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Ferroptosis is an iron-dependent, novel form of programmed cell death

characterized by lipid peroxidation and glutathione depletion and is

widespread in a variety of diseases. CD8+ T cells are the most important

effector cells of cytotoxic T cells, capable of specifically recognizing and killing

cancer cells. Traditionally, CD8+ T cells are thought to induce cancer cell death

mainly through perforin and granzyme, and Fas-L/Fas binding. In recent years,

CD8+ T cell-derived IFN-g was found to promote cancer cell ferroptosis by

multiple mechanisms, including upregulation of IRF1 and IRF8, and

downregulation of the system XC-, while cancer cells ferroptosis was shown

to enhance the anti-tumor effects of CD8+ T cell by heating the tumor immune

microenvironment through the exposure and release of tumor-associated

specific antigens, which results in a positive feedback pathway. Unfortunately,

the intra-tumoral CD8+ T cells are more sensitive to ferroptosis than cancer

cells, which limits the application of ferroptosis inducers in cancer. In addition,

CD8+ T cells are susceptible to being regulated by other immune cell ferroptosis

in the TME, such as tumor-associated macrophages, dendritic cells, Treg, and

bone marrow-derived immunosuppressive cells. Together, these factors build a

complex network of CD8+ T cells and ferroptosis in cancer. Therefore, we aim to

integrate relevant studies to reveal the potential mechanisms of crosstalk

between CD8+ T cells and ferroptosis, and to summarize preclinical models in

cancer therapy to find new therapeutic strategies in this review.
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1 Introduction

CD8+ T cells can resist tumor growth and metastasis through various mechanisms (1–3).

Firstly, when normal cells transform into cancer cells, they express specific antigens. CD8+ T

cells directly attack cancer cells by recognizing these specific antigens and inhibit or slow

down tumor growth (4, 5). Secondly, the exposure and release of tumor antigens can activate

other immune cells to directly or indirectly promote the anti-tumor effects of CD8+ T cells

(6, 7). However, cancer cells can also evade the attack of CD8+ T cells through various

strategies, such as reducing the expression of tumor-specific antigens, increasing infiltration
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of immune suppressor cells, blocking the activation of CD8+ T cells,

inducing the exhaustion and death of CD8+ T cells (8–13). Therefore,

the study is a hot topic about how to enhance the immune response of

CD8+ T cells against tumors and overcome the escape mechanisms of

cancer cells in the field of cancer immunotherapy.

Ferroptosis was proposed in 2012, referring to a distinct form of

programmed cell death triggered by iron-dependent and lipid

peroxidation pathways, which is widely present in various diseases,

especially cancer (14–18). In recent years, the mechanisms of ferroptosis

have been rapidly elucidated, including system XC- inhibition

(SLC7A11/SLC3A2), upregulation of glutathione peroxidase 4

(GPX4), iron homeostasis imbalance, and phospholipid peroxidation

(14, 19–22). Multiple factors can also regulate the sensitivity of cell

ferroptosis in pathological conditions to mediate disease progression

(23). The system XC- is a reverse transporter of cystine and glutamate,

which can increase cellular uptake of cystine and convert it to

glutathione (GSH) under the action of thioredoxin reductase 1

(TXNRD1), and GPX4 relies on GSH as a substrate to increase its

activity and promote the conversion of lipid peroxide (PL-OOH) to

lipid alcohol (PL-OH). Thus, It prevents cells ferroptosis by decreasing

the accumulation of PL-OOH. Erastin and RSL3 act as inhibitors of the

system XC- and GPX4, respectively, to promote cell ferroptosis (14, 19,

23). Iron homeostasis imbalance is another classical pathway in

ferroptosis, regulated mainly by the network of transferrin receptor 1

(TfR1), iron regulatory protein 1 (IRP1), and iron regulatory protein 2

(IRP2) to influence cellular iron uptake, storage, and release. The

production of reactive oxygen species (ROS) and phospholipid

peroxidation require a large amount of metabolic enzyme

involvement and iron acts as a catalyst and essential element for these

enzymes. Iron-dependent Fenton reaction rapidly amplifies PL-OOHs

and produces various reactive free radicals to induce cancer cell

ferroptosis (24–26). Infinite lipid peroxidation is a hallmark of

ferroptosis, and acyl-CoA synthetase long-chain family member 4

(ACSL4) is a key enzyme in the conversion of polyunsaturated fatty

acids (PUFAs) to PUFA-PE. PUFA-PE promotes the intracellular

accumulation of lipid peroxides under the action of various enzymes.

The cell membrane contains abundant PUFA-PL, and phospholipid

peroxidation is considered the direct executor of cell ferroptosis (27–29).

In recent years, it has been found that CD8+ T cells- derived IFN-

g promotes cancer cells ferroptosis, which can release multiple tumor

antigens and further activate CD8+ T cells through the role of

antigen-presenting cells (APCs) to enhance anti-cancer immunity.

In addition, CD8+ T cells and other immune cells can undergo

ferroptosis in the tumor microenvironment (TME), thereby altering

the immune function of CD8+ T cells in tumors. Therefore, this

review introduces mainly the network of CD8+ T cells and ferroptosis

in cancer and reveals the underlying mechanisms.
2 CD8+ T cells ferroptosis causes
immune escape of cancer cells

CD8+ T cells are the most effective immune cells in anti-cancer

immunity and can directly kill cancer cells in multiple ways, earning

them the nickname “executioner” of the tumor immune system

(30). Perforin and granzyme released by CD8+ T cells are effector
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factors of cancer cell apoptosis, which can lead to cancer cell protein

degradation and destruction, causing cell apoptosis (31). Another

way is through CD8+T cells Fas-L binding to target cell Fas,

sequentially activating caspase 8 and caspase 3 proteases to

promote protein degradation, causing lethal damage to cancer

cells (32–34). CD8+ T cells can also indirectly kill cancer cells by

releasing cytokines such as tumor necrosis factor (TNF) (35).

In recent years, it has been found that CD8+ T cells-derived IFN-

g can induce cancer cells ferroptosis by binding to the surface IFN- g
receptor (IFNgR) on cancer cells, which enriches the mechanisms

of CD8+ T cell killing cancer cells (36–39). Ferroptosis plays a

crucial role in CD8+ T cell-mediated anti-tumor immunity.

However, CD8+ T cells are also vulnerable in the TME. Cancer

cells upregulate molecules such as PD-L1 and Fas-L to cause the

dysfunction and exhaustion of CD8+ T cells and promote immune

evasion of cancer cells (9, 40–43). New evidence also suggests that

cancer cells induce CD8+ T cell ferroptosis by interfering with the

TME, weakening their anti-cancer immune function (44).

Recent studies have shown that CD8+ T cells are more sensitive

to ferroptosis than cancer cells and are susceptible to spontaneous

ferroptosis influenced by the TME, depriving survival opportunities

of CD8+ T cells. This leads to a decrease in the abundance of intra-

tumoral CD8+ T cells and induces functional impairment,

promoting immune evasion of cancer cells. Drijvers et al.

demonstrated that activated CD8+ T cells were significantly more

sensitive to RSL3-induced ferroptosis than cancer cells when CD8+

T cells were co-cultured with cancer cells, resulting in ferroptosis of

CD8+ T cells and immune regression against cancer. Lack of ACSL4

protected CD8+ T cells from the threat of high-dose RSL3-induced

ferroptosis but also resulted in functional defects of CD8+ T cells,

enabling cancer cells to evade the specific killing of CD8+ T cells.

Therefore, the key enzyme ACSL4, which regulates lipid

peroxidation during cell ferroptosis, is necessary to maintain the

function of CD8+ T cells (44). In addition, the sensitivity of CD8+ T

cell ferroptosis is also influenced by the metabolic state of the TME.

Ma et al. found that cholesterol is rich in the TME and gradually

increases with tumor progression. Cholesterol induces the

expression of CD36 on the intra-tumoral CD8+ T cells. CD36

can increase intracellular fatty acid uptake and lipid accumulation

to trigger lipid peroxidation-induced ferroptosis and weaken the

anti-cancer ability of CD8+ T cells. This explains why the gradual

upregulation of CD36 expression reduces the infiltration of intra-

tumoral CD8+ T cells through ferroptosis during tumor

progression, leading to a gradual decline in anti-tumor immune

function (45, 46). Conversely, CD8+ T cells can also evade

ferroptosis by adjusting the expression of ferroptosis-related

genes. Tc1 is a typical subset of CD8+T cells, and Tc9 is a subset

of CD8+T cells that secrete IL-9 (47). Xiao et al. found Tc9 cells

transferred into tumor-bearing mice exhibit longer lifespan and

anti-tumor activity than Tc1 cells, thanks to the high expression of

IL-9 in Tc9 cells. STAT3 is a downstream target of IL-9 and can

bind to the CPT1A promoter to induce transcription. CPT1A, as a

key enzyme in fatty acid oxidation, can increase mitochondrial

activity and reduce lipid peroxidation, thereby protecting Tc9 cells

from tumor-induced ferroptosis. In melanoma, the IL-9 expression

is lower and the expression of genes related to lipid peroxidation
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and ferroptosis is higher on the tumor Infiltrating CD8+ T cells,

compared with circulating CD8+ T cells, which may be related to

increased sensitivity of the intra-tumoral CD8+ T cells to

ferroptosis (48). It is worth noting that IL-9 has been shown to

activate adaptive immune to suppressive tumor growth in various

tumors (49), but it has a tumor-promoting effect in T cell-derived

hematological cancers (50, 51). It needs further investigation

whether high expression of IL-9 is involved in protecting T cell-

derived hematological cancer cells from ferroptosis.

The high sensitivity of CD8+ T cells to ferroptosis in the TME

limits the application of ferroptosis inducers in cancer and increases

the immune evasion of cancer cells. By further studying CD8+ T

cells and identifying protective factors that prevent them from

undergoing ferroptosis, it may be possible to enhance the

effectiveness of anti-tumor immune therapy.
3 The interaction of CD8+ T cells and
cancer cells ferroptosis enhances
tumor suppression

The interaction between CD8+ T cells and cancer cell

ferroptosis is mutually promoting. The CD8+ T cells-derived

IFN-g induces cancer cell ferroptosis by binding to IFNgR and

activating multiple pathways. Cancer cell ferroptosis releases

various tumor antigens that activate CD8+ T cells through APCs,

forming a “positive closed-loop pathway” that significantly

enhances tumor suppression (Figure 1).
3.1 CD8+ T cells promote cancer
cell ferroptosis

IFN-g is one of the effector factors secreted by activated CD8+ T

cells and exerts its function by binding to IFNgR on cancer cells.

STATs and interferon regulatory factors (IRF) family are mainly

downstream genes of IFN-g (52). In CD8+ T cell-induced cancer cell

ferroptosis, IFN-g regulates the phosphorylation of STATs (P-

STATs) and changes the transcriptional activation of target genes.

P-STATs mediate the expression of IRF1 and IRF8 in cancer cells (53,

54), which act as the transcriptional activation factors of ACSL4 and

the transcriptional inhibitory factors of P53, respectively, to

participate in the induction of cancer cell ferroptosis (36, 55). The

low expression of IRF8 in hepatocellular carcinoma and breast cancer

has been associated with a low response to immune therapy (IFN-g
and ICIs). In addition, IFN-g is involved in mitochondrial damage

and cell cycle arrest, further promoting cancer cell ferroptosis.

With the action of IFN-g, the activation of JAK1/2 and

phosphorylation of STAT1 increase the expression of IRF1 on

cancer cells. IRF1 acts as a transcriptional activation factor on the

ACSL4 promoter. ACSL4 is a key enzyme for fatty acid oxidation and

reshapes the lipid spectrum in cancer cells under the action of

arachidonic acid (AA), increasing lipid peroxidation levels and

ferroptosis. Therefore, IFN-g combined with AA is thought as the

endogenous triggering factor for ACSL4-mediated cancer cell
Frontiers in Immunology 03
ferroptosis, and immune checkpoint inhibitors (ICIs) can

significantly enhance the anti-tumor effect (36). Interestingly,

recent studies have shown that the accumulation of lipid peroxides

induces the activation of PKCbII in cancer cells, and PKCbII can also
interact with the Thr328 site of ACSL4 to activate ACSL4. Therefore,

the combined use of IFN-g and fatty acids may promote the rapid

amplification of lipid peroxides through positive feedback between

PKCbII and ACSL4, reaching a lethal level of cancer cell ferroptosis

and enhancing the ability of IFN-g to induce ferroptosis (56). In

another study, Wang et al. found that IFN-g-mediated P-STAT1 can

directly bind to the promoter region to inhibit the expression of

SLC7A11 and increase significantly intracellular GSH depletion, lipid

peroxidation, and ferroptosis in cancer (37). Consistent with the

above studies, Kong et al. verified that IFN-g treatment induces

cancer cell ferroptosis through the STAT1/IRF1/ACSL4 axis in

hepatocellular carcinoma. In addition, they found that IFN-g
increases the phosphorylation of STAT3 and inhibits the

transcription of SLC7A11, further reducing cystine uptake, and

disrupting intracellular redox balance. They also found that the

combination of IFN-g and Erastin enhances mitochondrial

oxidation and the loss of mitochondrial membrane potential

(MMP), further triggering ferroptosis. Moreover, the combination

of IFN-g and ferroptosis inducers can inhibit the expression of

CyclinD1, CDK4, and CDK6 to mediate more cell cycle arrest (39).

It has been reported that phosphorylated STAT5 can also bind to the

promoter region of SLC7A11 to inhibit its expression, participating in

cystine deprivation and disrupting intracellular redox balance, which

may trigger ferroptosis (57). IRF8 is another target gene of IFN-g.
Poschel et al. found that the expression level of IRF8 is significantly

higher in responders to nivolumab (PD-1 inhibitor) treatment in

melanoma patients compared to non-responders. IRF8 can inhibit

the expression of P53 protein, increase lipid peroxidation, and

promote ferroptosis in melanoma cells (55). Similarly, the IFN-g
and ICIs immune therapies signaling pathway is significantly

inhibited with low levels of IRF8 in hepatocellular carcinoma and is

associated with poor prognosis (58), while high expression of IRF8 in

human breast cancer is associated with better response to immune

therapy and chemotherapy (59). Whether IRF8 regulated by immune

therapy interferes with ferroptosis is worth further investigation.

In summary, activated CD8+ T cells secrete IFN-g and act on

the key targets of cancer cell ferroptosis. This leads to a decrease in

the oxidative buffering capacity of GPX4 and other GSH-dependent

enzymes. IFN-g also promotes lipid peroxidation through ACSL4

using fatty acids and results in selective enrichment of PUFAs to

induce cells ferroptosis (38). Ferroptosis is usually induced by

exogenous chemical molecules, including erastin, RSL3, and

Sorafenib. CD8+ T cell-derived IFN-g is an important component

of anti-cancer immunity, and AA exists in plasma and cells, jointly

opening the door to endogenous ferroptosis (36).
3.2 Cancer cell ferroptosis influences the
antitumor ability of CD8+ T cell

The Cell Death Naming Committee has defined immunogenic

cell death (ICD) as “a regulated form of cell death that is capable of
frontiersin.org
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activating adaptive immune responses in immunocompetent hosts

of the same genotype” (60). Many studies have shown that various

factors are exposed or released during cell death processes such as

necrosis, pyroptosis, autophagy, and apoptosis, which present “find

me” and “eat me” signals to mediate immune responses. These

factors are collectively referred to as damage-associated molecular

patterns (DAMPs) (61). Consistent with other death-related ICDs,

Ferroptosis, as a novel form of programmed cell death, can also

release DAMPs such as HMGB1, calreticulin, ATP, HSP70, and

HSP90 during the death process. These factors are often

simultaneously released by cancer cells and act as immune

adjuvants to attract and stimulate antigen-presenting cells

(APCs). The activated APCs can engulf and process tumor-

associated antigens. This ultimately leads to the clonal expansion

of tumor-specific CD8+ T cells and elicit an immune response.

However, inconsistent with other ICDs, ferroptosis can also inhibit

the activation of CD8 T cells due to lipids peroxidation, which

causes lipid droplet accumulation and loss of antigen function after

APCs engulf ferroptosis corpses (Table 1).

High mobility group box 1 (HMGB1) is a non-histone nuclear

protein that has different functions depending on its subcellular

localization. Extracellular HMGB1 regulates immune responses by
Frontiers in Immunology 04
binding to immune cell receptors (70, 71). In various diseases,

HMGB1 acts as a redox protein that increases the accumulation of

reactive oxygen species (ROS). ROS is considered a stress factor for

ferroptosis, and the migration and release of HMGB1 are associated

with ROS. Therefore, HMGB1 is often released during ferroptosis

and participates in the regulation of CD8+ T cells as tumor antigens

(72–77). Song et al. found that overexpression of OTUD1 inhibits

the ubiquitination and degradation of iron-responsive element-

binding protein 2 (IREB2) in colorectal cancer cells. IREB2, as an

iron sensor, participates in the regulation of iron transport proteins

and promotes iron uptake and ferroptosis in cancer cells, which

significantly increases the release of HMGB1 in the tumor stroma

and promotes the CD8+ T cells infiltration in cancer (62). In

addition, Efimova et al. treated fibrosarcoma cells and

glioblastoma cells with RSL3 and detected the immunogenic

characteristics of ferroptosis cells at different time points. The

release of HMGB1 reached its maximum level only in the late

stage of ferroptosis (24h). The level of HMGB1 in the supernatant of

early-stage ferroptotic cells (3h) showed no statistically significant

difference compared to that in surviving cancer cells. However,

when fibrosarcoma cells and glioblastoma cells were co-cultured

with bone marrow-derived dendritic cells (BMDCs), the level of
FIGURE 1

TAMs Ferroptosis reduced M2-macrophage infiltration and increased polarization to M1 macrophages to promote CD8+ T cell activity. Treg, MDSCs,
and TINs ferroptosis reduced the inhibition of CD8+ T cells. PMN-MDSCs and DCs blocked the CD8+ T-cell activation pathway.CD8+ T cell-derived
IFN-g binds to IFNgR on the surface of cancer cells and promotes phosphorylation of STATs via JAK1/2. P-STAT1 promotes ACSL4 expression
through upregulation of IRF1, and the combination of ACSL4 and AA can induce cell ferroptosis. During ferroptosis, the increased lipid ROS can
activate PKCbII and ACSL4 to Significantly magnify this effect. P-STAT1, p-STAT3, and p-STAT5 inhibits SLC7A11/SLCA2 expression to block the
uptake of cystine and reduce the activity of GPX4, which also promotes cells ferroptosis. In addition, IFNgR can up-regulate the expression of IRF8.
These factors together amply tumor cell ferroptosis. The release of DAMPs during cancer cell ferroptosis induces the maturation of APCs and
activation of CD8+ T cells, establishing a positive recycling pathway. Due to engulfing ferroptosis cell corpses, APCs lose their antigen-presenting
ability and have difficulty activating CD8+T cells.
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HMGB1 reached its maximum value in the early stage (3h).

Whether BMDCs alter the spatiotemporal release of HMGB1

from ferroptotic cells is still unclear. However, early-stage

ferroptotic cells can induce BMDCs maturation and active CD8+

T cells to suppress tumor growth by involving. Late-stage

ferroptosis cells, on the other hand, can be cleared, but lack

immunogenic characteristics (63).

It is worth noting that the role of HMGB1 in immunity is not

solely to promote antigen presentation and activate CD8+ T cells.

Some studies have shown that HMGB1 can increase the infiltration

of immune suppressive cells to weaken the anti-cancer effects of

CD8+ T cells (78). Conche et al. found that GPX4 deficiency

induces lipid peroxidation and ferroptosis in hepatocellular

carcinoma. During this process, it can recruit CD8+ T cells by

increasing the expression of CXCL10 and PD-L1 in cancer cells.

However, the increase of HMGB1 during ferroptosis leads to the

infiltration of myeloid-derived suppressor cells (MDSCs), which are

immune suppressive cells in the TME. Blocking the inhibitory effect

of MDSCs on CD8+ T cells through ICIs can enhance the anti-

cancer effects. The same treatment did not inhibit tumor growth in

mice with colon cancer but reduced liver metastasis, indicating the

complexity of ferroptosis-induced immunity in the different

TMEs (64).

Adenosine triphosphate (ATP) is an essential nucleotide for

metabolism and is released into the TME during cell death through

lysosomal secretion and vesicle formation. It binds to immune cell

receptors, such as DCs’ P2X7R receptor, to initiate tumor immune

responses (79). In contrast to HMGB1, ATP is released by

fibrosarcoma and glioma cells after 3 hours of RSL3 treatment,

reaching a peak at 6 hours. However, the released ATP is depleted

by 24 hours. This suggests that ATP induces DCs maturation and

initiates CD8+ T cell immunity in the early stages of ferroptosis, but

late-stage ferroptosis cells cannot acquire adaptive immunity. In

esophageal cancer, inhibiting SCD1 under radiotherapy prevents

the conversion of saturated fatty acids to unsaturated fatty acids,

increases intracellular lipid peroxidation and ferroptosis, and

activates DCs through recognition and activation of ATP released

by cancer cells (65). Shikonin enhances ferroptosis and ATP release

in multiple myeloma by inhibiting GOTI and promoting iron

phagocytosis, thereby activating adaptive immunity (66).
Frontiers in Immunology 05
Calreticulin (CRT) is an endoplasmic reticulum luminal Ca2+

buffering protein that is involved in regulating Ca2+ homeostasis

and endoplasmic reticulum Ca2+ capacity (80). The damage of

cancer cells triggers the gradual translocation and exposure of CRT

as a “find me” signal. APCs, especially immature dendritic cells

(DCs), can bind to CRT through the CD91 receptor to increase the

activation of tumor-specific naive CD8+ T cells (81–84). Therefore,

CRT is an important DAMP in the process of cell death. Cancer cell

ferroptosis has also been shown to induce tumor immune responses

through the exposure of CRT. Zhao et al. found a significant

negative correlation between the expression of GPX4 and

calreticulin in HNSCC. Inhibition of GPX4 by RSL3 significantly

increased cancer cell ferroptosis, promoted the translocation of

CRT to the cell surface, downregulated myeloid-derived suppressor

cells and M2-like macrophages, increased the number of CD4+ T

cells and CD8+ T cells, improved the immunosuppressive

microenvironment of head and neck squamous cell carcinoma

(HNSCC), and inhibited tumor progression (67). Similarly, Yu

et al. used nanopolymer-mediated intracellular Fenton reaction

and oxidative stress in cancer cells, which resulted in the

exposure of CRT on ferroptotic cancer cells, leading to DCs

maturation and infiltration of cytotoxic T lymphocytes (68).

Other DAMPs Cancer cell death is accompanied by the release

of a large number of tumor antigenic molecules. In addition to

HMGB1, CRT, and ATP mentioned above, there are many other

antigenic factors involved in the process of ferroptosis, such as

HSP70 and HSP90 (77). These factors usually accumulate in the

TME, including but not limited to inducing the maturation and

activation of M1-like macrophages or DCs, to amplify the immune

response and enhance the anti-tumor ability of CD8+ T cells.

Contradictorily, recent reports have shown that cancer cell

ferroptosis impedes DCs-mediated anti-tumor immunity, which

challenges previous studies. ML266-induced cancer cell ferroptosis

can release ATP and HMGB1, as well as expose CRT. However, when

bone marrow-derived dendritic cells (BMDCs) were co-cultured with

ferroptotic cancer cells, it was found that the maturation of BMDCs

was negatively correlated with early-stage (1-2h) ferroptotic cancer

cells. Although the maturation marker molecules of BMDCs increased

in the mid-stage (3-4h) and late-stage (5-8h), the maturation of

BMDCs was not sufficient to induce an immune response due to
TABLE 1 Cancer cells ferroptosis influences CD8+ T cell immunity.

DAMPS Ferroptosis induction Effect Mechanism Refs

HMGB1 OTUD1 Promotion Increase in intra-tumor CD8+ T cells (62)

ML266 Promotion induce BMDCs maturation and activation of CD8+ T cells (63)

GPX4 deficiency Inhibition Promote infiltration of MDSCs (64)

ATP ML266 Promotion induce BMDCs maturation and initiate CD8+ T cells (63)

SCD1 inhibition Promotion Induce ferroptosis immunogenicity, promote activation of DCs, and activate immunity. (65)

Shikonin Promotion release ATP and HMGB1, promote ICD (66)

CRT RSL3 Promotion Promote the transfer of CRT to the cell surface and increase the number of CD8+ T cells (67)

HCSVs+MF Promotion Induce DCs maturation and cytotoxic T lymphocyte infiltration (68)

Corpses GPX4 inhibition Inhibition Impair antigen presentation function of DCs and inhibit the activation of CD8+ T cells (69)
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the loss of antigen presentation ability after BMDCs engulf ferroptosis

cell corpse. this is manifested by the decrease of antigen presentation-

related gene expression and the accumulation of lipid droplets. Thus,

ferroptotic cancer cells weaken the ability to activate CD8+ T cells. The

inoculation of ferroptotic cancer cells cannot induce tumor

immunogenic protection against newly formed tumors in vivo,

regardless of the stage of cell death (early, mid, or late stage) (69).

This may explain the concept that ferroptotic cancer cells are

associated with poor prognosis in various cancer patients (85–87).

In a word, CD8+T cells have a higher sensitivity to ferroptosis

than cancer cells, and ferroptosis cell corpses can block the

activation of CD8+T cells. In addition, ferroptosis is associated

with poor prognosis of various tumors (85–87). This may pose a

risk to the use of ferroptosis in cancer. On the other hand, it has

been shown to be effective that building polymeric drugs were

specifically ingested by cancer cells to interfere with ferroptosis and

boost immunity (detailed in a later chapter). Therefore, targeting

cancer cells ferroptosis should be more cautious.
4 CD8+ T cells are susceptible to
being regulated by other immune cell
ferroptosis in the TME

The TME is a dynamic system composed of cancer cells, cytokines,

extracellular matrix, and immune cell subsets. The intercellular

interactions affect the survival and function of cancer cells, stromal

cells, T cells, and other immune cells. As the ultimate executors of

tumor immunity, CD8+ T cells are also influenced by other immune

cells. Therefore, other immune cell ferroptosis can alter the immune

activity of CD8+ T cells in cancer (Figure 1; Table 2).
4.1 DCs ferroptosis

DCs are the main pathway for the activation of CD8+ T cells. DCs

can recognize tumor-specific antigens to activate CD8+ T cells by TCR

receptors (97). Therefore, DCs ferroptosis blocks the activation pathway

of CD8+ T cells and downregulates anti-cancer immunity. Han et al.

found that PPARG/PPARg, a nuclear receptor involved in regulating

lipid metabolism, promotes RSL3-induced ferroptosis of DCs. Genetic

depletion of PPARG restores the maturation and function of DCs,

activates cytotoxic T cells through signal transduction, and enhances

CD8+ T cell-mediated anti-cancer immunity (88).
4.2 Macrophages ferroptosis

Tumor-associated macrophages (TAMs) play a “double-edged

sword” role in the development of cancer. This may be related to

TAMs subsets. Although M1-like macrophages and M2-like

macrophages are TAMs subsets, M1-like macrophages showed anti-

tumor immunity while M2 macrophages showed pro-tumor effect (98).

Iron overload and ROS accumulation have been shown to promote the

polarization of macrophages toward M1-like macrophages during
Frontiers in Immunology 06
ferroptosis. This may lead to partial polarization of TAMs toward

M1-like macrophages and reduce the number of intra-tumoral M2-like

macrophages to increase CD8+ T cell infiltration in the TME (99–103).

Li et al. demonstrated that Dihydroartemisinin (DHA) increases

intracellular iron levels by upregulating TFR1 and, in combination

with GPX4 inhibition, initiates ferroptosis. In turn, lipid peroxidation

during ferroptosis induces DNA damage response and further activates

NF-kB, promoting polarization of macrophages toward the M1

phenotype (89). Similarly, Hao et al. found that inhibition of AOPCI

promotes the upregulation of the multiple ferroptosis genes and

enhances M2 macrophage polarization toward to M1 phenotype

through the ferroptosis pathway, thereby activating CD8+ T cells and

promoting anti-cancer immunity in hepatocellular carcinoma (90).

Consistently, Tang et al. found that TAMs manifested xCT

upregulation, ferroptosis Reduction, and M2-like polarization in

hepatocellular carcinoma. Targeted xCT-mediated ferroptosis and

protumoral polarization of Macrophages is effective. Inhibition or

elimination of xCT combined with PD-1 can significantly reduce

TAMs infiltration and M2-macrophage polarization, and enhance

CD8+T cell activity (91).
4.3 MDSCs ferroptosis

Myeloid-derived suppressor cells (MDSCs) are immunosuppressive

components of the TME. They can suppress the anti-cancer effects of

CD8+ T cells. Promoting the polarization of MDSCs and reducing their
TABLE 2 Effects of other immune cells ferroptosis on CD8+ T cells.

Immune
cells

Ferroptosis mechanism effect Refs

DCs PPARG/PPARg promotes RSL3-
induced ferroptosis

Inhibition (88)

TAMs AOPCI downregulation promotes
TAMs to M1 macrophages polarization
via ferroptosis

Promotion (89)

DHA inhibits GPX4 to initiate
ferroptosis and promotes TAMs to M1
macrophages polarization

Promotion (90)

Targeting xCT combined with PD-1
can significantly induce TAMs
ferroptosis and enhance CD8+T
cell activity.

Promotion (91)

MDSCs The polarization process of MDSCs
mediated by TLR2 agonists is
associated with ferroptosis

Promotion (92)

inhibiting ASAH2 promotes
MDSCs ferroptosis

Promotion (93)

PMN-
MDSCs

Uptaking AA to induce spontaneous
ferroptosis by FATP2

Inhibition (94)

TINs Acod1 ablation bolsters antitumor T
cell immunity by inducing
tins ferroptosis

Promotion (95)

Treg TCR/CD28 co-stimulation causes
GPX4- deficient Treg expressing IL-1B
and ferroptosis

Promotion (96)
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infiltration can improve cancer immunotherapy (104). Li et al. found

that TLR2 agonists promote the polarization of MDSCs and the

production of ROS in hepatocellular carcinoma, which may be related

to Runx1 in MDSCs. RNA sequencing of MDSCs after TLR2 agonist

treatment revealed differential gene expression concentrating in the

ferroptosis pathway, suggesting a link betweenMDSCs polarization and

ferroptosis. Polarized MDSCs can increase CD8+ T cell activity and

suppress tumor growth (92). Zhu et al. also found that ASAH2 is highly

expressed in MDSCs and inhibits ferroptosis mediated by the p53

protein pathway. Therefore, inhibiting ASAH2 promotes ferroptosis in

MDSCs, reducing their immunosuppressive ability and improving

prognosis through CD8+ T cell infiltration and IFN-g secretion (93).

It is worth noting that the decrease in immunosuppressive cells is

generally believed to alleviate the immunosuppressive effects of the

TME. However, pathologically activated neutrophils, known as

polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs),

have more immunosuppressive effects due to spontaneous ferroptosis

mediated by low oxygen and FATP2. Although ferroptosis reduces the

presence of PMN-MDSCs, the release of oxygenated lipids and

prostaglandin E2 (PGE2) limits the activity of CD8+ T cells in

humans and mice. In immunocompetent mice, genetic or

pharmacological inhibition of ferroptosis can prevent PMN-MDSCs

ferroptosis and reduce their suppressive activity, slowing tumor

progression. The synergistic effect with ICIs can further enhance anti-

tumor immunity, opening up new perspectives on the role of ferroptosis

in immunosuppressive cells (94). Previous reports verified the

equivalent identity between PMN-MDSCs and tumor-infiltrating

neutrophils (TINs) (105, 106). Zhao et al. identified aconitate

decarboxylase 1 (Acod1) as the most upregulated metabolic enzyme

in TINs. Acod1 produces itaconate through the GM-CSF-JAK/STAT5-

C/EBPb pathway to defend against ferroptosis and upholds the

persistence of TINs. Acod1 ablation bolsters antitumor T cell

immunity and boosts the efficacy of immune checkpoint blockade by

inducing TINs ferroptosis (95).
4.4 Treg ferroptosis

Regulatory T cell (Treg) is another important component of the

immune suppression TME, which can induce CD8+ T cell

exhaustion and cause the immune escape of cancer cells (107,

108). Treg evades ferroptosis by upregulating Gpx4 in the TME.

TCR/CD28 co-stimulation leads to excessive accumulation of lipid

peroxides and subsequent ferroptosis in Gpx4-deficient Treg,

reducing the suppressive effect of Treg in the TME. In addition,

IL-1B is expressed during the ferroptosis process of GPX4-deficient

Treg, promoting the activation of DCs and CD8+ T cells, and

inhibiting tumor growth (96).
5 The applications of CD8+ T cells
and ferroptosis in cancer therapy

ICIs have achieved great success in the clinical application of

tumor immunotherapy. However, they are ineffective in “cold
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tumors” lacking T cell infiltration. The strategy of converting

“cold tumors” into “hot tumors” is an immunotherapy approach

(Figure 2) (109). As mentioned above, there is a positive feedback

loop promoting the relationship between CD8+ T cells and

ferroptosis in cancer. Cancer cells ferroptosis can heat the TME

and enhance the anti-tumor immune ability, the increased CD8+T

cells can further inhibit tumor growth by promoting cancer cells

ferroptosis, which may provide new hopes for cancer

therapy (Table 3).
5.1 Promoting CD8+ T cell-mediated
cancer cells ferroptosis significantly
inhibits tumor growth

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and

programmed cell death protein 1 (PD-1) are important inhibitors of

T-cell responses (127, 128). Maintaining the activation of CD8+ T

cells and protecting them from exhaustion and death is an effective

approach in cancer immunotherapy (129, 130). Anti-CTLA-4

antibodies can attenuate the inhibition of CD8+ T cell activity,

and PD-1/PD-L1 checkpoint blockade can reduce CD8+ T cell

exhaustion. Therefore, blocking CTLA-4 and PD-1/PD-L1 can

inhibit CD8+ T cell exhaustion and death to promote cancer cells

ferroptosis, and suppress tumor growth (131, 132).

Graphene oxide (GO) is a good drug delivery carrier, and PEI-

PEG is a water-soluble polymer with high-density amine and a

solubilizer that can maintain stable circulation of drug molecules in

the blood (133–135). Zhao et al. developed a polymeric drug

molecule (GO-PEI-PEG/PD-L1 siRNA) that carries PD-L1 siRNA

and can be specifically taken up by cancer tissue. The PD-L1 siRNA

is released under lysosomal action, reducing the abundance of

cancer cells PD-L1 and preventing PD-L1/PD-1-mediated CD8+

T cell exhaustion. Combined therapy with sorafenib significantly

improved the intra-tumoral CD8+ T cell infiltration and

upregulated IFN-g expression, promoting hepatocellular

carcinoma ferroptosis (110). Besides, Huang et al. designed a

porous and hollow carrier using attenuated Burkholderia

pseudomallei as a vehicle, loading with tumor cells lysate and

adjuvant CpG to serve as a tumor vaccine(SB-LC). Tumor-

associated-antigens promoted the maturation of DCs by binding

to PAR1 and MR on the surface of DCs, leading to the activation of

CD8+ T cells. Enhancing the anti-cancer effect of CD8+ T cells

inhibits tumor growth through the ferroptosis pathway. the positive

feedback loop significantly suppressed tumor growth in various

mouse tumor models (111).
5.2 Targeting cancer cells ferroptosis
promotes the transition from “cold tumors”
to “hot tumors”

High ferroptosis sensitivity of immune cells limits the non-

targeted application of ferroptosis inducers in cancer (44).

Therefore, it is crucial to construct targeted drugs that can be
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specifically taken up by cancer cells and induce ferroptosis. Multiple

molecules have been shown to play important roles in the process of

ferroptosis, and targeting key nodes can induce ferroptosis (136,

137). “Cold tumors” are described as lacking immunogenicity and

low T cell infiltration. Cancer cell ferroptosis has been shown to

promote the transition from “cold tumors” to “hot tumors” and

enhance adaptive immune response (Figure 2) (138). One study

showed that ferroptosis was a kind of ICD and promoted the

maturation of BMDCs, then continuously activated the adaptive

immune system and inhibited tumor growth in vivo (139). In

addition, Incorporating ferroptosis and ultrasound-triggered

sonodynamic therapy (SDT) synergistically elicited strong

antitumor immunity by increasing the numbers of mature DCs

and activated CD8+ cells and decreasing the number of MDSCs in

the TME (140). Currently, preclinical studies about ferroptosis

mainly focus on the construction of drug polymers that can be

specifically taken up by cancer cells. These drug polymers release

metal elements in cancer cells, and the transition between the

reduced and oxidized states of these metal ions consumes GSH,

including iron (Fe), manganese (Mn), copper (Cu), and iridium (Ir).

Depletion of GSH increases lipid peroxidation, and this transition

can also use H2O2 to generate highly toxic free radicals (Fenton

reaction), such as 1O2, ·O2-, ·OH, HO-, amplify the ROS storm,

promote lipid peroxidation and ferroptosis. In addition, drug
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polymers can also carry ferroptosis inducers, such as oxaliplatin

prodrug, Erastin, and sorafenib, to promote cancer cell ferroptosis

by inhibiting the intracellular system XC- and depleting GSH.

Overall, regardless of how drug-polymer molecules induce cancer

cell ferroptosis, the DAMPs released from cancer cell ferroptosis

can activate APCs and CD8+ T cells to heat the TME and further

enhance tumor suppression.

Based on the role of iron in ferroptosis, Ling et al. prepared a

photosensitizer containing Fe2+ (IrFc1). IrFc1 can entered triple-

negative breast cancer cells (TNBC) through transferrin, caused

oxidative stress and lipid peroxidation when activated by light. This

can lead to cancer cells ferroptosis and induce CD8+ T cell

infiltration to enhance anti-tumor immunity (112). Jeong et al.

created a polymer carrying Fe3+ (TA-Fe3- DOX-DSPE-PEG),

which increased intracellular ROS and LPO through the Fenton

reaction to mediate cell ferroptosis and enhance CD8+ cell-

mediated anti-tumor immunity in cancer cells (113). Hu et al.

prepared a polymer that not only carries Fe3+ but also adds

oxaliplatin prodrug (PCN-Oxpt/PEG). The generation of

oxaliplatin consumes GSH accompanied by the production of

highly toxic -OH. Fe3+ further induces cancer cell ferroptosis

through the Fenton reaction, and ferroptosis-related DAMPs

increase CD8+ T cells derived IFN-g to further enhance cell

ferroptosis (114). Other metal ions can also promote ferroptosis
FIGURE 2

Drug polymers enter cancer cells and release metal ions or ferroptosis inducers. the shift of Metal ions between oxidized and reduced states can
deplete GSH, generate highly toxic free radicals, and increase the accumulation of ROS. Ferroptosis inducers can inhibit SLC7A11 and other targets
to induce tumor cells ferroptosis. The release of ferroptosis-related DAMPs promotes the infiltration and activation of CD8+ T cells. IFN-g derived
from CD8+ T cells can further promote tumor cells ferroptosis. In addition, drug polymers can also directly release drugs to promote the infiltration
and activation of CD8+ T cells in the tumor microenvironment. Multiple mechanisms together heat the tumor microenvironment and improve the
anti-tumor ability.
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in cancer cells through redox reactions. Li et al. prepared a polymer-

drug molecule carrying erastin and Cu2+(Cu2-xSe/ZIF- 8@Era-

PEG-FA). Erastin is released to inhibit SLC7A11/SLC3A2, and Cu2

+ further enhances cancer cell ferroptosis through the mutual

conversion between Cu+ and Cu2+. Reducing the miR301 in

cancer cell-derived exosomes promotes the polarization of TAMs

the M1 phenotype. These factors increase CD8+T cell infiltration to

enhance tumor suppression (115). Ir is another metal element.

Wang et al. synthesized a complex containing Ir3+ (Ir-pbt-Bpa).

The intracellular Ir-pbt-Bpa can generate singlet oxygen and

superoxide anion radicals under light irradiation, inducing

ferroptosis and releasing DAMPs to induce CD8+ T cell immune

responses. Even if only one site is irradiated, Tumors in the other

site are significantly inhibited, indicating that Ir-pbt-Bpa can

increase the number of effector memory T cells and achieve long-

term anti-tumor immunity (116). Sorafenib is a drug approved by

the FDA for the treatment of various advanced solid tumors. Zhou

et al. prepared a cinnamaldehyde dimer carrying sorafenib (CDC@

SRF), which rapidly ruptures in the cytoplasm after reaching the

tumor, releasing drugs. SRF significantly enhances ferroptosis by

inhibiting the system XC- and directly consuming GSH, and it also

promotes DCs maturation and CD8+ T cell activation, triggering a

strong immune response in vivo. After multiple doses of injection,

CDC@SRF cured all mice with breast cancer (117).
5.3 Targeting both CD8+ T cells and
cancer cell ferroptosis amplifies
tumor suppression

Given the potent anti-tumor abilities of both CD8+ T cells and

cancer cell ferroptosis, constructing nanopolymer drugs containing

CD8+ T cell activators and ferroptosis targets can simultaneously

activate CD8+ T cells and promote cancer cell ferroptosis, thereby

amplifying the tumor therapeutic effects. ZVI-NP prepared by Hsieh

et al. exhibits dual anti-tumor effects in cancer. The first mechanism

involves the activation of the AMPK/mTOR signaling pathway,

enhancingGSK3/-TrCP-dependent NRF2 degradation, thereby

triggering ferroptosis in lung cancer cells. The second mechanism

involves regulating TAMs to polarize toward the M1 phenotype and

enhancing the immune activity of CD8+ T cells, fully exploiting the

roles of ferroptosis and CD8+ T cells in cancer (118). Similarly, Chin

et al. prepared CPBA-modified Fe3O4@Chl/Fe-CNPs to be ingested

by targeting glycoprotein on bladder cancer cells, depleting GSH

through the Fenton reaction, and promoting lipid peroxide-mediated

ferroptosis with photodynamic therapy (PDT) and chemical dynamic

therapy (CDT). The nanopolymer also reprograms the tumor

immune microenvironment by reducing PD-L1, IDO-1, and TGF-

b and increasing CD8+ T cells, M1-like macrophages, which

unleashes the potential of transforming the tumor from cold tumor

to hot tumor, greatly inhibiting tumor growth, and improving the

survival rate of bladder cancer mice (119). Gold nanoparticles

(AuNp) are excellent drug-delivery tools. Singh et al. applied AuNp

loading miR-21-3p to directly target TXNRD1 in cancer cells,

disrupting the redox balance and triggering ferroptosis, enhancing
TABLE 3 Therapies targeting CD8+ T cells and ferroptosis.

Drug
Targets

Drug-
polymers

Mechanism Refs

CD8+ T cell GO-PEI-
PEG/
PD-L1siRNA

Inhibition of PD-L1-mediated CD8+
T cell depletion promotes ferroptosis
in hepatocellular carcinoma cells

(110)

SB-LC Antigen activates CD8+ T cells via
DCs to inhibit tumor growth by
ferroptosis pathway

(111)

Cancer cell IrFc1 Photoactivation causes oxidative
stress and generates lipid
peroxidation, leading to ferroptosis
in cancer cells

(112)

TA-Fe3
+-DOX-
DSPE-PEG

Increase intracellular ROS and LPO
through Fenton reaction and
mediate cellular ferroptosis

(113)

PCN-
Oxpt/PEG

GSH depletion, -OH production,
and Fenton reaction induce
ferroptosis in cancer cells

(114)

Cu2-x Se/
ZIF-8@Era-
PEG-FA

Erastin and Cu2+ induce ferroptosis
by inhibiting SLC7A11 and
depleting GSH in cancer cells

(115)

Ir-pbt-Bpa Light irradiation generates singlet
oxygen and superoxide anion
radicals to induce ferroptosis

(116)

CDC@SRF Inhibition of the system XC- and
direct GSH depletion significantly
enhanced ferroptosis.

(117)

Combination ZVI-NP Triggering ferroptosis through NRF2
degradation. Improves the immune
activity of CD8+ T cells.

(118)

Fe3O4@Chl/
Fe-
CNPs-
CPBA

Depletes GSH and promotes lipid
peroxide-mediated ferroptosis.
Decreases PD-L1, IDO-1, and TGF-
b as well as increases CD8+ T cells.

(119)

miR-21-
3p-AuNp

Targeting TXNRD1 triggers
ferroptosis and enhances the tumor-
suppressive effect of ICIs.

(120,
121)

FeCo/Fe-Co
DAzyme/PL

Triggers ROS storm, GSH depletion,
GPX4 inactivation, and LOX
catalysis, promote ferroptosis in
cancer cells and enhance IFNg and
AA action.

(122)

Fe3
+-TA@HA

Peroxidase activity and depletion of
GSH induce ferroptosis and
promote the recruitment of CD8+
T cells.

(123)

RES HMMR-SLC7A11 interaction
mediates ferroptosis in cancer cells.
Enhanced cytotoxic effects of CD8+
T cells co-cultured with cancer cells

(124)

DHA Ferroptosis was induced by the
upregulation of P53 and ALOX12.
CD8+ T cells were also increased in
tumor tissues of DHA-treated mice

(125)

Fe-
MnO2/DHA

Promote cancer cell ferroptosis and
intra-tumor CD8+ T cell immunity
via DHA and Mn2+

(126)
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the sensitivity to anti-PD-1 antibodies. Therefore, the combination of

miR-21-3p-AuNp and ICIs significantly enhances tumor suppression

(120, 121). Liu et al. constructed a composite nano-platform that co-

expresses six enzymes(FeCo/Fe-Co DAzyme/PL). The nano-platform

can induce ROS storms, depleting GSH, inactivating GPX4, and

catalyzing LOX to promote irreversible cancer cell immunogenic

ferroptosis. IFN-g from CD8+ T cells can interact with AA generated

during the oxidative storm, further enhancing ferroptosis and

overcoming current immunotherapy limitations (122). It has been

demonstrated that hyaluronic acid (HA) molecules binding to cancer

cells can guide lymphocytes to migrate deep into tumors to enhance

the efficacy of immunotherapy (141). Therefore, Zhang et al.

constructed a nanopolymer (Fe3+-TA@HA) that specifically targets

CD44 overexpressed in squamous cell carcinoma (SCC), inducing

cancer cell ferroptosis through peroxidase activity and GSH

depletion. Fe3+-TA@HA also promotes the recruitment of CD4+

and CD8+ T cells in mouse tumors and suppresses tumor growth

through cytokine secretion. ICIs further enhance the tumor

suppression effect (123).

Some natural molecules have been shown to directly trigger

ferroptosis and tumor immunity in cancer, and their combination

with ICIs further enhances tumor suppression. Resveratrol (RES)

can inhibit the interaction of HMMR and SLC7A11 to mediate

cancer cell ferroptosis. RES also enhances the cytotoxicity of CD8+

T cells co-cultured with cancer cells and modulates the tumor

immune microenvironment (124). Another natural molecule,

Dihydroartemisinin (DHA), induces pancreatic cancer cell

ferroptosis through upregulation of P53 and ALOX12-dependent

mechanisms. DHA treatment also increases CD8+ T cells in mouse

cancer tissues (125). Previous research has shown that local Mn2+

in the TME enhances cGAS-STING activity to promote the

accumulation of CD8+ T cells and IFN-g secretion, while Mn2+

entering cancer cells consumes GSH in the process of hydroxyl

radical (·OH) generation during oxidative reactions, leading to

ferroptosis (142). Therefore, Huang et al. prepared a

nanopolymer Fe-MnO2/DHA loaded with Mn and DHA, which

can simultaneously promote cancer cell ferroptosis and CD8+ T cell

immunity in cancer, amplifying the anti-tumor effects and further

inhibiting tumor progression (126).
6 Summary and prospect

Based on the powerful anti-cancer effects of CD8+ T cells, immune

therapies represented by ICIs have greatly improved the clinical efficacy

of malignant tumor treatment. However, primary or acquired

resistance limits the application of these drugs in tumors (143). In

recent years, we have discovered a new form of CD8+ T cell-mediated

tumor growth and metastasis called ferroptosis. Although there is

variability in the sensitivity of CD8+ T cells and cancer cells to

ferroptosis, activating CD8+ T cells and promoting cancer cell

ferroptosis synergistically amplify the tumor-suppressive effect.

Furthermore, the positive feedback loop between CD8+ T cells and

cancer cell ferroptosis can expand the intra-tumoral CD8+ T cells,

which brings new hope for CD8+ T cells and ferroptosis in cancer
Frontiers in Immunology 10
immunotherapy. The intra-tumoral CD8+ T cells are also regulated by

other immune cells ferroptosis, such as macrophages and Tregs, which

enhance the anti-cancer effect of CD8+ T cells. In contrast, DCs’

ferroptosis inhibits the activation of CD8+ T cells. It is worth noting

that the ferroptosis of MDSCs, an immune-suppressive component in

the TME, does not always activate CD8+ T cells. During the ferroptosis

process of PMN-MDSCs, the release of oxygen-containing lipids and

PGE2 limits the activity of CD8+ T cells. New evidence also suggests

that cancer cell ferroptosis is not always immunogenic cell death, which

may impair the antigen presentation function of DCs and weaken the

CD8+ T cell-centered anti-cancer immune response (69). Therefore,

CD8+ T cells and ferroptosis form a complex network in cancer.

Currently, nanotechnology is mainly used to construct polymeric

molecules containing multiple drugs, which inhibit tumor growth by

targeting cancer cell ferroptosis and obtaining adaptive immunity.

However, the complex tumor-immunity network may bring

uncertainties, requiring more comprehensive and in-depth research

to clarify the communication between ferroptosis and CD8+ T cells in

the TME and pave the way for clinical treatment.
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Glossary

GSH Glutathione

GPX4 Glutathione peroxidase 4

TXNRD1 Thioredoxin reductase 1

PL-OOH Lipid peroxide

PL-OH Lipid alcohol

TfR1 Transferrin receptor 1

IRP1 Iron regulatory protein 1

IRP2 Iron regulatory protein 2

ROS Reactive oxygen species

ACSL4 Acyl-CoA synthetase long-chain family member 4

PUFAs Polyunsaturated fatty acids

APCs Antigen-presenting cells

TME Tumor microenvironment

TNF Tumor necrosis factor

IFNgR IFN- g receptor

IRF Interferon regulatory factors

P- STATs The phosphorylation of STATs

AA Arachidonic acid

ICIs Immune checkpoint inhibitors

MMP Mitochondrial membrane potential

ICD Immunogenic cell death

DAMPs Damage-associated molecular patterns

HMGB1 High mobility group box 1

IREB2 Iron-responsive element-binding protein 2

BMDCs Bone marrow-derived dendritic cells

MDSCs Myeloid-derived suppressor cells

ATP Adenosine triphosphate

CRT Calreticulin

DCs Dendritic cells

HNSCC Head and neck squamous cell carcinoma

TAMs Tumor-associated macrophages

DHA Dihydroartemisinin

PMN-MDSCs Polymorphonuclear myeloid-derived suppressor cells

PGE2 Prostaglandin E2

TINs Tumor-infiltrating neutrophils

Acod1 Aconitate decarboxylase 1

Treg Regulatory T cell

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4

(Continued)
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PD-1 Programmed cell death protein 1

GO Graphene oxide

SDT Sonodynamic therapy

SRF Sorafenib

PDT Photodynamic therapy

CDT And chemical dynamic therapy

AuNp Gold nanoparticles

SCC Squamous cell carcinoma
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