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Genetic investigation of Nordic
patients with complement-
mediated kidney diseases

Viktor Rydberg, Sigridur Sunna Aradottir,
Ann-Charlotte Kristoffersson, Naila Svitacheva
and Diana Karpman*

Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
Background: Complement activation in atypical hemolytic uremic syndrome

(aHUS), C3 glomerulonephropathy (C3G) and immune complex-mediated

membranoproliferative glomerulonephritis (IC-MPGN) may be associated with

rare genetic variants. Here we describe gene variants in the Swedish and

Norwegian populations.

Methods: Patients with these diagnoses (N=141) were referred for genetic

screening. Sanger or next-generation sequencing were performed to identify

genetic variants in 16 genes associated with these conditions. Nonsynonymous

genetic variants are described when they have a minor allele frequency of <1% or

were previously reported as being disease-associated.

Results: In patients with aHUS (n=94, one also had IC-MPGN) 68 different

genetic variants or deletions were identified in 60 patients, of which 18 were

novel. Thirty-two patients had more than one genetic variant. In patients with

C3G (n=40) 29 genetic variants, deletions or duplications were identified in 15

patients, of which 9 were novel. Eight patients had more than one variant. In

patients with IC-MPGN (n=7) five genetic variants were identified in five patients.

Factor H variants were the most frequent in aHUS and C3 variants in C3G.

Seventeen variants occurred in more than one condition.

Conclusion: Genetic screening of patients with aHUS, C3G and IC-MPGN is of

paramount importance for diagnostics and treatment. In this study, we describe

genetic assessment of Nordic patients in which 26 novel variants were found.

KEYWORDS

complement, atypical hemolytic uremic syndrome, C3 glomerulopathy, membranoproliferative
glomerulonephritis, genes
Introduction

Rare genetic variants have been associated with the ultra-rare complement-mediated

kidney diseases atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy
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(C3G) as well as the rare kidney disease immune complex-

associated membranoproliferative glomerulonephritis (IC-

MPGN). HUS is characterized by the simultaneous development

of acute kidney injury, non-immune hemolytic anemia, and

thrombocytopenia (1). The most common cause of HUS is

gastrointest inal infection with Shiga toxin-producing

enterohemorrhagic E. coli (EHEC) (1). A less common form is

aHUS, associated with overactivation of the alternative pathway of

complement due to heterozygous variants or the presence of

circulating auto-antibodies (2, 3).

In aHUS overactivation of complement has been associated

with gain-of-function mutations in complement components such

as C3 (4) and factor B (5) or loss-of-function mutations in

complement regulators such as factor H (6), factor I (7), and

membrane-cofactor protein (MCP or CD46) (8). Rare genetic

variants have also been described in factor H-related 5 (9), the

terminal complement pathway regulator clusterin (10),

thrombomodulin (11), diacylglycerol kinase epsilon (DGKE),

often associated with development of HUS in infancy (12), and

the fibrinolytic factor plasminogen (13). Variants affecting

components of the classical pathway of complement, such as C2

and C4 binding-protein, have also been described (14–16). In

addition to specific genetic variants, alone or in combination (17),

certain haplotypes in factor H (18) and MCP (19) have been

described as being risk-associated for the development of disease.

Some patients have antibodies to factor H (3) which may occur in

combination with deletions or hybrid genes in factor H-related

proteins (20).

aHUS is associated with both familial and sporadic cases (1).

The presence of a heterozygous mutation is not necessarily

associated with disease. In addition to an underlying genetic

variant, found in about 60-70% of cases, a trigger, such as

infection or pregnancy, can contribute to the development of

aHUS (2). Disease recurrences are common, and the natural

course of disease is characterized by the development of end-stage

kidney disease which may also recur after transplantation (17).

C3G is a chronic form of glomerulonephritis that can lead to

end-stage kidney disease and is further subdivided into C3

glomerulonephritis (C3GN) and Dense Deposit Disease (DDD)

based on ultramorphology (21, 22). Complement activation via the

alternative pathway occurs primarily in the fluid phase (21, 22)

either due to mutations or auto-antibodies. This leads to increased

C3 consumption, low serum C3 and increased complement

deposition in glomeruli (22). Immunofluorescence of kidney

biopsies shows predominant C3 deposition and little or no

immunoglobulin deposits (23). Patients with C3G carry

mutations in C3 and complement factor B (CFB), as well as in

complement factor H (CFH), complement factor I (CFI) and

complement factor H-related 5 (CFHR5) (24). C3 nephritic

factors are auto-antibodies that bind the C3 convertase

prolonging its half-life (21, 24) and are found in in many patients

(25). Some patients with C3G may have an underlying monoclonal

gammopathy (23).
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IC-MPGN is also a chronic form of glomerulonephritis that can

progress to end-stage renal disease (26). It cannot be differentiated

from C3GN based on renal symptoms and ultramorphology but

immunofluorescence exhibits deposits of immunoglobulins as well

as complement (23, 26). Although IC-MPGN can be associated with

infections, such as viral hepatitis, or monoclonal gammopathy (23),

cluster analysis revealed that some patients have excessive

complement activation via the alternative pathway (27),

properdin-dependent C3 nephritic factors (28) as well as genetic

variants in complement (26). This suggests an overlapping

spectrum of disease between C3G and IC-MPGN with regard to

etiology and clinical course (26, 29).

Genetic variants have been found in these complement-

mediated kidney diseases in several population studies (24, 30–

37). The aim of this paper is to describe genetic variants associated

with aHUS, C3G and IC-MPGN in patients from Sweden and

Norway. Sequencing encompassed the genes encoding complement

factor H, C3, factor I, factor B, MCP, C5, factor H-related proteins

1-5, clusterin, DGKE, thrombomodulin, plasminogen, and

properdin. Twenty-six novel genetic variants were found, and

certain variants were found in more than one condition.
Methods

Patients

Patients with suspected complement-mediated renal diseases or

thrombotic thrombocytopenic purpura (TTP) are referred to the Dept

of Pediatrics, Lund University, for genetic analysis. In this study

patients with suspected TTP were not included. A total of 141

patients, both children and adults, living in Sweden or Norway, were

included, 94 patients with a clinical diagnosis of aHUS, 40 patients with

C3G and 8 patients with IC-MPGN. One patient had both aHUS and

IC-MPGN. The diagnosis of aHUS was made by the referring

physician based on the simultaneous presentation of non-immune

hemolytic anemia, thrombocytopenia, and acute kidney injury as well

as negative testing for enterohemorrhagic E. coli. Patients with

documented defects in cobalamin metabolism were excluded. The

diagnosis of C3G and IC-MPGN was based on kidney biopsy results.

Patient data consisted of age of disease debut, laboratory data (such as

complement levels and the presence of auto-antibodies), course of

disease including kidney failure and familial cases. Data regarding

treatment was not uniformly available as most samples were collected

upon initial diagnosis. Patient data are presented in Table 1. Informed

consent was obtained for diagnostic genetic analysis and the project

was approved by the Swedish Ethical Review Authority, approval no.

2021-04438. The Swedish Ethical Review Authority waived the

requirement for written consent from patients included

retrospectively in this study. All patients included after October 2021

gave informed written consent.
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Genetic analysis

Genomic DNA was extracted and analyzed by Sanger

sequencing until the end of 2016. These samples were assayed for

variants in genes encoding factor H, factor I, membrane cofactor

protein CD46, C3 and factor B. From 2017 samples were assayed by

next generation sequencing first using whole exome sequencing and

from 2020 by whole genome sequencing. A panel of 17 genes was

assayed including complement factor H (CFH), factor I (CFI),

membrane cofactor protein (MCP, CD46), C3, factor B (CFB),

properdin (CFP), clusterin (CLU), factor H-related proteins 1-5

(CFHR1-CFHR5), ADAMTS13 (a disintegrin and metalloproteinase

wi th a thrombospondin type 1 mot i f , member 13) ,

thrombomodulin (THBD), DGKE, C5 and plasminogen (PLG). In

this study variants in ADAMTS13 were not included.

For Sanger sequencing genomic DNA was combined with DNA

polymerase, primers and nucleotides. The PCR product was

sequenced bidirectionally using fluorescent chain-terminating

nucleotides (38) from Big dye terminator kit (Applied Biosystems,

Foster City, CA) and analyzed on an Applied Biosystems DNA

Analyzer, model 3730.

Next generation sequencing was performed in collaboration with

the Center forMolecular Diagnostics, Skåne University Hospital, Lund,

using either whole exome or whole genome sequencing. Whole-exome

sequencing (WES) libraries were generated using Agilent SureSelect

Clinical Research Exome v2. Whole-genome sequencing libraries were

prepared using Illumina TruSeq PCR-Free. Sequencing was done on

either Next Seq 500 (WES) or Novaseq (WES and NGS), with 2 x 150

bp paired end reads and a target depth of at least 30x. Resulting reads

were analyzed using the Broad Institute best practices (https://

www.broadinstitute.org/gatk/guide/best-practices) as implemented in

the Sentieon software suite (https://www.sentieon.com/). Briefly, reads

weremapped to the human genome (build hg19) with BWAMEMand

variants were identified using DNAscope as implemented in Sentieon.

Structural variants were detected with CNVnator and Manta for WGS,

and with CNVkit for WES. Variants were annotated using Ensembl

Variant Effect Predictor (VEP, https://www.ensembl.org/info/docs/

tools/vep/) and filtered for the following genes: CFH, CFHR1-5, CFI,

MCP, CFB, C3, C5, CFP, DGKE, PLG, THBD and CLU. All relevant

variants were verified in Integrative Genomics Viewer (IGV, https://
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software.broadinstitute.org/software/igv). Interpretation of variants was

performed using Scout software (Similarities from COntinUous Traits

https://clinical-genomics.github.io/scout) and prediction was

performed using Mastermind (mastermind.genomenon.com).

Certain DNA samples were also sequenced at Centogene, Rostock

Germany.
Data analysis

Sequencing data included nucleotide shift and amino acid

alterations as well as zygosity. This information was analyzed using

databases describing mutations and polymorphisms in the included

genes such as www.complement-db.org, https://gnomad.

broadinstitute.org/ and www.ncbi.nlm.nih.gov/snp for variant

calling. Minor allele frequency was defined by the frequency of the

second most common allele. Minor allele frequency less than 1% was

defined as a possible mutation. Variants that were previously

described as associated with disease were included even if the

minor allele frequency was > 1%. Variants were considered novel if

not previously published in the medical literature. Variants that were

previously reported in the ClinVar database in association with

complement-mediated diseases such as age-related macular

degeneration, aHUS or C3G are mentioned.
Assay of complement and auto-antibodies

C3 was analyzed by nephelometry and C3d by double-decker

rocket immunoelectrophoresis according to hospital routines. Low and

high levels were defined as below or above the laboratory reference

values. Antibodies against factor H and C3 or C4 nephritic factor were

detected at the Department of Clinical Immunology, Skåne University

Hospital in Lund as per hospital routines. Factor H antibodies were

detected as previously described with minor modifications (3). C3

nephritic factor was detected using three methods, by ELISA (39), by

hemolytic assay (40) and by crossed immunoelectrophoresis (41) and

(42). If any of these assays were positive the patient was defined as

having C3 nephritic factor. C4 nephritic factor was detected as

previously described (43) with minor modifications.
TABLE 1 Patients investigated in this study.

Diagnosis Number of patients Sex Familial cases

Atypical hemolytic uremic syndrome 94a M: 43
F: 51

14

C3 glomerulopathy 40 M: 18
F: 22

–

Immune complex-mediated membranoproliferative glomerulonephritis 8a M: 4
F: 4

–

M, male; F, female. a, one patient (# 254 in Supplementary Tables S1, S3) had both atypical hemolytic uremic syndrome and immune complex-mediated membranoproliferative glomerulonephritis.
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Results

Genetic variants associated with disease

Of all 141 patients with aHUS, C3G and IC-MPGN 80 patients

were found to have genetic variants. Of 94 aHUS patients, 60

patients had genetic variants. Of these 32 patients had more than

one variant and a total of 68 different aHUS-related variants were

identified, considering deletions in CFHR1 and CFHR3 as one

variant, as these genes are adjacent to each other. The genetic

variants in aHUS patients are summarized in Table 2 and

Supplementary Table 1. Deletions in CFHR1 and CFHR3 are only

reported when homozygous except for one patient with antibodies
Frontiers in Immunology 04
to factor H (patient 17). Eighteen variants were novel to this study

and have not been described before. Two of these was previously

reported in ClinVar in association with complement-mediated

disease. The association between the genetic variants and kidney

function, if known, is summarized in Supplementary Table 1.

In 40 C3G patients 15 patients were found to have 29 genetic

variants which could be associated with disease (considering

homozygous deletions in CFHR1 and CFHR3 as one variant). Of

these 8 patients had more than one variant. Nine variants in C3G

were novel to this study and have not been described before (two of

these were previously reported in ClinVar in association with

complement-mediated diseases). The genetic variants are

summarized in Table 3. The association between the genetic
TABLE 2 Variants found in aHUS patients included in this study.

Variant Nucleotide
shift

Type of
variant

dbSNP Domain Minor Allele
frequency

Functional
studies

ACMG
classification

Reference

CFH

A48S c.142G>T Missense – SCR1 Unknown LoF VUS (44)

N516K c.1548T>A Missense rs147403664 SCR9 0.00030409 NPE VUS (45, 46)

P621T hom c.1861C>A Missense – SCR10 0.000007969 LoF LP (47)

D693Na c.2077G>A Missense rs148403790 SCR12 0.0001592 – Conflicting (48)

R830W c.2488C>T Missense rs62641696 SCR14 0.00007826 NPE VUS (49)

C870R c.2608T>C Missense rs1221868049 SCR15 0.000003998 LoF VUS (50)

Q950H c.2850G>T Missense rs149474608 SCR16 0.003911 LoF or NPE LP (45, 51, 52)

N1050Yb c.3148A>T Missense rs35274867 SCR18 0.01469 NPE LB (45, 53, 54)

I1150M c.3450A>G Missense – SCR19 Unknown – VUS (55)

H1165D c.3493C>A Missense – SCR20 Unknown – – This study

V1168E c.3503T>A Missense – SCR20 Unknown LoF – (50)

S1191L c.3572C>T Missense rs460897 SCR20 0.006394 LoF P (45)

S1209Tc c.3625T>A Missense rs561146868 SCR20 0.00000398 – LB (48)

c.3134-5T>C Intronic splice rs513699 0.00016 – VUS (56)

C3

K65Q c.193A>C Missense rs539992721 MG1 0.00004772 GoF P (57)

K155Q c.463A>C Missense rs147859257 MG2 0.002705 GoF LP (58, 59)

R592W c.1775G>A Missense rs121909583 MG6b 0.000003977 GoF P (4)

R735W c.2203C>T Missense rs117793540 ANA 0.002085 NPE LB (4)

G1116R c.3346G>T Missense rs138900723 TED 0.000204 – P (60)

W1631* c.4893G>A Stop – C345C Unknown – P (61)

V1658A c.4973A>C Missense – C345C Unknown GoF LP (62)

CFI

Y206N c.616T>A Missense rs371623439 SRCR 0.00006718 NPE Conflicting (63)

G261D c.782G>A Missense rs112534524 LDR2 0.001336 NPE LB (64)

(Continued)
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1254759
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rydberg et al. 10.3389/fimmu.2023.1254759
TABLE 2 Continued

Variant Nucleotide
shift

Type of
variant

dbSNP Domain Minor Allele
frequency

Functional
studies

ACMG
classification

Reference

S326P hom and
heteroz c.1000T>C Missense rs754267987 Linker 2 0.00004377 – – This study

G328R c.1006G>A Missense rs144164794 Linker 2 0.00005968 – LP (65)

G516V c.1547G>T Missense rs764347930 SP 0.00003586 – LP (66)

c.1534+5G>T Intronic splice rs114013791 Intron 12 0.00866 – B (33)

CFB

c.*47C>T Intronic rs375895797 3’UTR 0.0004666 – Conflicting This study

T92Sd c.274A>T Missense rs369638886 SCR 1 0.00006514 – Conflicting This study

G252Sb c.754G>A Missense rs4151651 VWA 0.02245 – LB (48)

L433S c.1298T>C Missense – VWA 0.000407 NPE LB (67)

E566A c.1697A>C Missense rs45484591 SP 0.01065 NPE B (68)

E601K c.1801G>A Missense rs756325732 SP 0.00001216 NPE VUS (69)

D651E c.1953T>G Missense rs4151660 SP 0.002286 - LB (48)

CD46

c.97+1G>A hom Intronic splice rs755505712 – 0.00001596 – – This study

c.286+2T>G Intronic splice rs769742294 Intron 0.00005205 LoF P (70)

Y189D c.565T>G Missense rs202071781 SCR3 0.00001768 LoF P (71)

S201L c.602C>T Missense – SCR 3 Unknown LoF LP (72)

I203Tc c.608T>C Missense – SCR 3 0.00017 – VUS (48)

T207M c.620C>T Missense rs546619508 SCR 3 0.00002784 – VUS This study

c.947-1G>C Intronic splice – Intron Unknown – – This study

A353Vb c.1013C>T Missense rs35366573 TM 0.01541 LoF, NFE Conflicting (33, 73, 74,)

C5

N245S c.734A>G Missense rs201354178 MG3 0.00005946 – VUS (75)

I330T c.989T>C Missense rs147430470 MG3 0.0007883 – Conflicting This study

E1011D c.3033G>C Missense rs150096192 C5d 0.001124 – LB This study

T1298M c.3893C>T Missense rs750246549 C5d/
TED

0.0001061 – VUS This study

CFHR1

Deletion Deletion – – (76)

CFHR3

Deletion Deletion – – (76)

CFHR4

H447R c.1340A>G Missense rs762274604 SCR7 0.000004186 – – This study

D544Ifs*28 c.1626del Frameshift rs747535893 SCR9 0.0001063 – – This study

c.1180+2T>C Intronic splice – – Unknown – – This study

CFHR5

V110A hom and
heteroz

c.329T>C Missense rs140691305 SCR2 0.001730 NPE LB (77)

(Continued)
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variants and kidney function, if known, is summarized in

Supplementary Table 2.

Eight patients with IC-MPGN were investigated but one of

these also had aHUS (patient 254 in Supplementary Tables 1, 3). In

the remaining seven patients, four patients had five genetic variants.

The genetic variants are summarized in Table 4. The association

between the genetic variants and kidney function, if known, is

summarized in Supplementary Table 3.

The number of variants found in patients whose DNA

underwent Sanger sequencing but did not undergo next

generation sequencing may represent an underestimation as only

five genes were sequenced encoding CFH, C3, CFI, MCP and CFB.
Frontiers in Immunology 06
Variants in aHUS and C3G

The number of genetic variants detected in patients with aHUS

and C3G is summarized in Tables 5, 6, respectively. For patients

with IC-MPGN only five variants were detected. In aHUS most

variants were detected in the gene encoding CFH followed by C3

and in C3G the reverse was found.

The location of all genetic variants detected is presented in

Figure 1 which also depicts which variants are novel and which were

found in more than one condition. Most variants were

heterozygous, however, homozygous variants were found in CFH

(P621T), CFI (S326P), CD46 (c.97 + 1G>A), CFHR5 (V110A),
TABLE 2 Continued

Variant Nucleotide
shift

Type of
variant

dbSNP Domain Minor Allele
frequency

Functional
studies

ACMG
classification

Reference

E163Kfs*10 c.485_486dup Frameshift
(Insertion)

rs565457964 SCR3 0.006750 NPE Conflicting (77)

E163Rfs*35 c.486dup Frameshift
(Insertion)

rs565457964 SCR3 0.002030 - - (77)

E226Dfs*7 c.678del Deletion rs1438537910 SCR4 0.000007964 – P This study

G278S c.832G>A Missense rs139017763 SCR5 0.007408 NPE LB (48)

Y279N c.835T>A Missense rs143240067 SCR5 0.0001274 – Conflicting (78)

M514R c.1541T>G Missense rs141321678 SCR9 0.001158 – Conflicting (79)

CLU

E75Q c.223G>C Missense – a chain – – – This study

DGKE

Y326* hom c.978T>G Stop codon rs3748982326 Kinase catalytic
domain

Unknown – – This study

S485F hom c.1454C>T Missense – DAGKa Unknown – – This study

Q560R c.1679A>G Missense rs61751972 Linker 0.001798 – VUS (48)

THBD

A43T c c.127G>A Missense rs1800576 G type lectin 0.003012 – VUS (48)

P228La c.683C>T Missense rs375011249 EGF-1 0.002270 – – This study

P499R c.1496C>G Missense rs754426265 EGF-6 0.00003828 – VUS (48)c

P501L c.1502C>T Missense rs1800579 Linker 0.001785 - VUS (11)

PLG

R89K c.266G>A Missense rs143079629 PAN 0.006191 – B (48)

R261H c.782G>A Missense rs4252187 Kringle 2 0.002501 – Conflicting (80)

S460R c.1380T>A Missense rs116573785 Kringle 4 0.005517 – B (80)

G579Re c.1735G>A Missense rs138728014 Serine protease 0.0002192 – VUS This study
a, Previously reported in the ClinVar database in association with aHUS. b, Minor allele frequency > 1% but this variant was previously associated with aHUS. c, Mentioned in the complement
database (www.complement-db.org) with reference to (48). d, Previously reported in the ClinVar database in association with age-related macular degeneration and aHUS. e, The individual
bearing this variant did not have aHUS but kidneys were donated postmortem and the recipients developed thrombotic microangiopathy. The individual with this variant was not included in the
94 aHUS patients. CFH, Complement factor H; C3, Complement C3; CFI, Complement factor I; CFB, Complement factor B; CD46, CD46/Membrane cofactor protein; C5, Complement C5;
CFHR1-5, Complement factor H related 1-5; CLU, Clusterin; DGKE, Diacylglycerol kinase epsilon; THBD, Thrombomodulin; PLG, Plasminogen; *, Stop codon; Hom, homozygous; Heteroz,
heterozygous; SCR, Short consensus repeats; MG1-8, Macroglobulin domain 1-8; ANA, Anaphylatoxin; TED, Thiol ester-containing domain; C345C, C345C/NTR domain; SRCR, Scavenger
receptor cysteine-rich; LDR2, LDL receptor class A2; SP, Peptidase S1; VWA, Von Willebrand factor type A; TM, Transmembrane protein; C5d, C5d domain; DAGKa, Diacylglycerol kinase
accessory domain; EGF like 6, Epidermal growth factor-like 6; PAN, Plasminogen-Apple-Nematode; LoF, Loss-of-function (including low plasma concentrations); NPE, No phenotypic effect;
GoF, Gain-of-function; VUS, Variant of unknown significance; LP, Likely pathogenic; LB, Likely benign; P, Pathogenic; B, Benign.
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TABLE 3 Variants in C3G patients included in this study.

Variant
or
deletion

Nucleotide
shift

Type of
variant

dbSNP Domain
Minor
Allele

frequency

Functional
studies

ACMG
classification Reference

CFH

D693N a c.2077G>A Missense rs148403790 SCR12 0.0001592 Conflicting (48)

Q950H c.2850G>T Missense rs149474608 SCR16 0.003911 NPE LP (45, 51)

N1050Yb c.3148A>T Missense rs35274867 SCR18 0.01469 NPE LB (45, 54)

S1209T c.3625T>A Missense rs561146868 SCR20 0.00000398 – LB (48)

C3

K155Q c.463A>C Missense rs147859257 MG2 0.002705 GoF LP (58, 59)

V326Mc c.976G>A Missense rs375264020 MG3 0.00004779 – VUS This study

Q1061H c.3183A>T Missense rs373054812 TED 0.00007704 – VUS This study

E1516A c.4547A>C Missense rs1019532370 C345C 0.00001193 – VUS This study

W1631* c.4893G>A Stop NA C345C – LoF P (61)

c.4030-4C>G
Splice

acceptor
site

NA
Between
CUB and
MG8

– – LB (55)

CFI

c.1534+5G>T
Intronic
splice

rs114013791 Intron 12 0.00866 – – (33)

G328R c.981G>A Missense rs144164794 Linker 2 – LoF LP (55, 65)

CD46

A353Va,b c.1013C>T Missense rs35366573 TM 0.01541 LoF, NFE Conflicting (33, 73)

C5

P233L c.698C>T Missense rs531284110 MG3 0.0000252 – VUS (81)

L354M c.1060C>A Missense rs34552775 MG4 0.0055 – B (82)

G385R c.1153G>C Missense – MG4 Unknown – – This study

CFHR1

Deletion Deletion – – LB (76)

Exon 6
duplication

Duplication – LB
This study. Other

duplications reported in
(83)

CFHR2

R141S c.423G>T Missense rs142929868 SCR2 0.002947 – – This study

CFHR3

Deletion Deletion – – – (76)

CFHR4

Y43Fd c.128A>T Missense rs202234955 SCR1 0.001747 – LB This study

c.799+3A>C
Intronic
splice

Rs196876631 – 0.001286
–

LB (82)

CFHR5

E163Kfs*10 c.485_486dup
Frameshift
(insertion)

rs565457964 SCR3 0.006750 NPE
–

(77)

E226Dfs*7 c.678del Deletion rs1438537910 SCR4 0.000007964 – P This study

(Continued)
F
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DGKE (Y326* and S485F), in patients with aHUS (the patient with

the homozygous CFH variant P621T also had IC-MPGN). In both

aHUS and C3G homozygous deletions in CFHR1 and CFHR3

were detected.

Certain variants were found in both aHUS and C3G or IC-

MPGN patients. These included CFH (P621T in the same patient,

D693N, Q950H, N1050Y (the latter with MAF>1%) and S1209T),

C3 (K155Q and W1631*), CFI (G328R, c.1534 + 5G>T), CD46

(A353V, MAF >1%), CFHR5 (E163Kfs*10, E226DFS*7, Y279N),

THBD (P501L), PLG (R89K and R261H) and homozygous deletions
Frontiers in Immunology 08
of CFHR1 and CFHR3. Of these CFHR5 E226DFS*7 was novel and

found in both aHUS and C3G patients.
Genetic variants and the course of disease

Upon referral for genetic testing, we had access to clinical

information describing the course of disease in most patients.

When these data were available, we correlated the genetic

findings to the presence of kidney failure, as presented in
TABLE 3 Continued

Variant
or
deletion

Nucleotide
shift

Type of
variant

dbSNP Domain
Minor
Allele

frequency

Functional
studies

ACMG
classification Reference

Y279N c.835T>A Missense rs143240067 SCR5 0.0001274 – Conflicting (78)

R356Hb c.1067G>A Missense rs35662416 SCR6 0.01633 NPE LB (77, 84)

CFP

D299N c.895G>A Missense rs61737993 TSP t1 5 0.001472 – B (85)

CLU

K444Q c.1330A>C Missense rs2612311022 b-chain 0.0001026 - - This study

PLG

R89K c.266G>A Missense rs143079629 PAN 0.006191 – B (48)

R261H c.782G>A Missense rs4252187 Kringle 2 0.002501 – Conflicting (80)
a, Mentioned in the complement database (www.complement-db.org) with reference to (4). b, Minor allele frequency > 1% but this variant was previously associated with aHUS. c, Previously
reported in the ClinVar database in association with age-related macular degeneration and aHUS. d, Previously reported in the ClinVar database in association with aHUS. CFH, Complement
factor H; C3, Complement C3; CFB, Complement factor B; CFI, Complement factor I; CD46, CD46/Membrane cofactor protein; C5, Complement C5; CFHR1-5, Complement factor H related 1-
5; CFP, Complement factor properdin; PLG, Plasminogen. Domains, SCR, Short consensus repeats; MG1-8, Macroglobulin domain 1-8; TED, Thiol ester-containing domain; C345C,
C345C/NTR domain; CUB: C1r/C1s, Urchin embryonic growth factor, Bone morphogenetic protein 1; TM, Transmembrane protein; TSP t1, Thrombospondin type-1 1-5; PAN, Plasminogen-
Apple-Nematode; NPE, No phenotypic effect; GoF, Gain of function; LOF, Loss of function (including low plasma concentration); VUS, Variant of unknown significance; LP, Likely pathogenic;
LB,Likely benign; P, Pathogenic.
TABLE 4 Variants in MPGN-IC patients included in this study.

Variant or
deletion

Nucleotide
shift

Type of
variant

dbSNP Domain Minor Allele
frequency

Functional
studies

ACMG clas-
sification

Reference

CFH

P621T hom c.1861C>A Missense rs762422305 SCR10 0.000007969 LoF LP (47)

N1050Ya c.3148A>T Missense rs35274867 SCR18 0.01469 NPE LB (45, 54)

CD46

A353Va c.1013C>T Missense rs35366573 TM 0.01541 LoF, NFE Conflicting (33, 73)

CFB

I242L c.724A>C Missense rs144812066 Linker 0.001060 NFE VUS (30, 69)

THBD

P501L c.1502C>T Missense rs1800579 Linker 0.001785 - VUS (11)

CFHR5

R356Ha c.1067G>A Missense rs35662416 SCR6 0.01633 NPE LB (77, 84)
a, Minor allele frequency > 1% but this variant was previously associated with aHUS. CFH, Complement factor H Hom, homozygous; CFB, Complement factor B; THBD,
Thrombomodulin; Domains, SCR, Short consensus repeats; TM, Transmembrane protein; LoF, Loss of function; NPE, No phenotypic effect; LP, Likely pathogenic; LB, Likely benign;
VUS, Variant of unknown significance.
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Supplementary Tables 1-3. The genetic variants were correlated to

levels of C3, C3d and the presence of antibodies to factor H in aHUS

(Supplementary Table 1) or nephritic factors in C3G or IC-MPGN

(Supplementary Tables 2, 3).
Discussion

In complement-mediated kidney diseases aHUS, C3G, and IC-

MPGN understanding a patient’s genotype and its correlation to

disease phenotype is of paramount importance for diagnostics and

choice of treatment. Genetic investigation is also crucial for

determining the risk of disease recurrence, the suitability of

kidney transplantation and the choice of donor, as well as

evaluation of the risk of disease development in family members

bearing the same variant, including family members considered as

kidney donors. This study investigated the genotype of a large

cohort of patients with these diseases using a panel of disease-

associated genes. In aHUS 68 different variants were identified and

in C3G 29 different variants were identified, most variants were

heterozygous and 26 were novel. Importantly, 40 patients with

aHUS and C3G had more than one genetic variant, exemplifying

the complexity of interpreting disease heredity.

Seventeen genetic variants, novel as well as previously reported,

had a dual disease phenotype occurring in both patients with aHUS

and C3G. The presence of a disease-associated genetic variant is not

tantamount to the development of symptoms, as it is known that

disease penetrance is incomplete (67, 86) and we show here that

identical genetic alterations may be associated with different disease

phenotypes. This suggests that disease expression may be related to

additional genetic factors (complement genes as well as others), the

exposome such as triggering factors and, as yet, undefined

environmental, lifestyle or epigenetic factors.

In aHUS and C3G genetic variants were previously identified in

complement components and complement regulatory proteins (24,

30–37). The variants may cause a loss-of-function in regulators or a

gain-of-function in complement factors. Variants in CFH have been

shown to lead to a loss-of-function by reducing cofactor activity, as

shown for Q950H (52) and V1168E (50), impairing C3b binding,

demonstrated for S1191L (87), or by deficiency associated with

decreased protein secretion, as shown for P621T (47). Additionally,

variant S1191L exhibited impaired ability to regulate complement

activation on cell surfaces (87). Genetic variants in factor I can lead

to quantitative deficiency or functional defects in protease activity

rendering the enzyme incapable of inactivating C3b (59). This was,

however, not specifically demonstrated for the variants presented

herein, as, for example, the aHUS-associated variant G261D did not

exhibit complement dysregulation (64). CD46 variants may also

cause loss-of-function by reduced expression on cell surfaces, as

shown for c.286 + 2T>G and S201L (70), decreased cofactor activity,

or affect C3b/C4b binding capacity (72, 86). Likewise,

thrombomodulin inhibits complement activation by promoting

C3b inactivation and mutated variants have exhibited less C3b

inactivation to iC3b on cell surfaces, as shown for the P501L

variant (11).
TABLE 5 Prevalence of variants in aHUS patients included in this
study (n=94).

Gene Number of
variants

Number of
novel variants

CFH 14 1

C3 7 –

CFI 6 1

CFB 7 2

CD46 8 3

C5 4 3

CFHR1 1 –

CFHR3 1a –

CFHR4 3 3

CFHR5 7 1

CLU 1 1

DGKE 3 2

THBD 4 1

PLG 3 0

Total 68 18
a, A deletion in CFHR1 and CFHR3 was considered one variant as these are neighboring genes
and deleted together. CFH: Complement factor H. C3: Complement C3. CFB: Complement
factor B. CFI: Complement factor I. CD46: CD46/Membrane cofactor protein. C5:
Complement C5. CFHR1-5: Complement factor H related 1-5. PLG: Plasminogen. THBD:
Thrombomodulin. DGKE: Diacylglycerol kinase epsilon.
TABLE 6 Prevalence of variants in C3G patients included in this
study (n=40).

Gene Number of variants Number of novel variants

CFH 4 –

C3 6 3

CFI 2 –

C5 3 1

CD46 1 –

CFHR1 2 1

CFHR2 1 1

CFHR3 1a –

CFHR4 2 1

CFHR5 4 1

CLU 1 1

PLG 2 –

CFP 1 –

Total 29 9
a, deletion in CFHR1 and CFHR3 was considered one variant as these are neighboring genes
and deleted together. CFH: Complement factor H. C3: Complement C3. CFB: Complement
factor B. CFI: Complement factor I. CD46: CD46/Membrane cofactor protein. C5:
Complement C5. CFHR1-5: Complement factor H related 1-5. PLG: Plasminogen. CFP:
Complement factor properdin.
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C3 and CFB variants may exhibit gain-of-function properties in

the respective encoded proteins. The variant V1658A in C3 results

in increased C3 convertase formation (62) and K155Q confers

increased hemolytic activity (58). Additionally, the C3 variant

K65Q is associated with reduced binding to factor H (57), and

variant R592W exhibits impaired binding to the complement

regulator CD46/MCP (4). CFB variants may increase the affinity

to C3b, thus stabilizing the convertase, as shown for variant D371G
Frontiers in Immunology 10
(69) and by increased resistance to factor H-mediated decay (32,

88). However, not all variants show dysfunction in in vitro models,

as reported for L433S, I242L and E601K (67, 69).

Variants in DGKE cause the development of aHUS in young

children, often in combination with proteinuria. It has been

suggested that homozygous DGKE variants lead to loss-of-

function and consequently a prothrombotic state (12), however

the mechanism by which the variants Y326* and S485F lead to
FIGURE 1

Presentation of all genetic variants found in this study. The location of variants in the genes studied herein is presented. Variants shown above the
gene domains were found in aHUS patients. Variants presented under gene domains were found in C3G cases. Variants labeled in black were
previously known. Variants labelled in green are novel. Variants in bold were present in both aHUS and C3G patients. Variants in grey italics have a
minor allele frequency > 1% but have been associated with complement-mediated kidney diseases. MG1-8: Macroglobulin domain 1-8. ANA:
Anaphylatoxin. CUB, C1r/C1s, Urchin embryonic growth factor, Bone morphogenetic protein 1; LNK, Linker; aNT, alpha N-terminal; TED, Thiol ester-
containing domain; C345C, C345C/NTR domain; FIMAC, Factor I membrane attack complex; SRCR, Scavenger receptor cysteine-rich; LDR, LDL
receptor class A2; VWA, Von Willebrand factor type A; TM, Transmembrane; ST, Ser/Thr-rich; CT, Cytoplasmic domain; EGF 1-6, Epidermal growth
factor-like 1-6; PAN, Plasminogen-Apple-Nematode; DAGKc, Diacylglycerol kinase catalytic domain; DAGKa, Diacylglycerol kinase accessory
domain; Int, Intron; TSP t1, Thrombospondin type-1 1-5.
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disease has yet to be deciphered. Likewise, plasminogen deficiency

or dysfunction is associated with reduced proteolytic activity in

growing thrombi which may contribute to a thrombosis (89).

Many patients had several variants in more than one gene. In

these cases, the individual variants themselves may not lead to

disease development, but when combined may result in

complement over-activation (67, 90). As previously described in

an anephric aHUS patient, with a CFH disease-associated haplotype

as well as CFI and CFB variants, the patient had evidence of

complement activation, developed carotid artery stenosis, and was

successfully treated with eculizumab (67). Some genetic variants are

distinctly pathological, even without the presence of other variants,

such as the C3 mutation V1636A (62). On the contrary, some

variants that in vitro exhibit a dysfunctional protein, may be present

in unaffected carriers that remain disease-free, such as the CFH

variant V1168E (50) and the CFB variant D371G (91).

For the variants presented herein we provide prediction as to

their possible pathogenicity, when available. Prediction models can

efficiently assess if a genetic alteration is benign or pathogenic (92),

however, they are not always accurate and may require combining

various prediction scores (93), thus interpretation can be

challenging. Functional tests, using mutant compared to wild-type

proteins, can more accurately demonstrate protein dysfunction.

Considering the rarity and complexity of disease expression, we

recommend performing mutagenesis to predict the effect of genetic

variants on complement activation.

This study found that 72% of aHUS and 38% of C3G patients

had genetic variants, therefore not all patients who develop disease

carry variants in the screened genes. In aHUS this may, in part, be

due to the presence of antibodies to factor H and in C3G to the

presence of nephritic factors which may cause disease. Additionally,

47 patients were sequenced using only the Sanger method. In these

patients, all the known disease-related genes were not sequenced

and the percentage of patients with genetic variants may be higher.

Even though the frequency of variants in this cohort may be

underestimated, other cohorts have identified patients with no

known cause for both aHUS and C3G. Previous studies show that

about 45-60% of aHUS patients (13, 30, 94) and 30-40% of C3G

patients carry mutations (24, 35, 36). Additionally, in C3G and IC-

MPGN 50% of patients included herein had C3NeF (or C4NeF)

which is comparable to previous reports regarding C3NeF (35, 36).

Clearly, all disease-related mechanisms for aHUS and C3G have not

been found and future research may uncover new disease-related

genes which are not routinely screened for at present.

Patient samples included in this study were collected over a 20-

year period. Thus, many patients were included before

complement-inhibitory therapy with eculizumab was available. A

further limitation of the study is that data regarding treatments was

not fully available in referrals, mostly because DNA samples were

submitted as part of a diagnostic work-up and, in certain cases,

before a diagnosis was made and treatment was initiated. For these

reasons, this study could not associate specific genetic variants with

the need for complement-inhibitory therapy and outcome.

To conclude, this study presents genetic variants found in Swedish

andNorwegian patients with aHUS, C3G and IC-MPGN, 26 of which

were novel. Some patients had multiple variants in genes encoding
Frontiers in Immunology 11
complement proteins. Bearing a genetic variant does not necessarily

lead to occurrence of disease as there is incomplete penetrance of the

disease phenotype. Furthermore, certain variants were found in both

aHUS and C3G suggesting that factors additional to genetic

composition can dictate the phenotype. Further investigations are

required to better understand the impact variants have on protein

functionality, and how they lead to disease expression.
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