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Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and presents a

major clinical challenge due to limited treatment options. Folate receptor alpha (FRa),
encoded by the FOLR1 gene, is an attractive therapeutically target due to its prevalent

and high expression in EOC cells. Recent basic and translational studies have explored

several modalities, such as antibody-drug conjugate (ADC), monoclonal antibodies,

small molecules, and folate-drug conjugate, to exploit FRa for EOC treatment. In this

review, we summarize the function of FRa, and clinical efficacies of various FRa-
based therapeutics. We highlight mirvetuximab soravtansine (MIRV), or Elahere

(ImmunoGen), the first FRa-targeting ADC approved by the FDA to treat platinum-

resistant ovarian cancer. We discuss potential mechanisms and management of

ocular adverse events associated with MIRV administration.

KEYWORDS
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1 Introduction

Epithelial ovarian cancer (EOC) accounts for approximately 95% of ovarian cancer

incidence, and is a leading cause of gynecologic cancer mortality worldwide (1, 2). Current

standard-of-care treatment for newly diagnosed patients is cytoreductive debulking surgery

plus neoadjuvant or post-operative platinum-based chemotherapy. Most patients initially
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respond to chemotherapy, but unfortunately up to 80% will

eventually relapse leading to patient demise (3). Thus, platinum

resistance presents a major clinical challenge. Angiogenesis

inhibitor (bevacizumab) and the poly (ADP-ribose) polymerase

inhibitors (olaparib, rucaparib and niraparib) provide some benefits

for a subset of patients, but can only delay the relapse of platinum-

resistant EOC (4, 5). Notably, recent large-scale clinical trials using

immune-checkpoint inhibitors (anti-PD1/L1 monoclonal

antibodies) failed to provide clinical benefit in EOC. In the past

decades, the 5-year relative survival rates of ovarian cancer have

only been moderately improved, from 43% in 1995 to 50% in 2018

in the USA (6, 7). Thus, treatment options for platinum-resistant

EOC patients are limited, and present a major unmet clinical need.

Folate receptor alpha (FRa), encoded by the FOLR1 gene, has

attracted considerable interest due to its high expression in several

cancer types including those of lung and breast. FRa shows restricted

tissue expression on the plasma membrane of epithelial cells in

kidney, lung, ovary, fallopian tube, uterus, cervix, epididymis and

placenta, and is highly expressed in approximately 80% of EOC.

Additionally, the ability of FRa to internalize relatively large

molecules renders it suitable for developing targeted therapies (8,

9). Despite their anti-tumor effects in preclinical models, folate-

cytotoxic drug conjugates and no conjugated humanized antibody

have yet to demonstrate clinical efficacies (10). In contrast,

mirvetuximab soravtansine (MIRV), or Elahere (ImmunoGen), the

first FRa-targeting antibody-drug conjugate (ADC), has recently

been approved by the US FDA to treat platinum-resistant ovarian

cancer (11). Here, we summarize the biology of folate receptors,

review different strategies to target FRa, and discuss potential

mechanisms of ocular adverse events associated with MIRV. The

approval of MIRV has renewed interest to develop other FRa-
targeting therapeutics for treatment beyond EOC.
2 Folate transporter proteins

Humans cannot synthesize folate, an essential vitamin for

eukaryotic cell proliferation and differentiation, and must obtain

folate from dietary sources (12). The uptake of extracellular folate is

achieved mainly through three types of folate transporters,

including the reduced folate carrier, RFC (encoded by the

SLC19A1 gene), the proton-coupled folate transporter, PCFT

(encoded by the SLC46A1 gene), and folate receptors (FRs) (13).

Ubiquitously expressed RFC serves as the major route of folate
Abbreviations: EOC, epithelial ovarian cancers; ADC, antibody-drug conjugate;

FRa, a-folate receptor; MIRV, Mirvetuximab soravtansine; RFC, reduced folate

carrier; PCFT, proton-coupled folate transporter; FRs, folate receptors; FBPs,

folate binding proteins; THF, tetrahydrofolate; AKI, acute kidney injury; SHR,

spontaneously hypertensive rat; sFR, soluble folate receptors; hnRNP E1,

heterogeneous nuclear ribonucleoprotein E1; PROC, platinum-resistant

epithelial ovarian cancer; AIBW, adjusted ideal body weight; ORR, objective

response rate; AEs, adverse events; ADCC, antibody-dependent cellular

cytotoxicity; CDC, complement-dependent cytotoxicity; DAVLBH,

desacetylvinblastine hydrazide; PBD, pyrrolobenzodiazepine; CAR, chimeric

antigen receptor.
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transport into systemic tissues (12), whereas PCFT is a proton-

coupled transporter responsible for dietary folate absorption in the

small intestine (14). Both RFC and PCFT are low-affinity, high-

throughput transporters. In contrast, FRs are high affinity, low-

throughput transporters that transfer folate through endocytosis in

selected tissues (Figure 1).

Folate trafficking via FRa is considered to proceed via potocytosis,

a lipid raft-mediated endocytosis mechanism (15). Folate binds

specifically to FRa, forming a receptor-ligand complex, and

subsequently intracellular vesicles are generated by invagination and

budding off. Once internalized, the vesicles join together to from early

endosomes, which acidify and fuse with lysosomes to release folates

for the one-carbon metabolic reaction (16, 17).

There are four members in FRs family, including FRa (257aa,

30kDa), FRb (255aa, 29kDa), FRg (245aa, 28kDa) and FRd (250aa,

28.6kDa), encoded by FOLR1 (Gene ID: 2348), FOLR2 (Gene ID:

2350), FOLR3 (Gene ID: 2352) and FOLR4 (Gene ID: 390243),

respectively. FRs, also known as the folate binding proteins (FBPs),

bind folic acid (FA) and 5-mTHF as well as folate-conjugated

compounds with high affinity, and transport them inside cells by

receptor-mediated endocytosis. FRa, FRb and FRd are all

glycophosphatidylinositol (GPI) anchored cell-membrane

proteins, whereas FRg is a secreted protein lack of a GPI

anchored region (18). FRa is the most studied family member,

and is the focus of this Review. FRb is mainly expressed in placental

and myeloid leukocytes, including activated macrophages, tumor-

infiltrating macrophages and acute as well as chronic myelogenous

leukemia (19–21). FRb-null mice are apparently normal, indicating

that its function is dispensable to maintain organismal homeostasis

(22). FRg is expressed in neutrophil granulocytes and monocytes.

FRd, also named JUNO, is highly expressed in regulatory T cells and

mammalian eggs. FRd lacks the folate-binding pocket, and is unable
to bind folate (23). The interaction between FRd on the egg surface

and IZUMO1 on the sperm surface is critical for mammalian

fertilization as FRd knockout eggs are unable to fuse with

sperm (24).

FRa is mainly expressed on the plasma membrane of epithelial

cells in several tissues, in particular the apical brush-border

membrane of proximal renal tubular cells, retinal pigment

epithelium, the choroid plexus (25), type1 and 2 pneumocytes in

the lung, ovary, fallopian tube, uterus, cervix, epididymis,

submandibular salivary gland, bronchial glands and trophoblasts

in the placenta (26). FRa has a high affinity for reduced folates, such

as tetrahydrofolate (THF), 5-mTHF and FA.
3 The role of FRa in health

FA is a nutrient essential for embryonic development. Folate

deficiency can cause embryonic lethality with neural tube defects and

orofacial anomalies (27, 28). FRa and its cargo FA are essential for

proper mammalian embryogenesis. Knockout of the Folr1 gene is

embryonic lethal in mice around the time of neural tube closure (22).

Reduced FRa expression and function is associated with craniofacial

anomalies, abnormal heart development, and neural tube defects

(29). Consistently, daily maternal folate supplementation, before and
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during pregnancy markedly decreased embryonic mortality.

Hundreds of genes were differentially expressed at the gestational

day 9.5 between Folr1-/- and wild-type embryos. These genes are

implicated in the regulation of digestive and cardiovascular system

development (27). In the placenta, FRa transports folates from the

mother to the fetus (30, 31). Folate deficiency in pregnancy is

associated with neural tube defects, restricted fetal growth and fetal

programming of diseases later in life (32–34). Importantly, the risk of

abnormal pregnancy outcomes is increased in pregnant women

taking folate antagonists to treat cancer and other diseases.

FRa is also required to maintains functionalities of several

organs in adult animal. Adult mice lacking Folr1 had lower blood

folate levels and higher renal folate clearance rate (35). This is

because kidneys maintain folate homeostasis in the body through

glomerular filtration and tubular reabsorption process. The primary

transporter for folate reabsorption in the kidneys is FRa, expressed
on the apical surface of proximal tubular cells. FRa transports folate

from the tubule lumens into tubular cells via receptor-mediated

endocytosis (36). Kidney ischemia-reperfusion injury significantly

reduces the expression of FRa and RFC, contributing to low folate

level in acute kidney injury (AKI) (37). In spontaneously

hypertensive rat (SHR), a deletion variant in the Folr1 promoter

region results in impaired folate reabsorption in the renal tubules,

and increased risk for diabetes mellitus and cardiovascular disease

(38). Within the brain, FRa is selectively expressed in the choroid

plexus, and promotes a vesicular transport of 5-mTHF across the

choroid plexus (39). It has been reported that mutations in the

FOLR1 gene cause cerebral folate transport deficiency resulting in a

childhood onset neurodegenerative disease (40–42).
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4 FRa in ovarian cancer

FRa is normally expressed in fallopian tube but not the ovary,

consistent with EOC originating from the fallopian tube fimbriae

rather than from ovary epithelial cells (20, 43). The expression of

FRa can be regulated by folate levels. Folate deficiency increases

FRa expression in vivo and in vitro (44). Intracellular folate

deficiency is associated with increased homocysteine.

Homocysteine can promote the binding of heterogeneous

nuclear ribonucleoprotein E1 (hnRNP E1) to the 5’ end of

FOLR1 mRNA, upregulating FOLR1 expression at the level of

translation (45). Folate deficiency also decreases DNA

methylation, and global DNA hypomethylation may account

for elevated of FRa expression in highly aggressive EOC (46).

FRa levels correlate with histological stage and grade (47). A

soluble form of FRa, known as soluble folate receptor (sFR),

outperforms CA125 as a EOC recurrence marker, even when the

CA125 level remains low (18, 48, 49).
4.1 FRa as transporter

It has been proposed that FRa promotes tumorigenesis by

increasing folates for one-carbon metabolism (50). However,

even when FRa is overexpressed, the main route to transport

folate into cells is RFC. RFC accounts for 70% of the uptake of

the serum folate 5-mTHF (51). Thus, it is unlikely that

increasing folate levels is the primary mechanism of FRa to

promote tumorigenesis.
FIGURE 1

The three types of folate transporters. The uptake of extracellular folate is achieved mainly through three types of folate transporters. (1) RFC, an
anion antiporter that uses a gradient of higher organic phosphate in the cell to transport folate into the cell while transporting organic phosphate
out of the cell, (2) PCFT, a proton-coupled transporter, (3) folate receptor family (only FRa is shown). They transfer folate through endocytosis in
selected tissues.
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4.2 FRa as transcription factor

Once entering cells by endocytosis, FRa and associated FA can

activate several cellular pathways. FRa can translocate into the

nucleus and function as a transcription factor to promote the

expression of several genes including Oct4, Sox2, Klf4 (52), Hes1

and Fgfr4 (53).
4.3 FRa and cell signaling

In addition, FA, together with FRa, can interact with gp130 to

initiate the JAK-STAT3 pathway. Phosphorylated -STAT3

transcriptionally activates its target genes frequently associated

with unfavorable patient outcomes (54, 55). The FRa-FA
complex also physically interacts with progesterone receptor to

promote ERK1/2 phosphorylation (56). FRa can also promote

cancer cell metastasis by downregulating the intercellular

adhesion molecule E-cadherin (51, 57).
5 Therapeutic strategies targeting FRa

The high expression of FRa in malignant tumors makes it a

potential target for anti-tumors drug development. Various strategies

have been explored, including monoclonal antibodies, antibody-drug

conjugate (ADC), FRa-specific CAR T, vaccines, small molecules,
Frontiers in Immunology 04
and folate-drug conjugate (Figure 2) (17, 58). Several clinical trials

involving FRa-targeted agents are currently ongoing (Table 1).

Notably, an ADC drug has recently been approved by US FDA.
5.1 Antibodies

Several FRa-targeting antibodies have been developed,

including farletuzumab (IgG1) (74), MOv18 (IgG1) (75), MOv18

(IgE) (76) and MOv19 (IgG2A). Farletuzumab (MORab003;

Morphotek, Inc.), the first anti-FRa monoclonal antibody,

exhibited anti-tumor activities potentially via inducing antibody-

dependent cellular cytotoxicity (ADCC), complement-dependent

cytotoxicity (CDC), and persistent tumor cell autophagy leading to

reduced cell proliferation and inhibition of the Lyn kinase signaling

pathway (77). In a phase I study, farletuzumab showed negligible

toxicity in patients with EOC (59). In the phase II study,

farletuzumab with carboplatin and taxane enhanced the response

rate and duration of response in platinum-sensitive ovarian cancer

patients (60). Unfortunately, PFS was not reached in the phase III

clinical trial in ovarian cancer patients (61). Nevertheless,

farletuzumab was adopted to be the anti-FRa component in ADC

drug MORAb-202. MOv18 (IgG1) was not further developed. In a

phase I study (NCT02546921), MOv18 (IgE), a chimeric first-in-

class IgE antibody, exhibits anti-tumor effectiveness in ovarian

cancer patients, with transient urticaria being the most frequent

side effect (62). MOv19 (IgG2A) was developed in 1980s. Since
FIGURE 2

Overview of the therapeutic strategies targeting FRa. Various FRa-target strategies in ovarian cancer have been explored including (1) monoclonal
antibodies, (2) antibody-drug conjugates, (3) Chimeric antigen receptor (CAR) T cell, (4) vaccine, (5) small molecule and, (6) folate-drug conjugate.
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then, two derivatives of MOv19 have entered the clinical trials. One

is M9346A (78), and the other is chimeric antigen receptor (CAR)

composed of a MOv19 anti-FRa specific single chain variable

fragment (79). M9346A is the anti-FRa antibody component of

MIRV (80).
Frontiers in Immunology 05
5.2 Anti-FRa ADC

ADC is a drug delivery system, composed of a tumor-targeting

monoclonal antibody and a cytotoxic payload joined by a linker

(81). Conceptually, this configuration of ADC facilitates the
TABLE 1 Key clinical trials using FRa-targeting agents to treat ovarian cancer.

Compound/
Drug

Mechanism Clinical trial Outcome Refs

Monoclonal antibodies

Farletuzumab/
MORab003

ADCC and CDC Phase I: Epithelial ovarian, fallopian, or primary
peritoneal carcinoma (n=25)

Safe and well tolerated (59)

Phase II: relapsed platinum-sensitive ovarian cancer
(n=54)

Enhance the response rate and duration of
response in recurrent, platinum-sensitive ovarian
cancer patients

(60)

Phase III: ovarian cancer in first platinum-sensitive
relapse (n=1100)

Failed to reach PFS endpoints (61)

MOv18 (IgE) ADCC and CDC Phase I: solid tumors expressing FRa (n=26),
NCT02546921

Safe and promising antitumor activity in FRa-
positive solid tumors

(62)

Antibody-drug conjugate

MORAB-202
Targeted delivery of

drugs through anti- FRa
antibodies

Phase I: FRa-positive advanced solid tumors (n=22)
NCT03386942

Well-tolerated and promising antitumor activity
in FRa-positive solid tumors

(63)

Mirvetuximab
Soravtansine/
MIRV/Elahere/
IMGN853

Targeted delivery of
drugs through anti-FRa

antibodies

Phase I: FRa-positive solid tumors include ovarian
cancer (n=44), NCT01609556

Safe and encouraging efficacy (64)

Phase Ib: patients with platinum-resistant epithelial
ovarian, fallopian tube, or primary peritoneal cancer
(n=66), NCT02606305

The combination of MIRV with bevacizumab is
well tolerated in patients with platinum-resistant,
recurrent ovarian cancer

(65)

Phase II: platinum-resistant epithelial ovarian cancer
(PROC) (n=106), NCT04296890

Favorable tolerability, safety and encouraging
efficacy in patients with FRa-high PROC who
had received up to three prior therapies

(66)

Phase III: FRa-positive platinum-resistant ovarian
cancer (n=366), NCT02631876

Primary endpoint PFS was not reached (67)

CAR-T

Anti- FRa CAR-T
+IL-2

CAR-T cells recognizing
FRa

Phase I: ovarian cancer (n=14)
Not effective, likely due to short-term survival of
CAR-T cells

(68)

Vaccine

E39+GM-CSF
Cytotoxic T cell reponse
elicited by a FRa-dervied

peptide
Phase I/IIa: ovarian and endometrial cancer (n=51) Safe and encouraging efficacy (69)

Multi-epitope FRa
peptide

Cytotoxic T cell response
elicited by 5 FRa-derived

peptides

Phase I: Ovarian cancer and breast cancer (n=22),
NCT01606241

Safe and encouraging efficacy (70)

Small molecules

BGC945/CT900/
ONX-0801

Thymidylate synthase
inhibitor transported via
FRa into cancer cells

Phase I: High-grade serous ovarian cancer (n=109)
NCT02360345

Acceptable side effect profiles and significant
clinical activity

(71)

Folate-drug conjugate

EC145/Vintafolide Chemotherapeutic agents
conjugated to folate,
transported by FRa

Phase I: refractory solid tumors include ovarian
cancer (n=32), NCT00308269

partial response (72)

Phase II: recurrent platinum-resistant ovarian cancer
who had undergone no more than two prior
cytotoxic regimens (n=162), NCT00722592

EC145 plus PLD is superior to the standard
therapy

(73)
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delivery of cytotoxic drugs specifically to tumor cells, and thus

should minimize the damage to normal tissues. However, due to the

high affinity of antibody-antigen interaction, ADC could target

normal tissues expressing a low level of antigen. Thus, the toxicity

profile of ADC may be different from unconjugated cytotoxic

payload (1). The innate ability of FRa to internalize large

molecules makes it a suitable target for delivering ADC.

5.2.1 MORAb-202
MORAb-202, an ADC that combines the humanized anti-

human FRa antibody farletuzumab with the microtubule-

targeting drug eribulin, has demonstrated substantial anticancer

efficacy in cancer cell lines and in patient-derived xenograft models

(63, 82). Of note, eribulin is a license drug to treat metastatic breast

cancer in the United States (83, 84). In contrast, payloads in other

ADCs are too toxic to be used alone. MORAb-202 is anticipated to

cause immunogenic cell death, as has been shown with previous

tubulin inhibitor-based ADCs such as T-DM1 (85). The toxicity

and pharmacokinetics of MORAb-202 were studied in a

cynomolgus monkey model at various dosages (83). The bone

marrow was the primary target of MORAb-202 toxicity in

monkeys, mostly due to the payload eribulin (86). The efficacy of

MORAb-202 depends on the expression level of FRa both in vitro

and in vivo (87). MORAb-202 is now undergoing phase I/II clinical

trials to assess its effect in FRa-positive solid tumors (63, 82).
5.2.2 Mirvetuximab soravtansine
MIRV (IMGN853, Elahere) developed by ImmunoGen, is the

first ADC to target FRa-expressing tumor cells. It consists of a

humanized anti-FRa monoclonal antibody (M9346A) (88), a

cleavable linker sulfo-SPDB, and the cytotoxic maytansionoid

effector molecule DM4 (88). Once DM4 is accumulated

intracellularly, it acts as a potent antimitotic agent by suppressing

microtubule dynamics (89). In 2022, MIRV received accelerated

approval by US FDA for the treatment of adult patients with FRa-
positive, platinum-resistant epithelial ovarian cancer (PROC),

fallopian tube cancer or primary peritoneal cancer, previously

treated with 1-3 prior systemic anti-cancer regimens (11).

MIRV is taken up by tumor cells through antigen-mediated

endocytosis, transported to lysosomes by vesicular trafficking, and

degraded to release lysine-Nϵ-sulfo-SPDB-DM4. The lysine-DM4 is

further reduced and S-methylated within the cell, generating

hydrophobic maytansinoid derivatives, DM4 and S-methyl-DM4.

These three catabolites can inhibit tubulin polymerization and

microtubule assembly, leading to cell death. Furthermore, DM4

and S-mehtyl-DM4 can diffuse into intercellular space to kill

bystander cells (90). An expansion cohort study of the phase I

trial (NCT01609556) found that FRa expression remained stable in

biopsy samples following two doses of MIRV, although reductions

in post-treatment levels were seen in some patients (91).

The efficacy of MIRV against epithelial ovarian cancer has been

investigated in several clinical trials as monotherapy or in

combination with other anti-tumor drugs (92). The first-in-

human, phase I study (NCT01609556) of MIRV as single agent in

patient with EOC and other FRa-positive solid tumors has provided
Frontiers in Immunology 06
preliminary data on safety and efficacy. A total of 44 patients were

enrolled, and the strongest clinical benefit was observed in two EOC

patients (64). Thus, additional cohorts were extended as part of the

same trial to include individuals with advanced EOC, primary

peritoneal or fallopian tube cancers. The objective response rate

(ORR) was 22%, and a superior efficacy was observed in the subset

of patients with the highest FRa levels (ORR, 31%, PFS 5.4 months)

(91). The positive association between FRa expression levels and

the efficacy of MIRV prompted another phase I trial, consisting of

46 patients with strong FRa expression (defined as ≥25% of cells

with at least 2+ staining intensity by immunohistochemistry). The

ORR was 26% and median PFS was 4.8 months (93). These studies

established that MIRV had a manageable safety profile, and was

effective to control FRa-positive PROC.
In-depth analysis of the phase I results indicated that the

response rate was correlated with the number of prior therapies.

Patients received four or more priors had a lower response rate

(ORR, 13%; PFS 3.9 months) compared with ones received one to

three priors (93). On the basis of this observation, the first

randomized, multicenter phase III study, FORWARD I

(NCT02631876), enrolled platinum-resistant patients (FRa-
positive PROC, primary peritoneal or fallopian tube cancer) who

have received one to three prior therapies and with high or medium

levels of FRa expression, defined as staining intensity ≥2+ in>75%

or 50-74% cells, respectively (94). The purpose of this study was to

compare the safety and efficacy of MIRV with chemotherapies of

investigator’s choice (94). A total of 113 ovarian cancer patients

were randomly assigned to receive MIRV or chemotherapies of

investigator’s choice (36 patients in the MIRV arm). The efficacy of

the MIRV arm (ORR, 47%; PFS 6.7 months) was superior to

outcomes typically seen with established single-agent

chemotherapy, including paclitaxel, pegylated liposomal

doxorubicin and topotecan. This encouraging result prompted

another phase III FORWARD I trial with an expanded

population. 366 platinum-resistant ovarian cancer patients were

randomly assigned to receive MIRV or chemotherapies of

investigator’s choice in a 2:1 ratio. However, MIRV did not result

in a significant improvement in PFS compared with standard

chemotherapy (67), demonstrating that the efficacy of MIRV as

monotherapy is limited.

Subsequent clinical trials explored combinatorial approaches.

Preclinical studies indicate that MIRV can synergize with

carboplatin, doxorubicin, bevacizumab and pegylated liposomal

doxorubicin to kill ovarian cancer cells in vitro and in vivo (95).

In FORWARD II trials (65, 96), patients with FRa positive PROC

were treated with MIRV and bevacizumab. The objective response

rate (ORR) was 39%, including 5 complete responses and 21 partial

responses. The median PFS was 6.9 months (65). Thus, the

combination of MIRV plus bevacizumab is effective, with long-

lasting responses and a manageable safety profile in patients with

PROC. A single-arm, phase II study, SORAY (NCT04296890)

enrolled 106 FRa-high PROC patients previously undergone one

to three treatments, including bevacizumab (66). ORR was 32.4%,

with 5 complete and 29 partial responses. The ORR by investigator

was 35.3% in patients with one to two priors and 30.2% in patients

with three priors. Interestingly, the ORR by investigator was 38% in
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patients with prior PARP inhibitor exposure and 27.5% in those

without (66).

5.2.2.1 MIRV treatment-related ocular adverse effects

ADCs are expected to target tumor cells with high specificity, and

are less toxicity to normal cells than conventional chemotherapies.

However, most ADCs exhibit similar toxicity profiles with their

cytotoxic payloads (97). The most common treatment-related adverse

effects of MIRV were diarrhea, blurred vision, nausea, and fatigue. Most

of these adverse events were mild (grade 1 or 2) and were readily

manageable with supportive care (64, 91, 93, 97). Reversible ocular

adverse events (AEs), primarily corneal keratopathy and blurred vision,

frequently occurred among patients (98). This ocular toxicity is likely

caused by DM4, as it has been observed in patients treated with other

antibody-DM4 conjugates (99, 100). The underlying cause of ocular

toxicity is not clear. FRa expression is negative in the eye based on

immunohistochemistry. However, the expression of FRa has not been

formally ruled out by more sophisticated techniques such as single-cell

sequencing. The preventive use of topical corticosteroid eye drops can

reduce but not eliminate ocular AEs (101, 102). Further mechanistic

studies will be required to disentangle the underlying causes.
5.3 FRa-specific CAR-T

Preclinical investigations have indicated that FRa-specific
chimeric antigen receptor (CAR) T cell therapy has promising

antitumor effects (103, 104). A phase I trial of a FRa-specific
CAR T cell therapy in patients with ovarian cancer showed no

reduction in tumor burden, because these T cells did not survive

well (68). The addition of costimulatory signals, including CD27,

CD28, CD134 (OX-40) and CD137 (4-1BB) into CARs have been

shown to promote T-cell survival (104, 105). An improved strategy

engineering FRa-specific CAR with a CD137 costimulatory

signaling domain in tandem enhanced T-cell persistence in tumor

bed, but antitumor activity was still minimal (106). A novel

Tandem-CAR encoding an anti-FRa scFv, an anti-MSLN scFv,

and two peptide sequences of IL-12 were designed to improve the

efficacy, infiltration, persistence, and proliferation of CAR-T cell in

ovarian cancer (107). Furthermore, CAR T cells, composed of

MOv19 anti-FRa-specific single chain variable fragment fused to

4-1BB and TCRzeta signaling domains (MOv19-BBZ), is currently

evaluated by a phase I clinical trial in recurrent high grade serous

ovarian cancer patients (78).
5.4 Vaccines

Peptide-based vaccine is another strategy to stimulate

antitumor immunity (108, 109). FRa-derived peptides E39

(amino acid 191-199) and E41 (amino acid 245-253) were shown

to be immunogenic (110). In a phase I/IIa trial with 51 patients, E39

plus GM-CSF was safe and might be beneficial in preventing the

recurrence of high-risk ovarian and endometrial cancers (69). In

another phase I clinical trial, the safety and immunogenicity of five
Frontiers in Immunology 07
FRa-derived peptides were examined in breast and ovarian cancer

patients (70). These studies demonstrate that FRa-derived peptides

are safe, but their clinical efficacy awaits further investigation.
5.5 Other approaches

5.5.1 Small molecule
BGC 945 (also known as ONX-0801 or CT900) is a thymidylate

synthase inhibitor internalized by FRa (111). In a recent phase I

clinical trial, the most common BGC945 treatment-related adverse

events were fatigue, nausea, diarrhea, cough, anemia, and

pneumonitis. Clinical benefit was seen in high-grade serous

ovarian cancer patients with medium to high FRa expression (71).

5.5.2 Folate-drug conjugate
It is reasonable to assume that folate-based drug conjugates can

enter FRa-expressing cells via endocytosis. The drug conjugates will
subsequently be released from FRa due to acidic environment in

endosomes, and accumulate intracellularly.

5.5.2.1 Preclinical reagents

EC131, the first folate-drug conjugate, consists of a potent

microtubule-stabil izing agent, DM1, l inked to FA by

intramolecular disulfide bonds. EC131 has not been tested

clinically. EC2629 is a folate conjugate of a DNA crosslinking

agent pyrrolobenzodiazepine (PBD) linked by a novel DNA-

alkylating moiety. Preclinical studies demonstrate that EC2629

has antitumor activity in ovarian, endometrial, and triple negative

breast cancers (112). Notably, most ADCs using PBD as the payload

are now halted due to excessive toxicity of PBD. No literature

regarding EC2629 had been published since 2020, suggesting that

its development may be halted as well. BMS753493 is a folate

conjugate of the epothilone analog. The frequency and severity of

peripheral neuropathy and neutropenia was less in patients treated

with BMS748285 than epothilones. However, little efficacy was

observed in solid tumors including ovarian cancer, and further

development of BMS753493 was halted (113).

5.5.2.2 Agents in clinical stage

EC145 (vintafolide) is a water-soluble derivative of FA linked to the

vinca alkaloid desacetylvinblastine hydrazide (DAVLBH). In a phase I

clinical trial, one partial response was observed in a patient with

metastatic ovarian cancer (72). In a randomized phase II trial of

patients with platinum-resistant ovarian cancer, EC145 plus pegylated

liposomal doxorubicin exhibited efficacy superior to the standard

therapy (73). Unfortunately, in the phase III clinical trial

(NCT01170650), the PFS in ovarian cancer patients was not

reached (114).
6 Conclusion and future perspectives

The understanding of the molecular characteristics of EOC have

advanced in the past decade. However, platinum resistance remains a
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major clinical challenge, and renders EOC the most fatal gynecological

malignancy. Angiogenesis inhibitors (bevacizumab) and PARP

inhibitors (olaparib, rucaparib, and niraparib) have not significantly

increased overall survival in most patients. Innovative and effective

therapeutic strategies are urgently needed. In this regard, FRa has

emerged as an appealing and clinically verified candidate for the

development of targeted therapies. The relatively enriched expression

of FRa on the surface of cancer cells and the ability of FRa to transport

cytotoxic payloads into cancer cells have inspired the development of

various therapeutic modalities including antibodies, ADCs, CAR T,

vaccines, small molecules, and folate-drug conjugate. Notably, MIRV, a

FRa-targeting ADC, has recently been approved by US FDA to treat

adult patients with PROC, fallopian tube cancer or primary peritoneal

cancer. Several promising FRa-targeting modalities are under clinical

evaluation. It will be of interest to see their efficacy on EOC and other

FRa-expressing cancer types.
It is also interesting that ADC is the only FRa-targeting modality

that has achieved clinical efficacy so far. We speculate that the

inhibition of FRa function via monoclonal antibodies may not be

enough to inhibit tumor growth. This is because FRa is not a major

survival signaling pathway even in FRa-high tumors. In addition, RFC

is the major folate transporter and co-expressed with FRa. Although
folate is an essential vitamin, suppressing FRa activity is not sufficient

to block folate transport into cells. On the other hand, folate-drug

conjugates can act similarly as FRa-targeting ADCs to deliver toxic

payload into FRa-high cells. However, considering that RFC and PCFT

are major folate transporters in many tissues, folate-drug conjugates

likely can enter any cells expressing RFC and PCFT. Thus, folate-drug

conjugates likely have less targeting specificity and therapeutical index

than FRa-targeting ADCs.
In our opinion, further basic and clinical investigations are

warranted to maximize the clinical efficacy of MIRV. MIRV is

currently only approved for ovarian cancers with high expression of

FRa. Considering that FRa is highly expressed in several cancer

types, MIRV may be effective in these contexts. In addition, MIRV

is known for its bystander effect. Therefore, MIRV may benefit

patients with cancers expressing low to moderate level of FRa,
analogous to the situation of HER2-targeting ADC, DS-8201a.

Lastly, blurred vision occurs in 50-60% of patients treated with

MIRV (115, 116). This peculiar high prevalence of ocular toxicity is

uncommon in other ADCs, and can be debilitating for patients in
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our experience. The exact pathological mechanism is yet to be

elucidated to improve the prophylactic treatment. Undoubtedly, the

landmark approval of MIRV will fuel the interest to develop novel

FRa-targeting diagnostic and therapeutic approaches to

treat cancer.
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