
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Samithamby Jey Jeyaseelan,
Louisiana State University, United States

REVIEWED BY

Monowar Aziz,
Feinstein Institute for Medical Research,
United States
Laxman Ghimire,
Harvard Medical School, United States

*CORRESPONDENCE

Chengguo Wei

chengguo.wei@mssm.edu

Man Chen

chenman_slyy@163.com

†These authors have contributed equally to
this work

RECEIVED 12 July 2023
ACCEPTED 21 August 2023

PUBLISHED 14 September 2023

CITATION

Zhang T, Lian G, Fang W, Tian L, Ma W,
Zhang J, Meng Z, Yang H, Wang C,
Wei C and Chen M (2023) Comprehensive
single-cell analysis reveals novel
anergic antigen-presenting cell
subtypes in human sepsis.
Front. Immunol. 14:1257572.
doi: 10.3389/fimmu.2023.1257572

COPYRIGHT

© 2023 Zhang, Lian, Fang, Tian, Ma, Zhang,
Meng, Yang, Wang, Wei and Chen. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 14 September 2023

DOI 10.3389/fimmu.2023.1257572
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Background: Sepsis is a life-threatening condition with high mortality. A few

studies have emerged utilizing single-cell RNA sequencing (scRNA-seq) to

analyze gene expression at the single-cell resolution in sepsis, but a

comprehensive high-resolution analysis of blood antigen-presenting cells has

not been conducted.

Methods: All published human scRNA-seq data were downloaded from the

single cell portal database. After manually curating the dataset, we extracted all

antigen-presenting cells, including dendritic cells (DCs) and monocytes, for

identification of cell subpopulations and their gene profiling and intercellular

interactions between septic patients and healthy controls. Finally, we further

validated the findings by performing deconvolution analysis on bulk RNA

sequencing (RNA-seq) data and flow cytometry.

Results: Within the traditional DC populations, we discovered novel anergic DC

subtypes characterized by low major histocompatibility complex class II

expression. Notably, these anergic DC subtypes showed a significant increase

in septic patients. Additionally, we found that a previously reported

immunosuppressive monocyte subtype, Mono1, exhibited a similar gene

expression profile to these anergic DCs. The consistency of our findings was

confirmed through validation using bulk RNA-seq and flow cytometry, ensuring

accurate identification of cell subtypes and gene expression patterns.

Conclusions: This study represents the first comprehensive single-cell analysis

of antigen-presenting cells in human sepsis, revealing novel disease-associated

anergic DC subtypes. These findings provide new insights into the cellular

mechanisms of immune dysregulation in bacterial sepsis.
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Introduction

Sepsis is a life-threatening disease caused by a dysregulated

systemic response to infection, and it is one of the leading causes of

death in intensive care units (ICU) worldwide (1, 2). Recent

estimates indicate that there are approximately 50 million cases of

sepsis annually, with 11 million sepsis-related deaths reported in

2017, accounting for around 20% of global deaths (2). Despite

decades of research, no effective targeted therapeutics against sepsis

have been developed, likely due to the heterogeneity of this disease,

which is likely attributable to diverse pathogen species, different

infection sites, and individual immune responses (3–5). To address

this challenge, several studies have demonstrated the need to further

dissect the sepsis-induced systemic immune dysregulation at the

cellular and molecular level (6–8).

Although recent single-cell RNA sequencing (scRNA-seq) studies

have focused on various immune cell types such as monocytes, T

cells, natural killer cells, myeloid-derived suppressor cells, platelets

and erythroid precursor cells, dendritic cells (DCs) have received

relatively little attention (9–13). Anergy, a state of immune

unresponsiveness, is prevalent in septic patients, and low major

histocompatibility complex class II (MHC II) expression has been

identified as a surrogate marker of anergic monocytes and DCs. The

expansion of anergic antigen-presenting cells (APCs) plays a crucial

role in sepsis-related immunosuppression, which is considered a

leading cause of secondary infections and even death in septic

patients (14, 15).

DCs are traditionally classified into conventional dendritic cells

(cDCs), including cDC1 and cDC2, and plasmacytoid dendritic cells

(pDCs). cDCs effectively present specific antigens to CD4+ and CD8

+ T cells, while pDCs produce type I interferons in response to viruses

(16). Monocytes are subdivided into CD14+ and CD16+ monocytes

based on the expression of CD14 and CD16 (FCGR3A). CD14+

monocytes exhibit greater phagocytic activity, whereas CD16+

monocytes express more MHC II related genes, indicating a higher

antigen-presenting ability. However, recent studies utilizing scRNA-

seq have revealed significant heterogeneity within these traditional

cell types. For instance, Maier et al. demonstrated the existence of a

DC cluster referred to as ‘mature DCs enriched in immunoregulatory

molecules’ (mregDCs), which was associated with uptake of tumour

antigens (17). Additionally, previous studies have divided the cDC2

population into two subtypes: DC3, characterized by high expression

of monocyte-associated genes and shown to be expanded in several

inflammatory conditions, including atopic dermatitis, psoriasis,

systemic sclerosis, and systemic lupus erythematosus, and DC2,

which exhibits gene expression profiling similar to traditional cDC2

(18–20). Moreover, Reyes et al. demonstrated the amplification of an

anergic subset of monocytes (MS1), characterized by low expression

of MHC II, in sepsis (9). These findings emphasize the necessity of

using scRNA-seq to investigate the internal heterogeneity of

traditional cell types and explore the relationship between cell

subtypes and human disease pathogenesis. However, a single-cell

resolution study specifically addressing the heterogeneity and

dysfunction of APCs in human sepsis is still lacking.

Here, we conducted a comprehensive analysis of APCs in septic

patients and identified three anergic DC subtypes that were
Frontiers in Immunology 02
significantly amplified in these patients. Furthermore, we

observed that Mono1, previously reported as MS1 (9), exhibited

expansion during the immunosuppressive stage and shared

transcriptional regulatory similarities with anergic DCs. To

validate our findings, we performed bulk RNA sequencing (RNA-

seq) and flow cytometry on both septic patients and healthy

controls. Our study provides valuable insights into the immune

landscape of APCs in human sepsis and identifies new anergic APC

subtypes. These findings have important implications for

understanding and controlling immune dysfunction in sepsis.
Material and methods

Enrollment and sample collection

The study protocol was approved by the Human Biomedical

Research Ethic Committee of Shandong Provincial Hospital.

Written informed consent was obtained from the patients.

Inclusion criteria for septic patients were based on the Third

International Consensus Definitions of Sepsis and Septic Shock

(Sepsis 3.0) and required standardized anti-infective therapy (21).

Patients under 18 years old, pregnant or breastfeeding, those with

chronic liver or kidney diseases, or those with incomplete medical

records were excluded from the study.

For bulk RNA-Seq, peripheral blood samples were collected

from 5 healthy controls and 20 septic patients who were admitted to

the ICU of Shandong Provincial Hospital in China. The baseline

characteristics of patients in the study are shown in Table S1. A

volume of 2.5 ml of blood was collected from each participant into

PAXgene Blood RNA tubes (BD Biosciences) to ensure the stability

of intracellular RNA. Total RNA was isolated from PAXgene Blood

RNA tubes using the PaxGene Blood miRNA kit (Qiagen). RNA

sequencing libraries were prepared using the NEBNext UltraTM

RNA library prep kit. The libraries were then analyzed on an

Illumina NovaSeq 6000 platform.

For flow cytometry analysis, mononuclear cells were isolated from

peripheral blood using density centrifugation. Each replicate included a

total of 10 healthy controls and 20 septic patients. The experiment was

performed in triplicate, resulting in a total of three replicates.
Bulk RNA-seq data processing

TrimGalore was used to trim raw reads, and the trimmed reads

were mapped to the hg19 genome using HISAT2, generating sam

files that were then converted to bam files by SAMtools. HTSeq was

used to calculate the read count of each gene, and R package edgeR

was employed to identify differentially expressed genes (DEGs)

using a cutoff of adjust.p < 0.05 and |log2FC| > 1 (22).
scRNA-seq data processing

The scRNA-seq data were downloaded from the Broad Institute

Single Cell Portal and analyzed using the R package Seurat (23). Cell
frontiersin.org
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quality control was applied based on four metrics: total unique

molecular identifiers (UMI) counts, the number of genes detected,

the expression ratio of hemoglobin genes and the expression ratio of

mitochondrial genes. Cells were filtered out if they met any of the

following criteria: (1) more than 25000 UMI counts; (2) more than

4000 detected genes or less than 500 detected genes; (3) more than

20% of mitochondrial genes; (4) more than 1% of hemoglobin

genes. R package DoubletFinder was used to remove doublets on a

per-sample basis, and then all ribosomal and mitochondrial genes

were removed to avoid unexpected noise (24).
Batch correction and cell
subtypes annotation

To correct for batch effects in the dataset, the Harmony

algorithm was used, and 3,000 variable genes were identified

using the ‘SCTransform’ function (25). Principal component

analysis (PCA) was performed using the ‘RunPCA’ function, and

the PCA matrix was fed into the ‘RunHarmony’ function.

Clustering and dimensionality reduction were then performed

using the ‘FindClusters’ and ‘RunUMAP’ functions, respectively,

based on the batch-corrected matrix.

Following the first round of clustering with a resolution of 0.8,

13 major cell types were identified, including B cells, plasma cells,

NK cells, CD4+ T cells, CD8+ T cells, CD14+ monocytes, CD16+

monocytes, megakaryocytes, AXL+ SIGLEC6+ dendritic cells (AS-

DCs), pDCs, cDC1s, cDC2s and cycling cells. Clusters expressing

marker genes of more than one cell type were excluded and a total

of 82273 cells expressing 22661 genes were retained for the

downstream analysis. In the analysis for DCs and monocytes,

each DC type and monocytes was extracted and underwent a

second-round clustering with the same procedure as the first

round to improve the annotation results.
Analysis of DEGs from scRNA-seq data

Differential gene expression analysis was conducted using the

‘FindAllMarkers’ or ‘FindMarkers’ functions in R based on the ‘RNA’

assay, with aWilcoxon signed-rank test used as the statistical method.

A cutoff of adjusted P < 0.05 and |log2FC| > 0.25 was applied identify

genes that were significantly differentially expressed.
Module analysis of scRNA-seq data

For module analysis of scRNA-seq data, we utilized the R

package high dimensional WGCNA (hdWGCNA), which is an

extension of WGCNA (26). Specifically, we focused on cDC2 and

monocytes and applied the analysis pipeline using the R packages

Harmony and Seurat. The analysis pipeline included pooling cells

within the same group and cell type to create metacells using the

‘MetacellsByGroups’ function, identifying an appropriate soft

threshold using the ‘TestSoftPowers’ function, and selecting the

module with the highest correlation to sepsis for further evaluation
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of its function using GO enrichment analysis. We also calculated the

preservation of cDC2-related modules in pDC and cDC1 using the

‘ModulePreservation’ function and projected the cDC2-related

modules and monocytes-related modules into other APC types

using the ‘ProjectModules’ function.
GO enrichment

GO enrichment analysis of DEGs was performed using R

package clusterProfiler (27).
Transcriptional factor analysis

To analyze transcription factor (TF) activity, we utilized the

python single-cell regulatory network inference and clustering

(PYSCENIC) tool on all single cells (28). Differentially expressed

TFs were calculated using R package Limma (29). Only significant

differentially expressed TFs with adjusted p-value < 0.05 were

involved in downstream analysis.

For prediction of differentially expressed TFs in bulk RNA-seq

data between healthy controls and septic patients, we used the R

package DoRothEA (30).
Gene set score analysis

For bulk RNA-seq data, gene set score was calculated using the

R package gene set variation analysis (GSVA), and in the case of

scRNA-seq data, we calculated the gene set score using the

‘AddModuleScore’ function (31). Score changes between two

groups were evaluated using the R package ggpubr based on the

Wilcoxon signed-rank test or Student’s t test.
Gene set enrichment analysis

To compare the three newly identified anergic DC subtypes

with the previously reported DC3, we conducted pairwise

comparisons using gene set enrichment analysis (GSEA). The

GSEA signature list used in the analysis was obtained from the

Supplementary Tables of Villani et al. (18). ‘DC3 > DC2’ gene set

contained genes highly expressed in DC3 (characterized by low

MHC II expression), while ‘DC2 > DC3’ gene set contained genes

highly expressed in DC2 (similar to traditional cDC2).
Heterogeneity analysis of septic
patients based on monocytes
gene expression profiling

To analyze heterogeneity in septic patients, we merged cells by

calculating the sum of monocyte gene expression for each sample.

Then, we corrected the gene expression of each sample using the

‘SCTransform’ function and selected the top 3000 genes for
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downstream analysis. For dimensionality reduction, we performed

PCA and utilized the Louvain clustering method to cluster samples.

We also applied reversed graph embedding to uncover the potential

pseudostages that could link the clusters of patients (32).
Pseudotime inference

Pseudotime analysis was performed on cDC1, cDC2 and pDC

subtypes in sepsis using the R package Monocle3 (32–34). Top

highly differential genes were plotted along the inferred

developmental trajectories.
Intercellular communication analysis

Intercellular communication analysis was conducted using the

R package CellChat (35). The ‘CellChatDB.human’ database was

used for analysis. The control and sepsis groups were analyzed

separately and then merged for downstream analysis. We did not

account for the effect of cell proportion, as the scRNA-seq data were

enriched for DCs.
Bulk RNA-seq data deconvolution

Bulk-data deconvolution was performed using CIBERSORTX

(36). The reference signature matrix was constructed based on the

count matrix in ‘RNA’ assay of scRNA-seq data.
Module analysis of bulk RNA-seq data

A weighted co-expression network was constructed using the R

package Weighted Correlation Network Analysis (WGCNA), followed

by a selection of genes with the top 75% variance (37). The appropriate

soft power b was selected using the ‘pickSoftThreshold’ function. The

expression matrix is then converted to adjacency matrix to identify

modules based on the topological overlap. A hierarchical clustering

dendrogram was further built and the genes were clustered into

different modules. The modules with the highest correlation to sepsis

or control were selected for functional evaluation through gene

ontology (GO) enrichment analysis.
Flow cytometry

All antibodies used for flow cytometry were mouse anti-human

mAbs. Anti-human CD45 (Cat No: 340910), CD56 (Cat No: 345811),

CD123 (Cat No: 564195), HLA-DR (Cat No:756414) were purchased

from BD Biosciences. Anti-human CD3 (Cat No: 317321), CD19

(Cat No: 302239), CD88 (Cat No: 344304), CD89 (Cat No: 354120),

CD14 (Cat No: 325618), CD45RA (Cat No: 304142), CD1c (Cat No:

331520), CD141 (Cat No: 344112) were purchased from BioLegend.

Samples were run on LSRFortessa (BD Biosciences) flow

cytometer. Initially, all DCs, including pDCs, cDC1s and cDC2s,
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were gated based on CD45+CD3-CD56-CD19-CD88-CD89-.

Subsequently, pDCs were specifically identified by gating on

CD123+CD45RA+. Following the exclusion of pDCs, cDC1s were

identified based on the expression of CD141, while cDC2s were

identified based on the expression of CD1c. Data were analyzed

with FlowJo v.10.8.1.
Statistical analysis

All analyses were performed using R software v4.2.1. The Student's

t-test is used to assess the statistical differences between continuous

variables that follow a normal distribution, while the Wilcoxon signed-

rank test is used to assess the statistical differences between continuous

variables that do not follow a normal distribution. The p values for

differential gene expression analysis, GSEA, and GO analyses were

adjusted using the Benjamini & Hochberg method. In Table S1,

continuous variables were presented as mean ± standard deviation or

median with interquartile range depending on their normality.

Categorical variables were presented as counts (percentages). The

level of significance was set at 0.05.
Results

Construction of single-cell atlas
of septic patients

We performed extensive literature mining at scientific search

engines such as PubMed, Google Scholar, BASE, CORE to search

related human sepsis scRNA-seq studies. Ultimately, we selected a

study published in Nature Medicine with the largest sample size and

DC enrichment for further analysis (9). The dataset was divided into

5 groups, including healthy control (n=15), leukocytosis (n=10,

patients with blood WBC ≥ 12000 per mm3, but no organ

dysfunction), Int-Sepsis (n=7, septic patients with mild or transient

organ dysfunction), NoICU-Sepsis (n=14, septic patients in hospital

wards or in emergency department), ICU-Sepsis (n=8, septic patients

admitted to ICU). It is worth noting that all the groups except for

leukocytosis and healthy control fulfilled the diagnostic criteria for

sepsis (Figure 1A). After quality control and removal of doublets, we

identified 13 cell types based on canonical annotation marker genes

for immune cells used by many studies (Figures 1B, C). Our results

showed that the proportion of monocytes increased gradually from

the healthy control to the Int-Sepsis group, and then decreased as the

disease progressed, while lymphocytes showed an opposite trend.

Moreover, the proportion of DCs consistently decreased with disease

progression (Figure 1D).
Three anergic DC subtypes were identified
in septic patients

We next identified three cell subtypes, cDC2 A, cDC2 B and

cDC2 C changed dynamically in sepsis disease progression in cDC2

population (Figure 2A). The populations of cDC2 A and cDC2 C
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gradually decreased, whereas the population of cDC2 B increased,

particularly in the ICU-Sepsis group (Figure 2B). Additional

analysis showed that cDC2 A and cDC2 C exhibited high gene

expression levels of CD74 and HLA-DRA, which are associated

with antigen presentation, the primary function of DCs. Conversely,

cDC2 B was characterized by the expression of monocyte-

associated genes such as S100A8, CD14, VCAN, and FCGR3A

(Figure 2C). The marker genes of cDC2 B exhibited similarities to

the previously reported DC3, whereas cDC2 A and cDC2 C were

found to be more closely associated with DC2 (18). GSEA provided

additional support for the idea that cDC2 B aligns with DC3

(Figure 2D) (18). Given that cDC2 B was previously identified as

an inflammatory DC subtype (7), we calculated the inflammatory

score of the three cDC2 subtypes and performed pathway

enrichment analysis on the marker genes of cDC2 B.

Interestingly, cDC2 B exhibited higher inflammatory score and

enriched pathways related to the inflammatory response, such as

‘positive regulation of cytokine production’ and ‘positive regulation

of inflammatory response’ (Figures 2E and S1A). Despite cDC2 B

had a higher inflammatory score, we found that its highly expressed
Frontiers in Immunology 05
genes were monocyte-associated genes and it lost its primary

function as a dedicated APC, specifically activating T cells via the

MHC II pathway. Consistent with our findings, previous studies

have demonstrated that cDC2 B has a reduced capacity to activate T

cells in comparison to cDC2 A (7, 38, 39). Hence, we designated

cDC2 B as anergic DCs, as previously described (15).

Next, we sub-clustered cDC1 population into two subtypes,

cDC1 A and cDC1 B (Figure 2F). Surprisingly, cDC1 B, which

shares similar marker genes with cDC2 B, was predominantly

observed in the ICU-Sepsis group, suggesting the possible

existence of an anergic subtype within the cDC1 population

(Figures 2G, S1B). GSEA confirmed the similarity between cDC1

B and cDC2 B (Figure 2H). Moreover, analysis of inflammatory

scores and pathway enrichment revealed that cDC1 B exhibited

heightened inflammatory characteristics and enrichment in

inflammatory pathways (Figures S1C, D).

Subsequently, we focused on pDC population to investigate

whether the anergic subtype exists in all three traditional DC

populations. We identified two clusters, named pDC A and pDC

B (Figure 2I). Notably, pDC B, characterized by high expression of
B C

D

A

FIGURE 1

Single-cell atlas of septic patients. (A) Schematic diagram of study overview. Sample numbers indicated for each dataset. (B) Uniform manifold
approximation and projection (UMAP) of cell types in the single-cell dataset of 82273 cells derived from septic patients and control participants.
(C) Violin plots of canonical annotation marker genes (rows) for different cell types (columns). (D) Bar plot showing cell proportion in different groups.
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S100A8, S100A9, FCN1 and CD14, was the dominant subtype in

the ICU-Sepsis group (Figure 2J). Further analysis using GSEA

revealed a significant enrichment of the ‘DC3>DC2’ gene set in

pDC B compared to pDC A (Figure 2K). Moreover, pDC B showed

a higher inflammatory score and enrichment in inflammatory

pathways (Figures S1F, G). These findings suggest that pDC B

and cDC1 B represent two novel DC subtypes with gene expression

profiling similar to the previously reported DC3, which we have

designated as cDC2 B.
Conserved transcriptomic profiles and
regulatory mechanisms across cDC1 B,
cDC2 B and pDC B

To further demonstrate the transcriptomic similarity of the

three anergic DC subtypes, we performed hdWGCNA to identify

co-expression gene modules in cDC2 and analyzed the preservation

of these modules across other two DC populations (26). We

identified a total of 15 modules in cDC2, of which five modules

were found to be specific to cDC2 B, including the salmon,

turquoise, magenta, red and greenyellow modules (Figures S2A–

C). Of these five modules, only the red module was highly preserved

in both pDC and cDC1 (Figures S2D, E). GO enrichment analysis

revealed that this module was associated with inflammatory

response and myeloid cell differentiation and activation (Figure

S2F). We next projected the cDC2 gene modules onto pDC and

cDC1 and found that the red module was also highly expressed in

cDC1 B and pDC B, as well as in sepsis (Figures S2G–J).

Furthermore, we performed trajectory and pseudotime analysis

on all DC populations and found significant differences in gene

expression between normal and anergic DC subtypes. The normal

and anergic DCs were located at opposite ends of the pseudotime

trajectory, with the expression of monocyte-related genes such as

CD14, S100A8, S100A9, VCAN, and FCN1 increasing significantly

along the pseudotime trajectory, while the expression of antigen-

presentation-related genes such as CD74 and MHC II-related genes

decreased significantly (Figures S3A–F). These findings further

illustrate the consistency of the transcriptome among the three

anergic DC subtypes and their close association with sepsis.

After demonstrating the transcriptome-level consistency of the

three anergic DC subtypes, we then analyzed their TFs and pathway

activity changes. Our analysis using PYSCENIC revealed that these

anergic DCs had a high degree of similarity in the top upregulated TFs

(Figures 3A, B) (28). Given the important role of the C/EBP family in

inflammation-induced myelopoiesis and the high expression of

monocyte-associated genes by anergic DCs, we evaluated the activity

of C/EBP TFs (40). Notably, we observed a significant increase in the

activity of almost all C/EBP family members in anergic DC subtypes.

Furthermore, we discovered that cDC1 B and pDCB also exhibited low

IRF8 activity, similar to the IRF8low developmental pathway observed

in cDC2 B (DC3), whereas cDC2 A/C (DC2) differentiated follows an

IRF8hi trajectory (41) (Figure 3C). These findings suggest that the three

DC subtypes may share a similar developmental trajectory. We also

examined antigen-presenting capacity changes between all DC

subtypes and found that all three anergic subtypes had significantly
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lower ability to present external antigens via the MHC II pathway,

indicating their anergic nature (Figure 3D). We then calculated the

pathway activities based on 50 hallmark gene sets from MSigDB

database to identify the pathway activity changes of all DC subtypes.

Comparing the three anergic DCs with their corresponding normal

subtypes, we observed similarities in pathway activity, including high

activities in hallmark inflammatory pathways such as

‘ I N F L A M M A T O R Y _ R E S P O N S E ’ ,

‘TNFA_SIGNALING_VIA_NFKB’, ‘TGF_BETA_SIGNALING’,

‘IL6_JAK_STAT3_SIGNALING’, ‘IL2_STAT5_SIGNALING’, and

‘COMPLEMENT’. Moreover, these anergic DC subtypes exhibited

similarities in metabolic activity, including low oxidative

phosphorylation, lipid metabolic activity and glycolytic

activity (Figure 3E).

To investigate the distinct characteristics of anergic DCs in

sepsis, we performed additional analysis to compare the phenotypic

differences between septic patients and controls. The enrichment

analysis showed that pathways related to antigen presentation were

mainly enriched in the control and leukocytosis groups. In contrast,

the sepsis group showed significant enrichment in inflammation-

related signaling pathways, such as “positive regulation of cell

activation,” “positive regulation of cytokine production,” and

“NF-kB signaling” (Figures S4A–F). Similarly, a subsequent

assessment of the antigen-presenting capacity of anergic DCs

revealed that their ability to present antigens was enhanced in the

leukocytosis group, but significantly reduced during sepsis (Figure

S4G). Overall, our findings suggest that among the traditional DC

types (cDC1, cDC2, pDC), there exist anergic subtypes with similar

transcriptional regulation and enriched pathways. These subtypes

may potentially contribute to the development of the observed

immunosuppression in the context of sepsis.
Gene expression similarities between
immunosuppressive Mono1 and three
anergic DC subtypes

Monocytes have been extensively implicated in the development of

sepsis, and the heterogeneity between patients is considered a major

contributing factor to the ineffective immunemodulatory interventions

in sepsis (42). To investigate whether monocyte subtypes are associated

with heterogeneity in septic patients, we examined the expression

profiling of monocytes from patients. We isolated all monocytes and

identified six subtypes, includingMono1-CD14-RETN,Mono2-CD14-

HLA, Mono3-CD14-CTNNB1, Mono4-CD14-CCL3, Mono5-CD16,

and Mono6-CD16-C1QA (Figures 4A, S5A). Notably, the proportion

of Mono1, which shares similar marker genes with previously reported

immunosuppressive MS1(Table S2, Figure S5B) (9), was significantly

elevated in septic patients (Figure S5C). To investigate the covariation

in gene expression patterns between patients, we merged the single-cell

expression matrix into a sample-level matrix and used unsupervised

analysis techniques, including dimensionality reduction, clustering, and

pseudostage analysis, to identify three distinct clusters (cluster 1, cluster

2, and cluster 3) of samples that varied along a pseudostage. A three-

stage model associated with different immune states was then

developed (Figure 4B). Samples from cluster 2 exhibited high
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expression of pro-inflammatory cytokines, including CCL2, CCL3,

IL1B, IL8 and TNF, while samples from cluster 3 showed high

expression of immunosuppressive cytokines such as IL10 and IL1RN

(Figure 4C). These findings suggest that peripheral inflammation in

septic patients is highly heterogeneous. We then examined the

composition of monocyte subtypes in the three clusters and observed

a significant enrichment of different cell subtypes. Specifically, Mono1

and Mono6 were enriched in cluster 3, while the proportion of Mono2

and Mono4 decreased progressively in clusters 2 and 3 (Figures 4D, E).

These results indicate that the differential abundance of certain

monocyte subtypes may contribute to the observed differences in

inflammation levels among patients.

Given the significant expansion of Mono1 in septic patients and

its enrichment in immunosuppressive cluster3, Mono1 should be

the one of the main contributors of sepsis. To further investigate the

co-varying genes among Mono1, we employed hdWGCNA and

identified nine modules (Figure S5D). Notably, we observed that the

blue module exhibited high expression specifically in Mono1 and
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was exclusive to sepsis (Figure 4F). Surprisingly, GO enrichment

analysis showed that the blue module was associated with myeloid

cell activation and inflammatory response, which is highly similar

to the cDC2 B-specific red module (Figure S5E). We therefore

projected the Mono1-related blue module into all DCs and found

that it was specifically expressed in anergic DC subtypes

(Figure 4G). Furthermore, the cDC2 B-specific red module was

highly expressed in Mono1 (Figures S5F–G). We then performed

GSEA on monocyte subtypes and found that the ‘DC3 > DC2’ gene

set was also enriched in Mono1. This suggests that Mono1 share a

similar gene expression pattern with anergic DCs (Figure 4H).

PYSCENIC analysis showed that the top 10 highly expressed TFs

were also similar to those in anergic DCs (Figure 4I). In addition,

Mono1 and anergic DCs shared similar transcriptional

characteristics, such as low expression of MHC II-related genes.

The onset of sepsis leads to the expansion of anergic subtypes within

all APCs, which may be one of the main reasons for the

development of immunosuppression in sepsis.
B C

D E
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A

FIGURE 2

The proportion of three anergic DC subtypes significantly increased in sepsis. (A) UMAP presentation of three cDC2 subtypes. (B) Cell proportion of
three cDC2 subtypes across different groups. (C) Heatmap of top marker genes across the three cDC2 subtypes (left). Violin plots for the expression
of selected marker genes (right). (D) GSEA of pairwise comparisons of cDC2 B with cDC2 A and cDC2 C. ‘DC3 > DC2’ gene set contained genes
highly expressed in DC3, while ‘DC2 > DC3’ gene set contained genes highly expressed in DC2. (E) Inflammatory score across three cDC2 subtypes.
Significance was determined using Wilcoxon signed-rank test. (F) UMAP presentation of two cDC1 subtypes. (G) Cell proportion of two cDC1
subtypes across different groups. (H) GSEA of pairwise comparisons of cDC1 B with cDC1 A. (I) UMAP presentation of two pDC subtypes. (J) Cell
proportion of two pDC subtypes across different groups. (K) GSEA of pairwise comparisons of pDC B with pDC A.
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Abnormal interactions of three anergic DC
Subtypes and Mono1 with T cells

Based on our observation of reduced expression of the MHC II

genes in APCs and their specific role in interactions with T cells,

we hypothesized that sepsis may lead to a generalized dysfunction

in APC-T cell communication. We then utilized CellChat to

analyze communication patterns among different cell subtypes

separately for each condition (35). We observed that CD4 T cells

and CD8 T cells exhibited a significant increase in the strength of

interactions in septic patients. Specifically, CD4 T cells showed a

greater increase in outgoing signals than CD8 T cells, while CD8 T

cells had a higher increase in incoming signals. Interestingly,

normal DC subtypes (cDC1 A, cDC2 A, cDC2 C and pDC A)

showed no significant enhancement in outgoing signals or even a
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decrease, while anergic DC subtypes (cDC1 B, cDC2 B and pDC

B) exhibited significantly enhanced interactions with T cells

(Figure 5A). Moreover, DCs were found to be the primary

receivers and senders of signals regardless of the condition

(Figure 5B). We then focused on the interactions between all

APC subtypes and T cells. The strength of the interaction between

these anergic DCs and T cells was weak in healthy controls, but

significantly enhanced in septic patients, even exceeding that of

the other DCs (Figure 5C). Additionally, the interaction between

Mono1 and T cells was also significantly enhanced in septic

patients (Figure 5D). Although the anergic DCs are less likely to

act via ligand-receptor pairs in the MHC I and MHC II pathway

compared to other DC subtypes, they showed enhanced

communication probabil i ty to use these pathways in

sepsis (Figure 5E).
B
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A

FIGURE 3

Three anergic DC subtypes shared similar upregulated TFs and enriched pathways. (A) Heatmap for top 10 upregulated TFs of pairwise comparisons
of cDC1 B with cDC1 A (left), cDC2 B with cDC2 A (middle) and cDC2 C and pDC B with pDC A (right). (B) Venn plot showing the intersection of top
50 upregulated TFs in comparison of anergic DCs with their corresponding normal DC subtypes respectively. (C) Heatmap showed the activities of
TF CEBP family and IRF8 across all DC subtypes. (D) Boxplot showed the antigen-presenting capacity via MHC II pathway. Significance was
determined using Wilcoxon signed-rank test. (E) The heatmap of 50 MSigDB hallmark gene sets score across cDC1 B and cDC1 A (left), three cDC2
subtypes (middle) or pDC B and pDC A (right).
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Validation of anergic DC expansion in
sepsis through deconvolution analysis of
bulk RNA-seq data and flow cytometry

To confirm the findings from the single-cell dataset, bulk RNA-

seq analysis was conducted on 20 septic patients and 5 healthy

controls. After quality control based on PCA and heatmap, we

performed differential expression and GO enrichment analysis. The

upregulated genes were chiefly enriched in cytokine release and

myeloid activation, while the downregulated genes were mostly
Frontiers in Immunology 09
enriched in T cell activation and MHC II pathway, which is in

alignment with the changes in cell proportions demonstrated in the

scRNA-seq dataset (Figure 6A, Figures S6A–C). Furthermore,

correlation analysis revealed a significant positive correlation

between the pathway enrichment scores of the scRNA-seq dataset

and the bulk RNA-seq dataset (Figure 6B). To assess the potential

diagnostic value of these anergic DC subtypes in sepsis,

deconvolution analysis was carried out. The analysis indicated

higher proportions of the three anergic DC subtypes in septic

patients compared to healthy controls. Additionally, the
B
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FIGURE 4

Comparison of gene expression profiles between immunesuppressive Mono1 and anergic DCs. (A) UMAP presentation of six monocyte subtypes.
(B) Visualization of samples from septic patients colored by cluster (left) and pseudostage (right). Proportion of sample states for each cluster are
shown in the left panel as pie charts. (C) Expression of pro-inflammatory and anti-inflammatory cytokines across three clusters. Significance was
determined using Student’s t test. (D) Proportion of six monocyte subtypes across three clusters (top). Heatmap in the bottom showed ordered
pseudostage for each sample. (E) Boxplots showing proportion of four monocyte subtypes (Mono1-CD14-RETN, Mono2-CD14-HLA, Mono4-CD14-
CCL3, Mono6-CD16-C1QA) in each sample from the indicated clusters. Significance was determined using Student’s t test. (F) The expression level
of the co-expression gene modules across six monocyte subtypes (left) and different groups (right). (G) The expression of Mono1-related blue gene
module in cDC1, cDC2 and pDC subtypes. (H) GSEA of pairwise comparisons of Mono1 with other monocyte subtypes. (I) Top upregulated TFs of
Mono1 in contrast to other five monocyte subtypes.
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proportions of these anergic DC subtypes inferred by

CIBERSORTX for each subject individually can be used as a

classifier of sepsis (area under the curve (AUC), cDC1 B = 0.90,

cDC2 B = 0.85, pDC B = 0.65) (Figure 6C). The expression level of

the anergic DC-related red co-expression module and Mono1-

related blue module in the bulk RNA-seq data was also evaluated.

Consistent with cell proportions, the expression of both modules

was significantly increased in septic patients, and further

augmented when the patients presented with shock (Figures 6D,

E). We next conducted WGCNA on bulk RNA-seq data to identify

modules specific to healthy controls and septic patients (37). The

analysis identified 13 distinct modules, of which three (purple,

magenta, and tan) were specific to sepsis, and two (blue and

turquoise) were highly expressed in healthy individuals. The

purple module was strongly associated with exocytosis, myeloid
Frontiers in Immunology 10
cell differentiation, and endoplasmic reticulum stress, and exhibited

significantly higher expression levels in sepsis patients.

Additionally, its expression was observed to further increase in

the presence of shock. The magenta and tan modules were linked to

cell division and humoral immunity, respectively. Their expression

levels were enhanced in septic patients but did not appear to be

further increased at the onset of shock, and in fact, their expression

levels even seemed to be reduced. The expression of the blue module

showed a clear decrease with increasing disease, although this

module was not enriched in any specific pathway. Finally, the

turquoise module, related to antigen presentation and lymphocyte

differentiation, displayed a consistent decrease in expression with

increasing disease, in line with the results obtained from the

differential analysis (Figures S6F, G). Given that the purple

module demonstrated the strongest correlation with sepsis and its
B

C D
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FIGURE 5

Intercellular communication in the peripheral blood of septic patients and healthy controls. (A) Heatmap showing the differential number of
interactions among different cell types in sepsis versus healthy control (left). In the center, red stands for increased number of interactions, blue for
decreased number of interactions. The bar plot above shows the sum of the changes in the number of incoming signals for each cell type. The right
bar plot shows the sum of the changes in the number of outgoing signals for each cell type. The differential interactions strength among different
cell types in sepsis versus healthy control (right). (B) Bubble plot showing the incoming and outgoing interaction strength for each cell type in
healthy controls (top) and septic patients (bottom). The dot size represents the count of interactions. (C) Interaction strength of T cell subtypes and
DC subtypes in control and sepsis. (D) Interaction strength of T cell subtypes and monocyte subtypes in control and sepsis. (E) Bubble plot showing
the interaction possibility of all APC subtypes and T cells subtypes during control or sepsis through MHC I and MHC II pathway-related ligand-
receptor pairs.
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expression was further enhanced with disease progression, the

expression of hub genes within this module was evaluated in

different APC subtypes. Notably, these hub genes were

significantly overexpressed in all three anergic DCs, as well as in

Mono1, further supporting the relevance of these cells to sepsis

(Figure S6H).

Following the insights gained from the single-cell analysis, we

proceeded to perform flow cytometry analysis on cohort comprising

both healthy individuals and septic patients. The detailed gating

strategy steps employed in the analysis are provided in the Methods

section. Our findings unveiled a notable elevation in the relative

proportion of CD14+HLA-DRlow DCs specifically within pDCs,

cDC1s and cDC2s in septic patients, thereby providing additional

validation to our initial observations (Figures 6F, G).
Discussion

Sepsis is a complex and life-threatening disease, and the lack of

understanding of its pathological mechanisms at the single-cell level

has hindered progress in this area. scRNA-seq provides an ideal tool
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for studying the mechanism of sepsis at single-cell resolusion.

Several previous scRNA-seq studies on sepsis have been

published, but none of these studies spotlighted APCs in human

sepsis (9–13, 43). We therefore extracted DCs and monocytes from

previously published scRNA-seq data to study the dysfunction of

these cells during sepsis and their internal heterogeneity (9).

Through integrated analysis of scRNA-seq and bulk RNA-seq

data from septic patients and healthy controls, we precisely

delineated all APC subtypes and identified new anergic DC

subtypes specifically amplified in sepsis.

Despite the clear decrease in the number of DCs during sepsis

(14, 44), we observed a considerable increase in anergic cDC2 B

within the DC population, which was characterized by low

expression of MHC II. While anergic DCs are enriched in

inflammatory pathways, previous studies in mice and humans

have demonstrated that cDC2 B exhibit a reduced capacity to

activate T cells compared to cDC2 A (7, 38, 39). Additionally,

cDC2 B has been shown to have weaker migratory abilities (39).

These findings provide further support for the anergic phenotype of

cDC2 B cells. In a consistent manner, Villani et al. discovered two

subtypes, namely DC2 and DC3, within the conventional cDC2
B C

D E
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A

FIGURE 6

Verification of scRNA-seq findings with bulk RNA-seq and flow cytometry. (A) Top upregulated and downregulated GO terms in septic patients
versus healthy controls. (B) Scatterplots showing correlation between pathway normalized enrichment score in scRNA-seq data and RNA-seq data.
The pathway normalized enrichment score was calculated using GSEA. Pathways with p <0.05 were included in the analysis. Significance of the
correlations (Pearson r) were calculated with a two-sided permutation test. (C) ROC curves for the diagnostic effectiveness of proportion of cDC1 B,
cDC2 B and pDC B in all DCs in the bulk RNA-seq data. (D) Boxplot showing the expression of genes from cDC2 B-related red module in different
groups. Significance was determined using Student’s t test. (E) Boxplot showing the expression of genes from Mono1-related blue module in
different groups. Significance was determined using Student’s t test. (F) The frequency of CD14+HLA-DRlow DC subsets in the sepsis patients and
healthy control. (G) Boxplot showing the difference in the proportion of CD14+HLA-DRlow pDC, cDC1 and cDC2 between sepsis patients and healthy
controls. Significance was determined using Student’s t test.
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subset. Notably, our cDC2 B corresponds to DC3, whereas cDC2 A/

C align with DC2 (18). The amplification of cDC2 B is not limited

to sepsis, as it has also been observed in various other inflammatory

diseases such as systemic lupus erythematosus, atopic dermatitis,

and psoriasis (19, 20). Additionally, our analysis showed the

presence of anergic subtypes within cDC1 and pDC, which

displayed similar gene expression profiles to cDC2 B cells. All

three anergic DC subtypes exhibited high expression of CD14.

However, Villani et al. strictly excluded CD14+ cells from their DC

sorting procedure, potentially resulting in the capture of only a

small fraction of these dysfunctional DCs (9). Moreover, anergic

cells within pDCs and cDC1s showed relatively less heterogeneity

compared to regular DCs. Identification of these cells might require

re-clustering analysis tailored to each DC population.

To further confirm the conservation of transcript levels among

the three anergic DCs, we performed hdWGCNA on cDC2 and

calculated the conservation of its co-expression gene modules in

cDC1 and pDC. Our results indicated that the cDC2 B-related red

module was highly conserved within all three traditional DC

populations and was highly expressed in cDC1 B as well as pDC2

B. Using PYSCENIC analysis, we found that the three anergic DC

subtypes also shared similarities in terms of transcriptional

regulation. The development trajectory of DCs is greatly

influenced by the activity of IRF8, a TF crucial for the normal

development of cDC1s and pDCs in mice (45–47). IRF8, along with

other TFs such as CEBPA and PU.1, helps balance the fate of

neutrophils, monocytes, and DCs at various stages of development

(48–51). Previous studies had shown that cDC2 B developed

through an IRF8low pathway, while cDC2 A/C followed an IRF8hi

pathway (41). In line with this finding, our study revealed that IRF8

activity was significantly decreased in cDC1 B, cDC2 B and pDC B.

Additionally, we observed enhanced CEBP family activity in all

three anergic DC subtypes. This suggests that the expansion of

anergic DCs may be associated with altered myelopoiesis in sepsis, a

phenomenon that has been reported in mice and simulated in vitro

(52). While cDC2 B and cDC2 A/C were considered distinct DC

subtypes with different developmental, transcriptomic, phenotypic,

and functional characteristics, it remained unclear whether pDC B

and cDC1 B were unique DC subtypes (41, 53).

Monocytes have been extensively implicated in the pathogenesis

of sepsis (42). By analyzing the expression profiles of patient

monocytes, we constructed a three-stage model that revealed

distinct patient clusters characterized by varying levels of

inflammation and immunosuppression. This emphasizes the

critical need for personalized treatment strategies in sepsis, as the

optimal therapeutic approach may depend on whether the patient is

in a hyperinflammatory or immunosuppressive state. Furthermore,

we observed the expansion of Mono1, which was characterized by

low expression of MHC II, within the immunosuppressed cluster 3.

These findings suggest a potential pivotal role of Mono1 in the

development of immune paralysis during sepsis. Consistently,

previous studies have consistently demonstrated the marked

downregulation of monocyte HLA-DR expression in sepsis, which

is closely linked to patient prognosis (54). Moreover, the observed

similarities in transcriptome profiling between Mono1 and anergic
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DCs imply the existence of shared regulatory mechanisms

governing the differentiation of monocytes and DCs in the

context of sepsis. Further investigation is warranted to unravel

the underlying intricacies of this phenomenon.

Despite improved survival rates during the hyper-inflammatory

stage, sepsis continues to have a high mortality in ICU patients due

to the development of prolonged immune suppression (55, 56).

APCs play an important role in the development of the

immunosuppressed state in sepsis. Previous studies have

demonstrated a significant impairment in the ability of APCs to

present antigens through the MHC II pathway in sepsis (42, 54).

Our findings reveal that the decreased antigen-presenting ability of

APCs can be attributed to the amplification of specific anergic

subtypes. Previous studies have reported a decrease in the absolute

number of DCs during sepsis (14, 44), indicating a reduction in the

absolute count of anergic DCs. Nevertheless, the discovery of

anergic DC subtypes still carries significant implications for sepsis

treatment. While previous research on DCs has primarily

concentrated on enhancing DC expansion (57, 58), improving

DC survival and modifying DC function (59–62), the

identification of anergic DC subtypes underscores the need to

investigate the influence of the transition of DCs to anergic

phenotypes on the progression of sepsis.

This study has some limitations. Firstly, further investigation is

needed to explore the relationship between the absolute count of

anergic DCs and the prognosis of septic patients. Furthermore, the

underlying regulatory mechanisms governing the behavior of the

three anergic DC subtypes and Mono1 during sepsis require further

investigation. Additionally, it is yet to be determined whether the

development of pDC B and cDC1 B follows a similar IRF8low

pathway as observed in cDC2 B, necessitating further research in

this area.
Conclusions

In conclusion, our study identified novel anergic APC subtypes

in the pathogenesis of sepsis with integrative informatics analysis of

scRNA-seq and following verification by bulk RNA-seq and flow

cytometry. By revealing the heterogeneity and functional defects of

APCs in sepsis, our work emphasizes the importance of

understanding the cellular and molecular mechanisms of immune

suppression. Moreover, the identification of these anergic APC

subtypes highlights their potential as therapeutic targets for the

treatment of sepsis. Overall, this study lays the groundwork for

future investigations aimed at improving the clinical management

of this devastating disease.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: HRA004458 (GSA).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1257572
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1257572
Ethics statement

The studies involving humans were approved by Human

Biomedical Research Ethic Committee of Shandong Provincial

Hospital. The studies were conducted in accordance with the

local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

TZ: Data curation, Methodology, Software, Visualization,

Writing – original draft. GL: Supervision, Validation, Writing –

review & editing. WF: Supervision, Writing – review & editing. LT:

Data curation, Writing – review & editing. WM: Data curation,

Writing – review & editing. JZ: Writing – review & editing. ZM:

Supervision, Writing – review & editing. HY: Supervision, Writing –

review & editing. CTW: Supervision, Writing – review & editing.

CGW: Supervision, Writing – review & editing. MC: Funding

acquisition, Supervision, Writing – review & editing.
Funding

The authors declare financial support was received for the

research, authorship, and/or publication of this article. The study

was supported by grants from the National Natural Science

Foundation of China (No. 81903086), and the Shandong

Provincial Natural Science Foundation of China (ZR2020MH205).
Frontiers in Immunology 13
Acknowledgments

We thank Dr. Jianming Zeng (University of Macau), and all the

members of his bioinformatics team, biotrainee, for generously

sharing their experience and codes.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1257572/

full#supplementary-material
References
1. Rudd KE, Kissoon N, Limmathurotsakul D, Bory S, Mutahunga B, Seymour CW,
et al. The global burden of sepsis: barriers and potential solutions. Crit Care (2018) 22
(1):232. doi: 10.1186/s13054-018-2157-z

2. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al.
Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for
the Global Burden of Disease Study. Lancet (2020) 395(10219):200–11. doi: 10.1016/
s0140-6736(19)32989-7

3. Filbin MR, Lynch J, Gillingham TD, Thorsen JE, Pasakarnis CL, Nepal S, et al.
Presenting symptoms independently predict mortality in septic shock: importance of a
previously unmeasured confounder. Crit Care Med (2018) 46(10):1592–9. doi: 10.1097/
ccm.0000000000003260

4. Seymour CW, Kennedy JN,Wang S, Chang CH, Elliott CF, Xu Z, et al. Derivation,
validation, and potential treatment implications of novel clinical phenotypes for sepsis.
Jama (2019) 321(20):2003–17. doi: 10.1001/jama.2019.5791

5. Sweeney TE, Azad TD, Donato M, Haynes WA, Perumal TM, Henao R, et al.
Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets
reveals three robust clusters. Crit Care Med (2018) 46(6):915–25. doi: 10.1097/
ccm.0000000000003084

6. Kakaradov B, Arsenio J, Widjaja CE, He Z, Aigner S, Metz PJ, et al. Early
transcriptional and epigenetic regulation of CD8(+) T cell differentiation revealed by
single-cell RNA sequencing. Nat Immunol (2017) 18(4):422–32. doi: 10.1038/ni.3688

7. Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée VP, Mendoza A, et al.
Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell (2019) 179
(4):846–863.e24. doi: 10.1016/j.cell.2019.09.035

8. Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, et al. Liver tumour immune
microenvironment subtypes and neutrophil heterogeneity. Nature (2022) 612
(7938):141–7. doi: 10.1038/s41586-022-05400-x

9. Reyes M, Filbin MR, Bhattacharyya RP, Billman K, Eisenhaure T, Hung DT, et al.
An immune-cell signature of bacterial sepsis. Nat Med (2020) 26(3):333–40.
doi: 10.1038/s41591-020-0752-4
10. Qiu X, Li J, Bonenfant J, Jaroszewski L, Mittal A, Klein W, et al. Dynamic
changes in human single-cell transcriptional signatures during fatal sepsis. J Leukoc Biol
(2021) 110(6):1253–68. doi: 10.1002/jlb.5ma0721-825r

11. Wang T, Zhang X, Liu Z, Yao T, Zheng D, Gan J, et al. Single-cell RNA
sequencing reveals the sustained immune cell dysfunction in the pathogenesis of sepsis
secondary to bacterial pneumonia. Genomics (2021) 113(3):1219–33. doi: 10.1016/
j.ygeno.2021.01.026

12. Darden DB, Dong X, Brusko MA, Kelly L, Fenner B, Rincon JC, et al. A novel
single cell RNA-seq analysis of non-myeloid circulating cells in late sepsis. Front
Immunol (2021) 12:696536. doi: 10.3389/fimmu.2021.696536

13. Jiang Y, Rosborough BR, Chen J, Das S, Kitsios GD, McVerry BJ, et al. Single cell
RNA sequencing identifies an early monocyte gene signature in acute respiratory
distress syndrome. JCI Insight (2020) 5(13):e135678. doi: 10.1172/jci.insight.135678

14. Venet F, Monneret G. Advances in the understanding and treatment of sepsis-
induced immunosuppression. Nat Rev Nephrol. (2018) 14(2):121–37. doi: 10.1038/
nrneph.2017.165

15. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from
cellular dysfunctions to immunotherapy. Nat Rev Immunol (2013) 13(12):862–74.
doi: 10.1038/nri3552

16. Mildner A, Jung S. Development and function of dendritic cell subsets.
Immunity (2014) 40(5):642–56. doi: 10.1016/j.immuni.2014.04.016

17. Maier B, Leader AM, Chen ST, Tung N, Chang C, LeBerichel J, et al. A conserved
dendritic-cell regulatory program limits antitumour immunity. Nature (2020) 580
(7802):257–62. doi: 10.1038/s41586-020-2134-y

18. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-
cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and
progenitors. Science (2017) 356(6335):eaah4573. doi: 10.1126/science.aah4573

19. Nakamizo S, Dutertre CA, Khalilnezhad A, Zhang XM, Lim S, Lum J, et al.
Single-cell analysis of human skin identifies CD14+ type 3 dendritic cells co-producing
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1257572/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1257572/full#supplementary-material
https://doi.org/10.1186/s13054-018-2157-z
https://doi.org/10.1016/s0140-6736(19)32989-7
https://doi.org/10.1016/s0140-6736(19)32989-7
https://doi.org/10.1097/ccm.0000000000003260
https://doi.org/10.1097/ccm.0000000000003260
https://doi.org/10.1001/jama.2019.5791
https://doi.org/10.1097/ccm.0000000000003084
https://doi.org/10.1097/ccm.0000000000003084
https://doi.org/10.1038/ni.3688
https://doi.org/10.1016/j.cell.2019.09.035
https://doi.org/10.1038/s41586-022-05400-x
https://doi.org/10.1038/s41591-020-0752-4
https://doi.org/10.1002/jlb.5ma0721-825r
https://doi.org/10.1016/j.ygeno.2021.01.026
https://doi.org/10.1016/j.ygeno.2021.01.026
https://doi.org/10.3389/fimmu.2021.696536
https://doi.org/10.1172/jci.insight.135678
https://doi.org/10.1038/nrneph.2017.165
https://doi.org/10.1038/nrneph.2017.165
https://doi.org/10.1038/nri3552
https://doi.org/10.1016/j.immuni.2014.04.016
https://doi.org/10.1038/s41586-020-2134-y
https://doi.org/10.1126/science.aah4573
https://doi.org/10.3389/fimmu.2023.1257572
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1257572
IL1B and IL23A in psoriasis. J Exp Med (2021) 218(9):e20202345. doi: 10.1084/
jem.20202345

20. Dutertre CA, Becht E, Irac SE, Khalilnezhad A, Narang V, Khalilnezhad S, et al.
Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers
and identifies circulating inflammatory dendritic cells. Immunity (2019) 51(3):573–
589.e8. doi: 10.1016/j.immuni.2019.08.008

21. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS,
et al. Developing a new definition and assessing new clinical criteria for septic shock: for
the third international consensus definitions for sepsis and septic shock (Sepsis-3).
Jama (2016) 315(8):775–87. doi: 10.1001/jama.2016.0289

22. Chen Y, Lun AT, Smyth GK. From reads to genes to pathways: differential
expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-
likelihood pipeline. F1000Res (2016) 5:1438. doi: 10.12688/f1000research.8987.2

23. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell (2021) 184(13):3573–3587.e29.
doi: 10.1016/j.cell.2021.04.048

24. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in
single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst (2019) 8
(4):329–337.e4. doi: 10.1016/j.cels.2019.03.003

25. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast,
sensitive and accurate integration of single-cell data with Harmony. Nat Methods
(2019) 16(12):1289–96. doi: 10.1038/s41592-019-0619-0

26. Morabito S, Miyoshi E, Michael N, Shahin S, Martini AC, Head E, et al. Single-
nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s
disease. Nat Genet (2021) 53(8):1143–55. doi: 10.1038/s41588-021-00894-z

27. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2(3):100141.
doi: 10.1016/j.xinn.2021.100141

28. Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S,
et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat
Protoc (2020) 15(7):2247–76. doi: 10.1038/s41596-020-0336-2

29. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res (2015) 43(7):e47. doi: 10.1093/nar/gkv007

30. Holland CH, Tanevski J, Perales-Patón J, Gleixner J, Kumar MP, Mereu E, et al.
Robustness and applicability of transcription factor and pathway analysis tools on single-
cell RNA-seq data. Genome Biol (2020) 21(1):36. doi: 10.1186/s13059-020-1949-z

31. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-2105-14-7

32. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph
embedding resolves complex single-cell trajectories. Nat Methods (2017) 14(10):979–
82. doi: 10.1038/nmeth.4402

33. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The
dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering
of single cells. Nat Biotechnol (2014) 32(4):381–6. doi: 10.1038/nbt.2859

34. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell
transcriptional landscape of mamMalian organogenesis. Nature (2019) 566(7745):496–
502. doi: 10.1038/s41586-019-0969-x

35. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun (2021) 12
(1):1088. doi: 10.1038/s41467-021-21246-9

36. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol (2019) 37(7):773–82. doi: 10.1038/s41587-019-0114-2

37. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-9-559

38. Bourdely P, Anselmi G, Vaivode K, Ramos RN, Missolo-Koussou Y, Hidalgo S,
et al. Transcriptional and functional analysis of CD1c(+) human dendritic cells
identifies a CD163(+) subset priming CD8(+)CD103(+) T cells. Immunity (2020) 53
(2):335–352.e8. doi: 10.1016/j.immuni.2020.06.002

39. Yin X, Yu H, Jin X, Li J, Guo H, Shi Q, et al. Human blood CD1c+ Dendritic cells
encompass CD5high and CD5low subsets that differ significantly in phenotype, gene
expression, and functions. J Immunol (2017) 198(4):1553–64. doi: 10.4049/
jimmunol.1600193

40. Rosenbauer F, Tenen DG. Transcription factors in myeloid development:
balancing differentiation with transformation. Nat Rev Immunol (2007) 7(2):105–17.
doi: 10.1038/nri2024

41. Cytlak U, Resteu A, Pagan S, Green K, Milne P, Maisuria S, et al. Differential IRF8
transcription factor requirement defines two pathways of dendritic cell development in
humans. Immunity (2020) 53(2):353–70. doi: 10.1016/j.immuni.2020.07.003
Frontiers in Immunology 14
42. van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis.
Immunity (2021) 54(11):2450–64. doi: 10.1016/j.immuni.2021.10.012

43. Yao RQ, Li ZX, Wang LX, Li YX, Zheng LY, Dong N, et al. Single-cell
transcriptome profiling of the immune space-time landscape reveals dendritic cell
regulatory program in polymicrobial sepsis. Theranostics (2022) 12(10):4606–28.
doi: 10.7150/thno.72760
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