cell will turn into a dead grid. To

illustrate this dynamical change, we combine the given model

operation process of cellular automata. At the initial moment, set

the input and output variables of the model and the parameters in

the cellular automata. Then, the meta-cellular automaton performs
Frontiers in Immunology 03
the following steps during each time unit. Firstly, calculate viral

density in each grid square using a specific equation, considering

virus proliferation, removal and diffusion. Among them, the

clearance of the virus is regulated by immune cells, antibodies,

and innate proliferation rate. In this step, according to the

previously set immune mode, the cellular automata determines if

the virus is affected only by intrinsic clearance. If there is no

immune response, the program follows the rule of Figure 2A,

otherwise follow the Figure 2B on the right. Secondly, record the

virus and antibody matrix at the current moment. Thirdly, perform

grids’ state transitions based on the defined rules. Finally, update

and record the current grid state matrix. This process is repeated

until all grids are traversed and their state no longer change.

The infection rate PI in healthy cells is dependent on the current

intracellular viral density and the infection rate between cells, which

means that cellular infection is jointly mediated by free viruses and

direct cell-cell transmission. Cell-to-cell transmission manifests as

viral transmission between adjacent cells. Therefore, cellular

automata are limited to the adjacent range of 8 grid squares when

simulating infected cell could tran infecting surrounding healthy

grids. The mortality rate PD depends on natural mortality of

infected cell and the clearance of immune cells. However, in the

immunity-free mode, only the natural death rate constant is

considered. When the immune system responds, immune cells

release antibodies to clear the virus, and the rate (uv) of virus

removal increases. The immune cells directly kill infected cells, (PD)

increases, and the probability of healthy cells being infected

(PI) decreases.
A B

FIGURE 1

A schematic representation of the cell transformation. (A) In the flat view representation, (B) The structure of metacellular automata. Every grid
square is assigned three state values, namely, healthy (0), infected (1), or dead (2), which are represented by the function Si,j(t). The healthy grid
square is indicated by the color purple, the infected grid square is represented by the color green, and the dead cells are depicted in yellow.
Specifically, the infected grid square (green) release the virus, enabling its spread throughout the system. Initially, the virus density across the entire
region is 0, indicating no viral presence. A small number of cells are randomly selected to be in an infected state, while the remaining cells maintain
a healthy state. Furthermore, each grid within the region Ω has the capacity to accommodate at least one immune cel that will release antibodies to
clear virus, allowing immune cells to freely move to any position within the grid. The virus is released from infected cells and spreads to the
surrounding area. The transition of each square’s state depends on several factors, including the current grid’s viral density, the state of neighboring
grids, and the presence of immune grids. Higher grid’s viral density increase the susceptibility of healthy grid squares to infection. Additionally, the
presence of immune grids enhances the death rate of infected grid squares. This corresponds to the direct killing of infected cells by immune cells.
The infection probability (PI) depends on the rate of cell-to-cell transmission and free-virus mediated infection. Similarly, the mortality probability
(PD) depends on natural mortality of infected cell and the number of immune cells. This relationship is defined as a linear combination for simplicity.
In addition, the cellular neighborhood is determined using Moore’s neighborhood, which encompasses the 8 adjacent cells.
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Regarding infected cells, the viral source term r(t,x,y) does not
adhere to a specific form, and any reasonably smooth function r0(t,
x,y) is permissible, considering our limited knowledge of viral

outbreak characteristics such as form, duration, and size. To

simplify the situation, we assume that infected cells exhibit a

constant rate of virus production, as supported by relevant

studies. Therefore, r0 is treated as a constant. Furthermore, r0
must satisfy the following conditions.
Fron
• When a healthy cell at coordinates (i,j) becomes infected, it

initiates the secretion of viral particles. As a result, r0
assumes a positive value for at least some subset of Ωi,j at

a certain point following the infection.

• To ensure the stability of the system, the viral source term

r0(t,x,y) must be defined in a manner that guarantees the

fitness of the system. Specifically, r0(t,x,y) should exhibit

Holder¨ continuity with respect to a parameter a in the

interval (0, 1) to ensure the global existence of the solution.
The immune response elicited by viruses is a complex process

influenced by various regulatory forms and target objects, along

with the time required for immune cells to recognize viruses and

present antigens. Consequently, virus clearance involves a

sophisticated mechanism. In the equation, the coefficient uv in the

second term is not a simple constant due to the time lag. uv
tiers in Immunology 04
represents the rate of virus removal, indicating how efficiently the

immune system or other clearance mechanisms remove the virus

from the cell, and it is mainly regulated by intrinsic clearance,

antibody levels and immune cells, which is a linear combination for

simplified model. Considering that immune cells are able to

recognize infected cells and activate a series of signals to recruit

more immune cells, uv and the number of immune cells

surrounding the infected cells are linearly related, as well as

depending on the location of the infected cells. In fact, humoral

immunity is established the antibodies will be present everywhere,

so uv is larger than zero in any place. We consider antibody levels

that are also described by a diffusion equation. It mainly includes a

diffusion item, a proliferation item and a natural attenuation item.

The proliferative item is regulated by virus density, the number of

immune cells and infected cells. This regulation follows the form of

the Hill function to indicate the positive feedback effect of inducing

antibody production. In addition, adaptive immunity also includes

cellular immunity, i.e., T lymphocytes can directly recognize and

kill infected cells, increasing the mortality of infected cells, which is

not directly presented in Eq.(2). Finally, we considered that the

infection process of infected cells involves two factors, mediated by

free virus and neighboring cell-to-cell transmission. At each

moment, the viral density at different locations is affected by the

spread of the virus at the previous moment, and the probability that

a healthy cell at the current location is transformed into an infected
YesNo
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NoYes
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FIGURE 2

The program flow diagram of the hybrid model’s simulation. (A) In the flat view representation, (B) The structure of metacellular automata.
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cell is correlated with the viral density [Clausen et al. (38)], which

may be related to the release of free virus from infected cells in non-

neighboring areas at the previous moment. For healthy cells in

which infected cells are present in the neighborhood, viruses can

spread directly through cell-to-cell mediated transmission. Other

studies have shown that the rate of cell-to-cell transmission is about

10 times that of virus-mediated infection. {Zeng et al. (39); Kruglova

et al. (40)]
2.2 The diffusion of cell-free virus
and antibody

As the processes of infection depend on the contact between

healthy cells and viral particles or infected cells, the infection rate

PIof healthy cells is assumed to be dependent on both of the cell-to-

cell transmission and cell-free viral load. The viral density in the cell

with coordinates (x,y) at moment t is denoted by V (t,x,y). We

assume that the cell-free virus particles are diffusing across the space

among cells, so the diffusion processes can be modeled by the

following diffusion equation (1).

∂V(t,x, y)
∂t

= DvDV ,  (x, y) ∈ W : (1)

For simplicity, in this study, we simplify the equation (1) so as to

consistent with the overall setting of cellular automata by assuming

the density of cell-free virus are even in each grid square and the

diffusion only occur between two adjacent squares. So the update

formula of the cell-free virus due to diffusion can be written as (2).

V(t + dt, x, y) = V(t, x, y) + D(t, x, y)dt : (2)

where

D(t,x, y) = Dv
V(t,x, +dx, y) + V(t, x − dx, y) + V(t,x, y + dy) + V(t, x, y − dy) − 4V(t,x, y)

dxdy
,

D(t,x,y) is the discretion of the diffusion term and Dv is the diffusion

coefficients, and dt, dx and dy are the lengths of time step, x−grid

squares and y−grid squares respectively. Moreover, as the infected

cells produce and release free virus particles constantly, so it is

necessary to add a source term (3) in the equation (2).

r(t,x, y) =
r0, if the cell located at (x, y) is infected ,

0, otherwise :

(
(3)

On the other hand, the degradation of free virus particles are

attributed to three causes, the natural degradation of free virus

particles, the clearance of virus by antibody and the removal of virus

by immune cells. So the degradation terms can be modeled by the

following formula.

uv = uv,0 + uv,antibody + uv,immune (4)

where uv0 is the natural degradation of free virus particles, uv,antibody
and uv,immune are the clearance of virus by antibody and the removal

of virus by immune cells respectively, which is assumed to be

proportional to the antibody level at the same grid square and the
Frontiers in Immunology 05
effective number of immune cells in the same grid square as well as

in adjacent squares.

So, in summary, the dynamics of the cell-free virus particles is

modeled as the following formula (5).

V(t + dt, x, y) = V(t, x, y) + (D(t, x, y) − uvV(t, x, y) + r(t, x, y))dt : (5)

The dynamical modelling of the levels of antibody is similar to

those of virus, consisting of three term, the diffusion term, the

degradation term and the source term. The modelling of the

diffusion of antibody is the same as that of free virus particles

where we also simplify the model by assuming that the level of

antibody in each grid square is even and the diffusion occurs only

between directly adjacent grid squares. The degradation of antibody

is assumed to contain only the natural degradation. And, the source

term for the antibody is not suggested by the generation of antibody

in situ, but a simplification of the processes of recruiting antibody

via any signaling of infected cells or virus or immune cells. The

source term is proposed to be dependent on the level of free virus,

the surrounding number of immune cells and surrounding number

of infected cells through hill functions to simulate the saturation of

the ability of recruiting antibody. So the source term of the antibody

can be written as the following.

ra(t, x, y) = ra,v(t, x, y) + ra,i(t, x, y) + ra,c(t, x, y), (6)

where the ra,v(t,x,y),ra,i(t,x,y) and ra,c(t,x,y) denote the source

terms attributed to free virus, immune cells sand infected cells as

described above. And the three term can be expressed as ra,s =
ra,x0 x2

K2
x+x2

. Here x = v,i,c as above, denoting the level of virus, the

number of immune cells and the number infected cells. Here the

“number” means that we counts the number of immune cells or

infected cells in the full region. The Kx are EC50’s of each hill

function (Table 1).
2.3 Estimation of parameters

The parameters involved in the model is shown in Table 2, we

and carried out a large number of random simulations according to

the scope of existing studies [Juhasz et al. (16); Baris Hancioglu and

Swigon (17); Bocharov and Romanyukha (41)], from which several

sets of simulation values were selected for subsequent

research (Table 1).
3 Results

This section presents the visualization of meta-cellular

automata simulations aimed at elucidating the dynamics of virus

spread. Specifically, we investigated the influence of immune cells,

diffusion coefficients, and modes of immunosuppression by

systematically manipulating the model parameters. Moreover, we

established an infection value to define the onset and estimated the

correlations between the time of onset and the aforementioned

parameters. Through systematic parameter variations, our objective
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is to discern and analyze the factors governing the time for

the onset.
3.1 Viral spread without
immune modulation

To investigate the impact of the immune system on the

dissemination of viral infections within the human body, this

section initially examines the simulation of virus spread in

alveolar epithelial cells in the absence of immune regulation.

Since other influencing factors are not considered, we only need

to fix a set of parameter values to study for example. The simulation

parameters are set in Case 1 of Table 1. At the initial time point, the

system comprises a total of 62,500 cells, among which 20 are

initially infected and randomly distributed across the area, while

the remaining cells are healthy. The viral density is initialized as x3 =
Frontiers in Immunology 06
0. The propagation of the virus originates from the initially infected

cell, and to capture the spreading process, cellular states are

recorded at five-time points, with intervals of 48-time units, in

order to account for the early stages of viral volume expansion and

facilitate the observation of the spread dynamics. As depicted in

Figure 3, the horizontal and vertical coordinates in each subplot are

scaled to a range of 0 to 250, representing a spatial mapping of a

human lung cell area with dimensions of 250 × 250 units. Each unit

area corresponds to an individual lung cell, thus capturing the

cellular landscape in a proportional manner. The first three rows

show the visualization of the cell state under the diffusion coefficient

(0.1, 0.5, 5). Lines 4-6 acts as the spread of the virus corresponding

to these three cellular infections. The dynamics of viral spread

exhibit a characteristic pattern of low dissemination. Initially,

infected cells (represented by the color green) emerge

individually, forming isolated clusters that resemble islands within

the spatial distribution of the virus. These cellular communities
TABLE 1 Model parameter Cases in different immune modes.

Number Immune movement mode 1 Immune movement mode 2 Immune movement mode 3

Case I-1 Case I-2 Case I-3 Case II-1 Case II-2 Case II-3 Case III-1 Case III-2 Case III-3

x1 20 20 20 20 20 20 20 20 20

x2 43722 543 1473 21374 11428 352 29 170 30236

x3 0 0 0 0 0 0 0 0 0

x4 0 0 0 0 0 0 0 0 0

x5 0.0117 0.0039 0.0202 0.0012 0.002 0.0267 0.1012 0.0042 0.0775

x6 0.4782 0.0414 0.0064 0.0641 0.0475 0.0084 0.0237 0.0332 0.0051

x7 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

x8 0.0023 0.182 0.0422 0.0031 0.0047 0.0155 0.0074 0.114 0.0610

x9 0.037 0.0953 0.4766 0.0216 0.3198 0.0537 0.0099 1.0146 0.0242

DV 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

r0 2.5752 18,447 33.3715 0.7174 0.3836 35.4358 2.6161 37.1278 47.4464

x10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

x11 0 0 0 0 0 0 0 0 0

x12 4.0636 8.5895 2.0489 2.061 24.5642 1.1404 4.7597 1.0194 6.3983

x13 0.1280 0.5081 0.9308 0.0802 3.1569 2.0528 0.3692 0.3334 4.3827

x14 0.011 0.0014 0.0223 0.0053 0.04343 0.1016 0.0026 0.002 0.0008

x15 0.1539 1.1436 0.6276 0.5086 0.0664 0.0818 0.1773 0.1301 0.1029

x16 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

x17 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

x18 0.1948 0.0961 0.1226 0.51 0.9187 0.0617 0.1439 0.1099 0.5052

x19 0.0633 0.07632 0.0035 0.0728 0.1255 0.0996 0.0607 0.0054 0.0636

x20 5 5 5 5 5 5 5 5 5

x21 0.3300 0.8218 0.6788 0.7020 0.0129 0.4324 0.4488 0.2763 0.0015

x22 0.7434 0.0194 0.5826 0.5268 0.6954 0.2203 0.4522 0.1823 0.6117

x23 0.07223 0.4026 0.0670 0.3733 0.3369 0.7952 0.6764 0.5395 0.5755
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exhibit well-defined boundaries and distinct lines of demarcation. It

is worth noting that at this early stage, the infected areas remain

disjointed and fragmented. Additionally, a closer examination

reveals narrower regions of green coloration at the periphery of

the cell communities, while the inner portions prominently display

a predominance of dead cells (indicated by the color yellow). By

observing the system at t = 120t, the virus progressively spreads

throughout almost the entire area, indicating a scenario where all

cells would ultimately succumb to infection in the absence of

immune system regulation. When the value of DV was increased

from 0.1 to 0.5. As illustrated in rows 2 and row 4 of Figure 3, a
Frontiers in Immunology 07
distinct phenomenon emerges. Meanwhile, the number of infected

cells is higher. From the perspective of virus spread scene, when

DV = 0.1, the row 4 showed a higher concentration of virus at the

edge of the infection area. When DV = 0.5, the row 5 indicated that

the concentration distribution of virus was more uniform. However,

the diffusion coefficient DV does not always have a positive effect on

the spread of the virus. In the case ofDV = 5 (Row 3 and 6), the virus

spreads too quickly to concentrate on healthy cells, resulting in a

smaller number of cells infected in a short period of time than in

both cases. For DV = 0.1 or 0.5, the virus undergoes a rapid

expansion followed by a slower progression, encompassing a

complete life cycle of viral proliferation, peaking, and decay to an

equilibrium state. Conversely, for the scenario with DV = 5, it takes

longer for the viral density to reach its peak, suggesting that the

diffusion coefficient DV exerts an influence on the spatial pattern of

viral spread, the magnitude of peak viral density, and the duration

of the infection cycle.

While maintaining the uniform spread of the virus, we found

that at a low diffusion coefficient, the peak viral density was around

t=120t (Row 4 and 5). When DV = 5, it takes longer to peak. This

shows that the diffusion coefficient of DV affects the spatial pattern

of virus transmission and the time when the virus peaks. Through

extensive simulations, it became evident that the spread pattern of

the novel coronavirus, although initially displaying an island-like

distribution, is characterized by a relatively weak intensity,

susceptible to modulation by the diffusion coefficient, particularly

when higher values are employed.
3.2 Viral spread in different immune
modulation patterns

The immune system serves as the body’s defense mechanism,

playing a crucial role in inhibiting the spread of viruses.

Considering the response time and potency of the immune

system, this section focuses on investigating the influence of

adaptive immunity on virus propagation.

Adaptive immunity cells encompass both T lymphocytes and

B lymphocytes. B lymphocytes exhibit antigen specificity,

undergoing differentiation and antibody synthesis to eliminate

antigens via humoral immunity. To represent the clearance effect

of antibodies on the virus, a layer of antibody is added to the

cellular automata. In cellular immunity, T lymphocytes recognize

antigens, undergo activation and proliferation, and ultimately

differentiate into effector T cells capable of specifically

eliminating infected target cells through cytotoxic mechanisms.

This is reflected by an augmented mortality rate of infected cells,

denoted by the parameter PD within the meta cellular automata

framework. To initiate the simulations, the diffusion coefficient is

set to DV = 0.1. Additionally, 20 randomly chosen locations within

Ω are designated as immune cell sites, while other conditions

remain constant. While immune cells possess the ability to

migrate, the complexities involved in this process are not

considered in this study. Specifically, the physical hindrance

imposed by other cells within the body on immune cell

movement is not taken into account. In our simulation, immune
TABLE 2 Parameters and initial conditions in the hybrid model.

Module Interpretation of
Parameters

Symbol in
Table 1

Initial states

Initial number of infected cell x1

Initial number of immune cell x2

Initial virus level x3

Initial antibody level x4

Epithelial
module

Infection rate induced by virus x5

Infection rate induced by cell-to-cell
transmission

x6

Regeneration rate cell x7

Natural death rate of infected cell x8

Death rate of infected cell with immune x9

Virus
module

Diffusion rate of virus DV

Release rate of virus from infected cell r0

Natural clearance rate of virus x10

Burst size of virus x11

Clearance of virus induced by antibody x12

Clearance of virus induced by immune x13

Immune
module

Generation rate of immune cell x14

Degradation rate of immune cell x15

Random movement probability of
immune cell

x16

Directional movement probability of
immune cell

x17

Antibody
module

Generation rate of antibody x18

Degradation rate of antibody x19

Diffusion rate of antibody x20

EC50 generate antibody rate induced by
immune cells

x21

EC50 generate antibody rate induced by
free virus

x22

EC50 generate antibody rate induced by
Infected cells

x23
The EC50 refer to a concentration or strength of a cell population or a concentration of
components required to increase or reduce the measured response to half of the maximal level
or concentration.
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cells are initially positioned at fixed locations and remain

immobile throughout the experiment.

However, it is important to acknowledge that immune cells are

capable of migration, albeit constrained by intricate mechanisms.

Although this study does not account for the physical barriers

impeding immune cell movement, it is worth noting that immune

cells possess the ability to wander in a random manner in all

directions. Alternatively, a wandering mechanism can be

implemented, wherein immune cells traverse a fixed step length

of 1 cell units. Given that the area of virus-infected cells releases

chemokines to attract additional immune cells, we further explore

the scenario of immune cells exhibiting directional migration

towards the infected region, thereby expanding their step length
Frontiers in Immunology 08
during wandering. The simulation results for these three

immunization strategies are illustrated in Figure 4.

Under adaptive immunity, the presence of immune modulation

significantly reduces the extent of cellular infection. Each row of

images corresponds to a distinct form of immune regulation,

namely fixed immune points (Row 1), random walk (Row 2), and

directional walk (Row 3). Compared with results obtained without

immunization (Figure 3, row 1), the three different forms of

immunization exhibit varying degrees of effectiveness in

containing the infection of cells. Although the inhibitory effect of

fixed immune points and random walking immune mode is similar

and weaker than that of directed walking immune mode, the rate of

cell infection has slowed significantly, and the larger the number of
FIGURE 3

Cell state (Row 1, 2, 3) and virus diffusion (Row 4, 5, 6) at different time points with DV= 0.1 (Row 1 and 4), DV= 0.5 (Row 2,5) and DV= 5 (Row 3 and 6).
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health cells that have not been infected at the same time, as the

immune intensity increases.

We conducted an investigation into the influence of different

forms of immune regulation on the process of virus spread and the

occurrence of peak nodes. The findings are presented in the three-
Frontiers in Immunology 09
row plots depicted in Figure 5. As the intensity of immune cell

suppression increases, notable changes in the dynamics of viral

spread and peak nodes are observed. Specifically, the time point at

which the peak of the virus is located moves backward, and the virus

shows a continuous growth trend over a short period of time. As
FIGURE 4

The status of cellular infection under different immune conditions of fixed immune points (Row 1), random walk (Row 2), and directional walk (Row 3).
FIGURE 5

Viral spread under different immune regulation of fixed immune points (Row 1), random walk (Row 2), and directional walk (Row 3).
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can be seen from the first two rows in Figure 5, the rate of virus

spreading under the effect of the directed wandering immunity

mode is weaker than that of the first two immunity modes, and a

more obvious point is that the overall brightness of the third row of

the picture is much lower, which suggests that the amount of viral

proliferation has been significantly suppressed. These observations

reveal the important role of immunomodulation in controlling

virus transmission. Suppression of viral replication by the

immune system leads to a shorter time to peak viral density

followed by a gradual decline. These findings help us to provide a

node for delaying large-scale viral outbreaks and reducing the

extent of outbreaks to alleviate the pressure on healthcare

resources. To provide a comprehensive understanding of the

impact of the disease on human health and the dynamic changes

in viral content within the body, a quantitative analysis was

conducted. The results are depicted in Figure 6, it becomes

evident that as the strength of the immune response intensifies,

the proportion of healthy cells that become damaged gradually

decreases, the proportion of healthy cells surviving increased from

20% to 40%.
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Additionally, the node at which viral density peaks in the no-

immunization mode (Figure 6A) is earlier than in the other three

immunization modes. And in terms of peak viral density, viruses in

the no-immunization mode showed a noticeable decrease in viral

density after mass infection of healthy cells due to fewer host cells to

parasitize. In contrast, viral densities in the other three

immunization scenarios were maintained at relatively stable levels

after reaching their peaks, and viral densities are at low levels.The

most obvious of these is that the level of virus after peaking in

Figure 6D is only about 0.6, a few hundredths of the level of the

same variable in the no-immunization state. This suggests that the

immune response does slow the rate of viral proliferation, delaying

the point at which it reaches its peak and reducing the amount of

virus infecting the human body.
3.3 Parameters regression analysis

In order to compare the parameter sensitivity of the model

under different immunization modes, we performed Lasso
A B

DC

FIGURE 6

The typcial dynamics of virus density and the decay of the percentage of healthy cells in the four different immune cell movement modes. Here the
light blue lines represent the dynamics of mean virus density which is indicated by the left y-axis and the dark blue lines represent the dynamics of
the percentages of the healthy cells which is indicated by the right y-axis. (A) The dynamics without immune cells, i.e., the systems consists of only
virus and epithelial cells. (B) The dynamics with static immune cells where the immune cells do not move (immune movement mode 1). (C) The
dynamics with randomly moving immune cells (immune movement mode 2). (D) The dynamics with directly moving immune cells (immune
movement mode 3).
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regression analysis on all the parameters involved in the model and

finalized the key parameters and their values under the three forms

of immune site fixation, immune site random wandering and

immune directed wandering. We introduce the following cost

function, and key parameters affecting the rate of cell infection

were identified by parameter fitting.

Loss(w) =o
N

i=1
(yi − wTxi)

2 + l ‖w ‖1 (7)

Among them, xi denotes the vector consisting of all parameters,

including simulated and initial condition values, w denotes the

weight of the parameter, and yi corresponds to the inverse of the cell

infection time for different parameter values. We consider the L1-

paradigm of a w-vector with a penalty coefficient l as the penalty

term, which makes the weights of the less influential parameters 0.

We need to find the value of w that minimizes the loss function.

w = arɡ min
w

(o
N

i=1
(yi − wTxi)

2 + l ‖w ‖1 ) (8)

The parameter xi and its corresponding yi were entered

randomly, and a large number of simulations yielded parameter

sensitivities in different immunization modes.

We conduct 10,000 randomized computational trials and then

employ the LASSO method to select the most important parameters.

Different Lasso regression fits were performed for different models.

The values of the parameters for the independent variables were
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taken from Table 2, and the dependent variable was the infection rate

(the reciprocal of the time taken for healthy cells to reach 50%). From

Figure 7, it can be learned that the number of non-zero parameters is

different for different models. the non-zero parameter of the Fixed

point model is 8, the non-zero parameter of the random walk is 13,

and the non-zero parameter of the directional walk is 6. In addition, it

can be learned that the data distribution of the weight coefficients of

the three models is almost the same, and it is worth noting that the

parameter Infection rate in cell-to-cell transmission is a crucial factor

for all three models.

In order to further investigate the influence weights of the key

parameters in the different models mentioned above, we conducted

a regression analysis using OSL (Ordinary Least Square). In the

results of the regression analysis, the experiment selects the top

three ranked significant influences for different immunization

scenarios. The Table 3 shows the specific influencing factors and

their weighting magnitude in OSL.

The first three influences with larger weights for the different

models are as follows. As a whole, infection rate in cell-to-cell

transmission is crucial for any immunization model. Note that. In

the fixed point model, the second most important influence is

natural death rate of infected cell, where a greater natural mortality

rate of infected cells leads to slower spread. In the random walk

model, the second most important factor is generation rate of

immune cell. this is reasonable because, unlike in fixed point

model, immune cells can travel, and thus the greater the
FIGURE 7

Potential sensitivity of model parameters to experiments.
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probability of generating an immune cell, the more likely it is that it

will cover more cellular tissue. In the directional walk model, Initial

immune number has a larger effect on the model and a smaller effect

on the two outer two models. This suggests that when there are

more immune cells, a large number of immune cells move in the

direction of more viruses and are better able to inhibit the spread

of viruses.
Frontiers in Immunology 12
3.4 The time for disease onset depends on
several parameters

The progression of infection can be assessed by examining the

changes in cell states at various spatial and temporal levels following

viral infection in humans. As an important basis for judging the

progression of the disease, the time point of onset is affected by

many factors. Therefore, based on the above parametric regression

analysis, this section will explore the influence of key influencing

factors in the model on the time of onset (Tonset) in different

immune modes.

After a large number of random simulations, we selected 9 sets

of parameter values to adapt to different immune modes as shown

in Table 1. Based on the content of the parameter impact weights in

the previous section, we choose the impact factor (Infection rate in

cell-to-cell transmission) that are important in any immune model

to study and keep the remaining parameters as the analogical values

of the corresponding Case. For the definition of morbidity, we

assume that when the infected area reaches 50%, the infected person

develops symptoms. The results of 9 sets of parameters are shown in

Figure 8. There are three color bands in each sub-image,

representing three immunization methods: Fixed point (Green),

Random walk (Red) and Directional walk (Blue). The variable

(Infection rate in cell-to-cell transmission) ranges from 0.1 to 10.

Since at each parameter node, we performed multiple simulations,

the broad bands of color bands actually represent the range of onset

time fluctuations. For a more obvious comparison of the differences
A B

D E F

G IH

C

FIGURE 8

The time of onset (Tonset) in different immune modes varies with the rate of cell-to-cell transimission rates. $p$ represents the values of cell-to-cell
transmission rates. The three lines represent the dependence of the time of onset of disease on the parameter of the cell-to-cell transimission rates.
Each row of figures represent a immune cell movement mode and each column of figures represent a typical dependence of the Tonset. (A–C) are
the cases of immune movement mode 1 which means that the immune cells are assumed to be static without movement. (D–F) represent immune
movement mode 2 which means that the immune cells are moving randomly. And (G–I) represent the cases when the immune cells can move
towards the direction of higher concentration of virus. While, for each column, (A, D, G) represent a longer onset time of disease indicating slow
processes of infection; (B, E, H) represent a mediate rate of infection; and (C, F, I) represent fast processes of infection so the onset time is shorter
than the other two groups.
TABLE 3 Weights of parameters.

Immune
models

Parameters Weights

Fixed point Infection rate in cell-to-cell
transmission

0.1011

Natural death rate of infected cell −0.0427

Initial virus density −0.0397

Random walk Infection rate in cell-to-cell
transmission

0.1202

Generation rate of immune cell −0.0271

Degradation rate of antibody −0.0205

Directional walk Infection rate in cell-to-cell
transmission

0.1106

Initial number of immune cell 0.0330

Infection rate induced by virus −0.0234
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between the three immunization modalities, we split the

representation into three mean lines. Consistent with previous

simulations, the rate of virus growth was slowed and Tonset

delayed with increased immunosuppression. This is shown in

Figure 8, where the color band indicating the directed wandering

immunity pattern is higher than the other two in almost every Case.

However, the differences between immune site fixation and random

wandering are not significant. When the cell-to-cell transmission

rate is large enough, the virus is able to rapidly infect a large number

of healthy cells and reach the onset node in a short period of time.

The three color bands gradually overlap, and differences in immune

patterns no longer have a significant effect on the onset node. In

addition, Figure 8 (Case I-3, Case II-3, Case III-3) shows that the

range of fluctuations of the onset node is significantly larger in the

three immunization modes than in the other Cases of parameters.

In these three sets of experiments, the average onset node of the

different immunization modes was around 160 when cell-to-cell

transmission was small, but as cell-to-cell transmission increased,

the downward trend in Tonset was slow and progressively greater

than in the other six Cases of cases. This implies that there are other

parameters that influence the course of onset. For this purpose, we

further analyze the key parameters covered in the previous section.

As shown in Figure 9, it shows the effect of some non-overlapping

parameters on the time to onset of disease in infected individuals in a

parametric regression analysis. We consider the initial number of

immune cells as an assumable constant. However, this study is more

concerned with the influence of various biochemical reactions on the
Frontiers in Immunology 13
disease process during the interactions of the virus-induced immune

response, so this factor has been eliminated and only the role of the

remaining five factors has been explored. Most intuitively, the

degradation rate of antibodies has essentially no effect on the rate of

virus infection. As the infection rate induced by virus increases, the

process of infection becomes faster, which is also very realistic. For cell-

to-cell transmission, healthy cells become more susceptible to be

infected because the infection rate induced by cell-to-cell shorten the

time to onset of disease. This is shown in Figure 9 (Case I-1, Case I-2,

Case II-1 , Case II-2, Case III-1), the purple lines show that the onset

time is decreasing with the infection rate induced by the cell-to-cell

transmission while others do not show significant changes. By

comparing the parameters, we find that r0 (Release rate of virus

from infected cell) is smaller in the five Cases according to Table 1.

This is consistent with the fact that increasing the rate of infection

mediated by cell-to-cell promotes the process of onset when virus

generate slowly. Usually, the rate of proliferation of immune cells

increases the longer it takes for healthy cells to reach 50%. It can be seen

that the blue curve in Figure 9 (Case I-3, Case II-3, Case III-3) showed a

significant upward trend, with little fluctuation in onset time in the

other Cases. This is also due to the viral release rate, i.e., the small viral

release rate leads to the low viral density and the time of onset can not

fluctuate significantly even if changes in the number of immune cells.

Figure 9 (Case I-3, Case II-3, Case II-3) also shows that after the

generation rate the immune cell reaches a certain level, its effect ceases

to change. As for the death rate of infected cells, the effect on the rate of

infection is more complex. The results shown in Figures 9C, D, F show
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FIGURE 9

The dependence of the onset time of disease (Tonset) on five parameters, that is, the infection rate induced by cell- to-cell (x6), the death rate of
infected cell (x9), the degradation rate of antibody (x19) , the infection rate induced by virus (x5) and the generation rate of immune cell (x14). The
meaning of the different lines are shown in the legend of figure A. The x-axis represents the relative values of five parameters to the default values
shown in Table 1. The five lines represent the dependence of the time of onset of disease on the five parameters. Each row of figures represents a
immune cell movement mode and each column of figures represents a typical dynamics as those in Figure 8. (A–C) are the cases of immune
movement mode 1 where the immune cells are assumed to be static without movement. (D–F) represent immune movement mode 2 where the
immune cells are moving randomly. (G–I) represent the cases where the immune cells move towards the direction of higher concentration of virus
with higher probability than other directions. Because the five parameters play a promoting or inhibitory role on the regulation of the onset time, for
each column, (A, D, G) represent a longer or shorter onset time of disease indicating fast or slow processes of infection under the regulation of
different parameters, and the same goes for the third column (C, F, I), while the column (B, E, H) represent a mediate rate of infection.
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similar patterns, that is, with the increasing in death rate of infected cells

induced by the immune system, the onset times Tonset keep unchanged

for when the death rate (p) is greater than a certain threshold. This

pattern is also found for the dependence of the onset time on the

generation rate of the immune cells (the blue line in Figure 9C). This is

due to the finite simulation period so they indicate that the onset time is

longer than the simulation period rather than that the actual onset time

kept unchanged with the increasing in parameters.
4 Discussion

This paper focuses on virus transmission targeting cell-to-cell in

alveolar epithelial tissue. A hybrid partial differential equation is

established. The virus propagation process is de-modeled by

metacellular automata. In the establishment of the model, the

experiment considers the epithelial tissue module, virus module,

immune module and antibody module, and a series of parameters

are set to simulate the experiment. Firstly, the experiment set up the

modes of no immunization, immune point fixed, immune point

random wandering and immune point directed wandering

according to the presence or absence of immune response. From

the results, the immunization effect of random wandering is almost

the same as that of the fixed case, while the immunization effect of

the immune site with directional wandering has a significant

advantage. Next, we also compared the cellular infection under

different diffusion coefficients. When the diffusion coefficient is

larger, the virus is more evenly distributed and the peak value is

lower. In particular, when the diffusion coefficient is large enough,

the time for the virus to reach the peak is significantly delayed.

In addition, we experimentally randomly generated 10,000 sets of

parameters for different immunemodels, defined healthy cells reaching

50% as the onset condition, and used the rate of onset as an indicator to

derive the threemain parameters that have the greatest influence on the

infection rate in each immune model based on Lasso analysis and OSL

regression analysis. The results showed that the infection rate induced

by cell to cell had the greatest weight in each immunization model.

Then, we selected nine sets of parameter values from the random

simulation to carry out further analysis of the important parameters

obtained from the regression analysis. It was experimentally

demonstrated that the cell-to-cell transmission rate is large enough,

the virus is able to rapidly infect a large number of healthy cells and

reach the onset node in a short period of time, differences in

immunization patterns had little effect. Whereas, in the general

scenario, the directed wandering immunization mode suppresses the

onset node better than the other two immunization modes. We found

that the decay rate of antibodies had a small effect on the time of onset.

The cell-to-cell transmission rate has a significant effect when the rate

of virus release is low. The mortality rate of infected cells is relatively

sensitive, and when the release rate of virus is high and the mortality

rate of infected is also high, there will be a situation of reaching an

infinite delay in the onset of disease, etc.

Regarding potential future improvements and applications of our

model, we propose three main points. Firstly, the immune response is a

complex and dynamic process involving various molecular, cellular,

and regulatory pathways. Future work could incorporate these micro-
Frontiers in Immunology 14
level forms of immunity into cellular automata simulations to quantify

the impact of the immune system on the spread of the novel

coronavirus. Secondly, while there are numerous computer

simulations of virus spread in populations, there are relatively fewer

simulations focusing on virus spread within human individuals. Our

study only considered the directional travel mechanism of immune

cells and major immune cell types, without accounting for factors such

as travel speed and changes in the number of immune cells. Further

investigations could explore the effects of these factors on virus spread

within the human body. Additionally, the assessment of morbidity

could be improved by considering alternative perspectives. Finally, for

the section on the analysis of parameters affecting onset time, the article

has yet to explore under what circumstances the regulation of certain

parameters would be ineffective or less volatile or more sensitive to

parameter changes.
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