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Introduction: Neutrophil extracellular traps (NETs) have various beneficial and

detrimental effects in the body. It has been reported that some bacteria may

evade the immune system when entangled in NETs. Thus, the aim of the current

study was to evaluate the effects of a combined DNase and antibiotic therapy in a

murine model of abdominal sepsis.

Methods: C57BL/6mice underwent a cecum-ligation-and-puncture procedure.

We used wild-type and knockout mice with the same genetic background

(PAD4-KO and DNase1-KO). Mice were treated with (I) antibiotics

(Metronidazol/Cefuroxime), (II) DNAse1, or (III) with the combination of both;

mock-treated mice served as controls. We employed a streak plate procedure

and 16s-RNA analysis to evaluate bacterial translocation and quantified NETs

formation by ELISA and immune fluorescence. Western blot and proteomics

analysis were used to determine inflammation.

Results: A total of n=73 mice were used. Mice that were genetically unable to

produce extended NETs or were treated with DNases displayed superior survival

and bacterial clearance and reduced inflammation. DNase1 treatment

significantly improved clearance of Gram-negative bacteria and survival rates.

Importantly, the combination of DNase1 and antibiotics reduced tissue damage,

neutrophil activation, and NETs formation in the affected intestinal tissue.

Conclusion: The combination of antibiotics with DNase1 ameliorates abdominal

sepsis. Gram-negative bacteria are cleared better whenNETs are cleaved byDNase1.

Future studies on antibiotic therapy should be combined with anti-NETs therapies.
KEYWORDS

appendicitis, abdominal sepsis, biomarker, prospective, neutrophils, extracellular
traps, NETs
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Introduction

Neutrophils are classically regarded as the first line of defense of

the innate immune system. They are essential in host defense

against bacterial and fungal pathogens and protozoa. They are the

most abundant immune cells in the human circulation. During

acute infections, neutrophils are rapidly recruited to injured or

infected areas and remain there for several days (1, 2). The short

half-life of neutrophils in the circulation is balanced by a continuous

and tightly controlled release from the bone marrow. In response to

infection and injury, neutrophils form neutrophil extracellular traps

(NETs)—high molecular weight chromatin filaments that serve as

scaffolds decorated with histones and cytotoxic proteins, like

myeloperoxidase (MPO) and neutrophil elastase (NE) (3, 4).

NETs not only exhibit antimicrobial functions but also form

during sterile inflammation (5–7). Excessive temporal and spatial

production of NETs can have detrimental effects owing to their

cytotoxic, pro-inflammatory, and prothrombotic activities. In fact,

it has been shown that NETs contribute to the pathology of several

inflammatory conditions, such as autoimmune diseases like

systemic lupus erythematosus or rheumatoid arthritis, and

ischemia reperfusion injury of intestine (volvulus) and testicle

(testicular torsion) (5, 8–14). A common denominator of these

disorders is the involvement of NETs as mediators of thrombosis

and hyperinflammation and of the occlusion of vessels and ducts

(13, 15–24).

Several studies have shown that overwhelming infections such as

severe sepsis can lead to failure or paralysis of the immune system and

that neutrophils may play an essential role in this process.

Mechanistically, (I) release of incompetent or stunned neutrophils,

(II) downregulation of their anti-microbial function, (III) neutrophil-

mediated suppression of adaptive immunity, and (IV) neutrophil-

mediated interference of microbe-associated molecular patterns

(DAMPs) and danger-associated molecular patterns (MAMPs) seem

to cause this paralysis and result in the inability to contain or eliminate

infectious agents (25, 26). NETs trap microbes and immobilize them in

areas with high concentrations of anti-microbial agents; some of these

are released as components of NETs (3). DNA and histones are

endowed with anti-microbial activities (27). However, excessive

NETs and their degradation products can be detrimental in sepsis.

The latter are prone to damage epithelia, endothelia, and various

remote tissues including the liver and lung (28, 29).

Endothelial dysfunctions cause microcirculatory distress. In

sepsis, this is the main cause of multiple organ failure. It causes

tissue edema, disarrangement of hemostasis, and vasomotor

control, and can eventually lead to death (30).

Some bacteria, such as pneumococci or meningococci, which

have been associated with a severe clinical course of pneumonitis

and meningitis, respectively, can evade NET-mediated killing (31).

These bacterial strains remain trapped and protected within NETs

without being killed by the immune system. In a rat model of

meningitis, DNAse1, as NETs degrading treatment, improved

clearance of Streptococcus pneumoniae and clinical outcomes.

It has been shown that the antimicrobial activity of NETs impairs

the immune system’s efficacy to clear bacterial biofilm (32).
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Extracellular DNA released by immune cells reportedly act like an

external secondary matrix, which shields the biofilm and enhances its

resistance against antibiotic substances and phagocytosis (33). It is

fair to assume that DNases facilitate phagocytosis by unmasking

bacteria trapped in NETs. They were consequently accessible to intact

neutrophils and antibiotics—comparable to the effects of DNases on

biofilms. Hence, the aim of the current study was to evaluate the effect

of the combination of antibiotic with anti-NETs therapy in cecal

ligation and puncture (CLP), a polymicrobial murine model of severe

abdominal sepsis.
Methods

Study design

C57BL/6 mice were utilized for the experimental model and

were held within the animal facility, according to the German guide

for the care and use of laboratory animals (Animal Welfare Act).

The study was approved by the ethics committee of the Hamburg

State Administration for animal research (N06/2020).
Animal procedures

In the study, we made use of 6–8-week-old wild-type and PAD-

4-knockout and DNase1-knockout mice; all mice had a similar

genetic background. The animals were housed within the animal

care facility receiving food and water ad lib. All animals were on the

C57BL/6J background. DNase1-KO mice were generated as

described earlier (5, 34, 35). WT and PAD4-KO mice were

obtained from Jackson Laboratory. In order to induce abdominal

sepsis, we performed a CLP (cecal ligation and puncture)

procedure: (I) mice were anesthetized with 5% isoflurane gas

(Forene 100%, AbbVie); (II) anesthesia was maintained with 2.5%

isoflurane gas, administered via facemask; (III) after opening the

abdominal cavity, the cecum was identified, ligated in its distal third

and punctured with a 21G needle [as described earlier (36)]; and

(IV) on day 4 after CLP all animals were euthanized after sedation

with isoflurane gas.

To enhance standardization and avoid effects of varying gut

microbiota, all CLP procedures were performed in siblings from the

same litters co-housed before being separated into the treatment

groups (37). Mice received their treatment 48 h after the CLP-

procedure. Metronidazol (10 mg/kg bodyweight) and Cefuroxime

(30 mg/kg bodyweight) were administered i.p. with a standardized

volume of 0.1 ml in the corresponding groups. DNase1 was applied

with a concentration of 10 mg/kg bodyweight. Treatment continued

until euthanasia.
Sample collection

After blood collection by cardiac punction, the animals were

dissected using a midline incision, and the bowel was scrutinized,
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captured using a 4K/12-megapixel camera and finally prepped. The

ligated cecum was aliquoted into test tubes containing either (1)

Bouin solution or (2) liquid nitrogen. The latter was immediately

stored at −80°C until further processing. Lung, liver, and intestine

samples were collected into Eppendorf tubes. (1) One aliquot was

frozen immediately in liquid nitrogen; (2) the second aliquot was

incubated for 24 h in RNA-Later (Thermo-Fisher Scientific,

Waltham, MA, USA, #AM7021) at 4°C and then stored at −80°C;

and (3) the third aliquot was fixed in 4% formalin for 24 h,

embedded in paraffin, and finally cut into 3-mm slices for

staining. Blood samples were collected into EDTA tubes by

cardiac punction, centrifuged at 2,000×g for 10 min at room

temperature, and stored at −80°C.
Histology

Upon tissue fixation in Bouin’s solution, intestinal tissue

samples were dehydrated overnight, embedded in paraffin, and

cut into 3-µm thick sections for further analysis. For quantifying

intestinal mucosal tissue damage, the Chiu score was used, (38) and

histopathological changes in lung and liver tissues were classified as

none (0), mild (+1), moderate (+2), and severe (+3). To assess lung

injury, we employed a modified version of the lung injury score

system described by Engel et al.: (I) neutrophils in alveolar spaces,

(II) neutrophils in interstitial space, (III) hyaline membranes, (IV)

proteinaceous debris filling the airspaces, and (V) alveolar septal

thickening (39). To assess liver injury, the scoring system described

by Ito et al. was used, considering (I) areas of cell death, (II)

degeneration (ballooning), and (III) inflammation around the

central veins (40).
Immunofluorescence

Two different protocols for immune fluorescence were used: (I)

for the evaluation of morphometry (Figure 1F) and (II) for the

display of wide field images (Figures 1D, E) as described earlier

(15, 41).
Western blot

Before Western blot analysis, the tissues were homogenized

using a Tissue Lyser LT (Qiagen, Hilden, Germany) at 50 Hz three

times for 5 min each using cold Radioimmunoprecipitation assay

buffer (RIPA) buffer (Sigma Aldrich, St. Louis, USA, #R0278),

containing Complete Protease Inhibitor Cocktail 25× (Roche,

Mannheim, Germany, #11697498001) and PhosStop Phosphatase

Cocktail 10× (Roche, Mannheim, Germany, #04906845001). Steel

beets were applied to crush the tissue. Bradford assays were

performed utilizing a FlexStation 3 Multi-Mode Microplate

Reader (Molecular Devices, San Jose, CA, USA) to determine the

protein concentration of the lysates.
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For Western blot analyses, we employed 1× Tris/glycine/

sodium dodecyl sulfate (SDS) buffer (Bio-Rad, Hercules, CA,

USA, #1610722) with proteins separated in a 8%–16% precast

polyacrylamide gel electrophoresis (Bio-Rad, Hercules, CA, USA)

and transferred to nitrocellulose membranes. Following the

blocking with 5% bovine serum albumin or 5% delipidated milk

(depending on the antibody), the membranes were incubated at 4°C

overnight with specific primary antibodies (see supplement for

antibodies) and GAPDH and Cyclophilin A as a loading control.

The membranes were washed in TBS-T with 0.1% Tween (Serva,

Heidelberg, Germany, #37470.01), incubated with a goat-anti-

rabbit-IgG HRP antibody or a goat-anti-mouse-IgG Horseradish

peroxidase (HRP) antibody (Antibodies Online, Aachen, Germany,

#ABIN3020597, #ABIN3020588) for 1 h at room temperature.

Finally, the blots were developed using a Medical Film Processor

SRX-101A (Konica Minolta Medical & Graphic, Hino-Shi, Japan).

The densitograms were analyzed using Image J software (Wayne

Rasband, National Institute of Health, USA).
Quantification of nucleosomes

NETs degradation products (particularly nucleosomes/

histones) were quantified by a photometric sandwich enzyme

immunoassay according to the instructions of the manufacturer

(Roche Applied Science, Darmstadt, Germany (Cell Death

Detection ELISA PLUS kit, #11920685001)). Mouse monoclonal

antibodies directed against DNA and several histone antibodies

served as catching and detecting antibodies, respectively.
Microbiology

All blood, and tissue collection and homogenization were

performed using aseptic techniques. Bacterial colonization was

assessed using various types of agar plates (COS, MAC3, CAN).

The tissue was homogenized using a Precellys Lysing Kit (Ref. no.

P000918-LASYK0-A). Two dilutions of tissue homogenates (1:5;

1:100) from the different groups were analyzed for bacterial load.

The quantification of colony-forming units was performed after 48

h incubation at 37°C. We also performed a 16s-rRNA-gene

sequencing analysis in the Institute of Clinical Molecular Biology,

Kiel University, using frozen native tissues from wild-type mice,

treated with antibiotics, DNase1, or the combination of the two.

Shannon Index was used as indicator for in-sample biodiversity.
Proteomics

Liver samples were prepared and processed as described previously

(42). We used an exploratory panel to determine the levels of 92

protein markers. Before analysis, the protein concentration of the liver

lysates was determined and standardized. A proximity extension assay

(PEA) combines the characteristics of an antibody-based immunoassay
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with polymerase chain reaction (PCR) technology. The principle of this

sort of dual recognition immunoassay is that two matched antibodies,

marked with DNA fragments, interact with different binding sites of a

protein. This enables the DNA oligonucleotides to hybridize after

getting close enough and consequently form a template, which is than

amplified by PCR. This creates an antigen-specific DNA barcode. The

concentration is proportional to the intensity of protein expression.

The final analysis of the DNA barcodes is achieved using a microfluidic

qPCR protocol (42).
Frontiers in Immunology 04
Statistics

We analyzed all data using SPSS Statistics 26 (IBM, NY, USA)

and GraphPad Prism 9 (GraphPad, CA, USA) and performed a pre-

power study calculation with G*Power 3.1. The power was deducted

from a previous study examining necrotizing enterocolitis (NEC)

and NETs in mice (2). We calculated survival analyses employing

the Mantel–Cox test. We calculated the significance between groups

with ANOVA and present the results as mean ± standard deviation
B C

D E F

A

FIGURE 1

Macroscopic differences and colocalization of MPO/H3cit in immunofluorescence staining. (A) Open situs of a control animal. Note the swelling
compared to (C). (B) Open situs of a D1 knockout, treated with antibiotics. Note the vascular injections, adhesions, and swelling compared to
(C). (C) Open situs of a PAD4 knockout, treated with antibiotics. (D) Wide field image of IF staining of the lung, obtained from control animal (MPO
green, H3cit red, DAPI blue), and assessment of colocalization (only places where both signals are present are colored). (E) Wide field image of IF
staining of intestine, obtained from PAD4-KO treated with antibiotics (MPO green, H3cit red, and DAPI blue) and assessment of colocalization (only
places where both signals are present are colored). (F) Evaluation of morphometry and colocalization of MPO/H3cit in the lung, intestine, and liver.
Highest level of colocalization in the lung tissue was observed in wild-type mice treated with antibiotics. Significantly less colocalization was
observed in the intestine of PAD4-mice treated with antibiotics compared to control animals. Highest level of colocalization in the intestine was
observed in wild-type mice treated with antibiotics. Significantly less colocalization was observed in the liver tissue in PAD4-mice treated with
antibiotics compared to control animals. Data shown as mean ± SD. Statistics: for comparison, one-way ANOVA with Dunnett´s correction.
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(SD). For ordinal data, we calculated the significances with the

Mann–Whitney test. The level of significance was set at <0.05.
Results

In total, 40 wild-type and 33 knockout mice (16 DNase1-KO, 17

PAD-4-KO) were utilized. Due to the severity of abdominal sepsis

(sepsis scores; Figures 2C, D) induced by the CLP procedure

(Figure 2), 35 animals survived until the end of animal

procedures. After 72 h, 7/10 (70%) control animals had died;

however, 7/10 PAD4 knockouts treated with antibiotics had

survived (70%). Treatment with DNase1 alone did not affect the

outcome, but antibiotic treatment improved survival. The best

survival was observed in the wild-type group that received both

DNase1 and antibiotics starting 48 h after the CLP procedure

(Figure 2A). Additionally, the animals of this group had

significantly lower sepsis scores (Figure 2C). This result was also

reflected in knockout mice with reduced amount and size of NETs

(PAD4-KO) when treated with antibiotics. This group showed

significantly improved survival compared to DNase1 knockouts

(Figure 2B). In this group, the lowest sepsis score in knockout

animals was found (Figure 2D).

Treatment with DNase1 and/or antibiotics resulted in

significantly reduced levels of histones and nucleosomes as

surrogate markers for NETs degradation. This effect was most

apparent in animals receiving the combination of DNase1 and

antibiotics (Figure 2E).

Treatment with DNase1 and/or antibiotics affected bacterial

clearance in the liver and lung. As shown in Figure 2F, antibiotics

significantly reduced the number of colony-forming units and

bacterial diversity. The effect was most pronounced when

antibiotics were combined with Dnase1. Spectral analysis showed

that after combined Dnase1 and antibiotic treatment, Gram-

negative bacteria were significantly reduced when compared with

the control group (Figure 3). This results in a significantly reduced

bacterial diversity as shown by 16s-RNA sequencing (Figure 2G).

However, it appears that Dnase1 treatment alone may be

detrimental. In the Dnase1-only group, Odoribacter was

significantly elevated in the gut and spleen. Thus, not all bacteria

are equally affected by anti-NETs therapy (Figure 3).

Macroscopically distinct differences regarding swelling and/or

vascular injections were observed after euthanasia (Figures 1A–

C). Significantly less colocalization of MPO/H3cit was observed in

morphometry of immune fluorescence in PAD4 knockouts treated

with antibiotics compared to controls (Figure 1F).

In addition, we found increased levels of some proinflammatory

marker proteins in mice without functional NETs in Western blot

and proteome analyses (Supplementary Figures 2, 3).
Discussion

A recent study reported that some bacteria may evade

neutrophil clearance when being trapped within NETs (31). We

theorized that NETs have a biofilm-like function and that
Frontiers in Immunology 05
dissolution of NETs will free bacteria to make them more

susceptible to antibiotics. Additionally, it has been proposed that

DNases will release antimicrobials like cell-free DNA and NET-

bound proteins, which will in turn intensify bacterial clearance (31).

The current studies show that anti-NETs therapy indeed improves

antibiotic therapy. The combined treatment or the reduced amount

and size of NETs (PAD4-KO) (15) significantly reduced sepsis,

inflammation, tissue damage, and mortality. The reason for this

may be due to two factors: (1) reduced NETs-associated toxicity in

the late stages of sepsis and (2) improved bacterial clearance as a

consequence of dissolving the biofilm-like NET-structures and the

release of the NET-bound proteins.

The degradation of NETs is mediated by two extracellular

deoxyribonucleases (DNases). DNases can completely metabolize

extracellular DNA including NETs. The most abundant

extracellular deoxyribonucleases are members of the DNase1

protein family but differ in their origin and substrate affinity.

DNase1 is expressed by non-hematopoietic tissues and

preferentially cleaves protein-free DNA (43). DNases have anti-

inflammatory effects either via (1) interaction of NETs and platelets

or via (2) resolution of the self-amplifying loop between activated

neutrophils and NETs (44). The effectiveness of DNase1 treatment

in sepsis is complex, requiring critical timing for optimal efficacy.

The impact of DNase treatment varies depending on the stage of

infection; it can either promote the dissemination of pathogens or

restrict excessive NET formation, thereby reducing inflammatory

injury (45, 46).

Thus, the improved survival and tissue damage after anti-NETs

treatment may not be a surprise. In previous studies, it was reported

that PAD4-KO mice were partially protected from sepsis (37). This

was often attributed to the prevention of hyperinflammatory, pro-

thrombotic, cytotoxic effects of NETs in the late stages of sepsis

(47). It appears that intense infections like sepsis and neutrophil

activation results in a self-amplifying loop of activated neutrophils

and NETs (48). Activated neutrophils produce NETs, and NETs

itself activate neutrophils by oxidative stress or IL-1b/IL-18 (49, 50).

Moreover, NETs influence other immune cells like macrophages. A

recent study found that NETs activate macrophages to produce

interferon I, which in turn activates neutrophils and induces NETs

formation (51). The consequence is a vicious cycle, which may be

stopped by dissolving NETs. DNases may free up bacteria that were

entangled in the NETs. Thus, DNase treatment should be

accompanied with antibiotics in the clinical setting.

One may assume that DNases have a specific effect on bacterial

infection. Microbial analysis revealed that Gram-negative bacteria

were significantly reduced in the current study, which may indicate

that not all bacteria are equally affected by anti-NETs therapy in

combination with antibiotics. The treatment combination in the

current study appeared to affect particularly Gram-negative

bacteria. Future studies should further examine which bacteria

other than pneumococci or meningococci may be particularly

capable of evading NET-mediated killing (31).

In the current study, anti-NETs therapy did not significantly

mitigate lung injury in the CLP model, which contradicts some

previous studies (52–54). However, it has been established that

various factors affect the relatively robust CLP model like number of
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B

C D E

F G

A

FIGURE 2

Assessment of survival, sepsis severity, and bacterial clearance. (A) Survival in wild-type mice, shown by the number of mice in the cohorts in the
figure legend: treatment with D1 did not affect survival; however, antibiotic treatment improved the outcome. Mice treated with antibiotics and
DNAse1 48 h after CLP procedure showed the best survival. Logrank test for trend showed no significant difference. (B) Survival in genetically
modified mice, shown by the number of mice in the cohorts in the figure legend: PAD4-knockout mice treated with antibiotics showed significantly
improved survival in the logrank test for trend (p=0,0294) compared to DNAse1-knockout mice. (C) Murine sepsis score in wild-type mice 96 h after
CLP procedure: treatment only with D1 or antibiotics did not affect the outcome; however, combined treatment showed significantly lower sepsis
score. (D) Murine sepsis score in genetically modified mice 96 h after CLP procedure: mice treated with antibiotics with reduced amount and size of
NETs (PAD4-knockout) showed the lowest sepsis score compared to the other groups. (E) Assessment of nucleosomes: found significantly less NETs
degradation products (nucleosomes/histones) in wild-type mice, when treated with D1 or antibiotics, particularly in mice, treated with the
combination of antibiotics and D1. (F) Assessment of bacterial colonization in liver and lung tissues in wild-type mice: bacterial clearance was
significantly improved in mice, treated with D1 or antibiotics. Best bacterial clearance was observed in mice treated with the combination of D1 and
antibiotics. (G) Assessment of in-sample biodiversity via 16s-rRNA-gene sequencing analysis: bacterial biodiversity was significantly reduced in mice
receiving the combination of D1 and antibiotics. Data shown as mean ± SD. Statistics: for comparison, one-way ANOVA with Dunnett’s correction or
Kruskal–Wallis test with Dunn’s correction.
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cecal punctures, needle size, bacterial colonization, genetic

background, sex, and age (55–57). Moreover, in recent studies,

only minor signs of lung injury have been observed after CLP (58,

59), thereby challenging the notion of universal CLP-associated

lung injury.
Frontiers in Immunology 07
Recently, PAD4 inhibitors have been evaluated as a treatment

option to reduce NET formation. Citrullination of histones may be

an essential step in the pathology of polymicrobial sepsis (60).

Histones released into the extracellular space play a significant role

in contributing to endothelial dysfunction, organ failure, and
B

C D

A

FIGURE 3

Spectral analysis of bacterial colonization in (A) intestine, (B) liver, (C) lung, and (D) Spleen. Not all bacteria seem to be equally affected by anti-NETs
therapy. However Gram-negative bacteria are cleared significantly better when NETs are dissolved by D1 and treated with antibiotics. Data shown as
mean ± SD. Statistics: for comparison, one-way ANOVA with Dunnett’s correction. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
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mortality (10). It appears that PAD4 drives immune-mediated

diseases and inflammatory disorders. Thus, PAD4 inhibitors may

be advantageous by preventing NET formation compared to

dissolving NETs using DNase1 (61). A head-to-head comparison

for both treatment strategies is warranted in future studies.

In conclusion, it appears that the combination of antibiotics

with anti-NETs therapy using DNases is very beneficial in the

context of (abdominal) sepsis. Gram-negative bacteria appear to be

cleared far better when NETs are dissolved. Our findings appear to

bridge the gap between reports of mice lacking NETs showing

improved survival in various sepsis models. Future studies should

further evaluate if antibiotic therapy should always be combined

with anti-NETs therapy.
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SUPPLEMENTARY FIGURE 1

Differences in immunohistochemistry. (HE-staining/Ly6G-staining). (A)
Intestine: No significant differences were observed, neither in Chiu-score, nor
in Ly6G- staining. (B) Liver: No significant differences were observed, neither in

HE-, nor in Ly6G-staining. (C) Lung: Significant differences between PAD4-

knockouts treated with antibiotics and controls were observed in Ly6G-
staining. PAD4-knockouts treated with antibiotics showed the highest score

in HE-staining as well (no significant difference). Data shown as mean ± SD.
Statistics: For comparison, one-way ANOVA with Dunnett´s correction.

SUPPLEMENTARY FIGURE 2

Western blot analysis of various inflammation associated proteins in liver and

lung tissue. (A) TNF alpha: No inter group differences were observed in liver
tissue. However, we significantly elevated levels of TNF alpha were found in

the PAD4-knockout group treated with antibiotics compared to controls in
lung tissue. (B) Interleukin 1ß: Significant differences between wildtype mice

treated with antibiotics, PAD4-knockouts and even PAD4-knockouts treated
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with antibiotics were observed in liver tissue. Also, in lung tissue significant
inter group differences compared to control animals were observed. (C)
Nuclear factor kappa B p65: No significant inter group differences could be

found in liver tissue. However, highest values were measured in wildtypemice
treated with antibiotics. In lung tissue significant inter group differences in

comparison to the control group were found. (D) Interleukin 10: No
significant inter group differences were observed in liver tissue. In lung

tissue wildtype mice treated with D1 and D1-knockouts showed
significantly elevated levels. (E) Cxcr1: Significant differences between
Frontiers in Immunology 09
controls and D1-knockout treated with antibiotics were observed in liver
tissue. In lung tissue, significantly elevated levels were observed in wildtype

mice treated with D1 compared to controls. Data shown as mean ± SD.

Statistics: For comparison, one-way ANOVA with Dunnett´s correction.

SUPPLEMENTARY FIGURE 3

Proteomic analysis of various inflammation associated proteins in liver tissue.

No significant inter group differences were found. Data shown as mean ± SD.
Statistics: For comparison, one-way ANOVA with Dunnett´s correction.
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