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and Chacón MR (2023) A serum
metabolic biomarker panel for
early rheumatoid arthritis.
Front. Immunol. 14:1253913.
doi: 10.3389/fimmu.2023.1253913

COPYRIGHT

© 2023 Rodrı́guez-Muguruza, Altuna-Coy,
Arreaza-Gil, Mendieta-Homs, Castro-Oreiro,
Poveda-Elices, del Castillo-Piñol,
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A serum metabolic
biomarker panel for early
rheumatoid arthritis
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Verónica Arreaza-Gil1, Marina Mendieta-Homs1,
Sonia Castro-Oreiro2, Maria José Poveda-Elices2,
Nuria del Castillo-Piñol2, Ramon Fontova-Garrofé1,2

and Matilde R. Chacón1*

1Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili
(IISPV), Universitat Rovira i Virgili, Tarragona, Spain, 2Rheumatology Department, Joan XXIII University
Hospital, Tarragona, Spain
Objective: There is an urgent need for novel biomarkers to improve the early

diagnosis of rheumatoid arthritis (ERA). Current serum biomarkers used in the

management of ERA, including rheumatoid factor and anti-cyclic citrullinated

peptide (ACPA), show limited specificity and sensitivity. Here, we used

metabolomics to uncover new serum biomarkers of ERA.

Methods: We applied an untargeted metabolomics approach including gas

chromatography time-of-flight mass spectrometry in serum samples from an

ERA cohort (n=32) and healthy controls (n=19). Metabolite set enrichment

analysis was performed to explore potentially important biological pathways.

Partial least squares discriminant analysis and variable importance in projection

analysis were performed to construct an ERA biomarker panel.

Results: Significant differences in the content of 11/81 serum metabolites were

identified in patients with ERA. Receiver operating characteristic (ROC) analysis

showed that a panel of only three metabolites (glyceric acid, lactic acid, and 3-

hydroxisovaleric acid) could correctly classify 96.7% of patients with ERA, with an

area under the ROC curve of 0.963 and with 94.4% specificity and 93.5%

sensitivity, outperforming ACPA-based diagnosis by 2.9% and, thus, improving

the preclinical detection of ERA. Aminoacyl-tRNA biosynthesis and serine,

glycine, and phenylalanine metabolism were the most significant dysregulated

pathways in patients with ERA.

Conclusion: A metabolomics serum-based biomarker panel composed of

glyceric acid, lactic acid, and 3-hydroxisovaleric acid offers potential for the

early clinical diagnosis of RA.
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1 Introduction

Rheumatoid arthritis (RA) is the most frequent inflammatory

rheumatic disease, with a prevalence of 0.5–1% in the adult

population; the disease increases in incidence with age and affects

women more than men (1). The etiology of RA remains unknown,

but multiple mechanisms appear to be involved (2). Given the

heterogeneity of clinical manifestations and the variability of

therapeutic response, the early diagnosis of RA is essential to

guide therapy and prevent disease progression.

Metabolomics is a powerful technology to explore changes in

the abundance of metabolites within a biological system and can

provide valuable insights into the metabolic pathways that are

perturbed in different diseases, including RA (3).

Metabolite levels in the serum and urine of patients with RA can

exhibit significant changes compared with healthy individuals or

individuals with other conditions. These changes are typically

associated with the underlying inflammatory processes, immune

dysregulation, and oxidative stress commonly observed in patients

with RA (4). Although the metabolic changes can be complex and

vary between patients, there are some key metabolites and common

metabolic pathways; for example, amino acid metabolism has been

reported to be altered in patients with RA, who present with

elevated levels of pro-inflammatory amino acids such as arginine,

citrulline, and ornithine and lower levels of anti-inflammatory

amino acids such as tryptophan (4).

Dysregulation of lipid metabolism is also a common trait in RA,

and elevated levels of cholesterol and triglycerides have been

reported in the serum of patients (5). Indeed, abnormal lipid

profiles, including changes in phospholipids and fatty acids, have

been detected in both serum and urine (6). Moreover, changes in

energy metabolism have been described in both the serum and urine

of patients with RA, including alterations in the levels of the energy

substrates glucose and lactate (7), higher levels of the oxidative

stress marker malondialdehyde, and an increase in advanced

oxidation protein products, among others (8, 7).

Alterations in metabolite levels have also been found to reflect

different therapeutic effects in patients with early RA (ERA).

Metabolites such as uric acid, taurine, methionine, glycine,

histidine, and hypoxanthine have been found to be elevated in the

serum of patients with ERA after responding to methotrexate

treatment with respect to patients for whom the drug was not

effective (9). Contrastingly, uracil, trimethylamine N-oxide,

oxoglutarate, aspartate, and tryptophan levels were decreased in

the same studied cohorts (10).

Monitoring metabolic changes in ERA may aid in

understanding disease progression and treatment response.

Although several biofluid metabolomic biomarkers have been

reported as useful in the stratification of patient-response

prediction to a specific therapy, very few studies have investigated

novel biomarkers to improve the early diagnosis of RA.

Accordingly, in the present study, we performed serum

metabolite profiling in a well-characterized and representative

cohort of patients with ERA naïve to treatment versus a matched

control cohort to identify a metabolic-related panel to detect ERA.
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were also analyzed to better understand the onset of the disease.
2 Materials and methods

2.1 Study population

This is an observational case-control study. Patients were

recruited at the Joan XXIII University Hospital in Tarragona

(Spain). Patients (n=32) were classified as having ERA according

to ACR/EULAR 2010 criteria, with a symptoms duration of ≤6

months and not receiving treatment with glucocorticoids or

synthetic or biological disease-modifying drugs. Control subjects

(n=19) were individuals with no relevant medical history. Groups

were matched for sex and age. The study was performed according

to the provisions of the Declaration of Helsinki, was approved by

the local ethics committee, and adhered to current legal regulations

(Bio-medical Research Law 14/2007, Royal Decree of Biobanks

1716/2011, Organic Law15/1999 of September 13 Protection of

Personal Data). All methods were approved by the Ethical

Committee for Clinical Research (CEIM) of the Pere Virgili

Research Institute (Ref. CEIM: 047/2021). All participants gave

written informed consent. The following exclusion criteria were

applied: patients unwilling or unable to provide informed consent;

patients having a diagnosis of any systemic inflammatory condition

other than RA, such as (but not limited to) juvenile chronic

arthritis, spondyloarthropathy, Crohn’s disease, ulcerative colitis,

psoriatic arthritis, active vasculitis, or gout (participants with

secondary Sjogren’s syndrome were not excluded); history or

presence of cardiovascular, respiratory, hepatic, gastrointestinal,

endocrine, hematological, neurological, or neuropsychiatric

disorders; or any other serious and/or unstable illness that, in the

opinion of the investigator, could constitute a risk when taking

investigational samples or could interfere with the interpretation

of data.
2.2 Serum sample collection and
analytical methods

Fasted blood was extracted, and glucose, cholesterol,

triglyceride, high-density lipoprotein cholesterol, and hepatic and

renal profiling were performed using the standard methods. C-

reactive protein (CRP), rheumatoid factor, and anti-cyclic

citrullinated peptide (ACPA) levels were determined using

standard enzymatic methods.
2.3 Untargeted metabolomic analysis of
serum samples

The metabolomic analysis was performed at the Center for

Omic Sciences (Eurecat, Reus, Spain). Samples (100 mL serum) were

aliquoted into 1.5 mL tubes and mixed with 400 mL of a solution of
frontiersin.org
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methanol: water (8:2) containing internal standards. Samples were

vortexed and centrifuged for 5 min at 15000 rpm and at 4°C.

Supernatants (200 mL) were transferred to new tubes and

evaporated in a SpeedVac at 45°C. Samples were then

reconstituted with 30 mL of methoxyamine and incubated for

90 min at 37°C, after which time they were silylated with the

addition of 45 mL of MSTFA + 1% TMCS at room temperature

for 60 min.

Gas chromatography time-of-flight mass spectrometry (GC-

TOF-MS) separation was performed with helium (purity >99.999%)

as a carrier gas at a constant flow of 1.1 mL/min. The initial GC

oven temperature was 60°C; 1 min after injection, the GC oven

temperature was increased by 10°C/min to 320°C and held for

10 min at 320°C. The samples were injected with split mode 1:20 at

an injection temperature of 250°C. Detection was achieved using

MS in electron ionization (70 eV) mode and full-scan monitoring

mode (m/z 50–600) with an acquisition rate of 5 spectra/s. The

temperature of the ion source was set at 250°C with the quadrupole

at 200°C.

Organic acids were identified and semi-quantified using their

pure analytical standards. Specifically, ions were selected and used

for quantification based on their impact electron spectra (70 eV)

and the main specific ions described in the recorded spectra library

Fiehn (Agilent-Technologies Inc. USA).
2.4 Statistical data analysis

The sample size was estimated using G*Power 3.1.9.7 (https://

www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-

und-arbeitspsychologie) (11). A 2-fold change between groups and

similar group variances, with an average power of >80% and an

alpha error of 0.1 and an effect size of 1 was assumed; a minimum of

19 patients in each group were needed.

Analysis of the differences between the qualitative clinical data

between study groups was carried out using the Chi-square test. The

Shapiro-Wilk test was used to assess the normality of clinical,

anthropometric, and metabolomics variables. The non-parametric

Mann-Whitney U test was used to analyze differences in the

anthropometric, analytical data and metabolomic data between

controls and patients with ERA. Data were expressed as median

(25th percentile, 75th percentile range). To identify metabolites that

could discriminate between controls and ERA, partial least square

regression discriminant analysis (PLS-DA) was used. Variable

importance projection (VIP) scores were examined to select the

best-discriminating variables, whereby a VIP score of >1 was

considered important in the discrimination. Binary logistic

regressions and receiver operating characteristic (ROC) curve

analysis were performed to identify the best discriminating

metabolic model between the groups.

MetaboAnalyst 5.0 software (https://www.metaboanalyst.ca), a

package based on R software environment (https://github.com/xia-

lab/MetaboAnalystR), was used to obtain a better understanding of

which metabolic pathways were enriched and were associated with

dysregulated metabolites in the Kyoto Encyclopedia of Genes and

Genomes (KEGG) metabolite library.
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was used to perform all the statistical analyses, and GraphPad Prism

v9 (GraphPad Software Inc., San Diego, CA) was used to generate

box plots. A p-value of ≤ 0.05 was considered significant in

all analyses.
3 Results

3.1 Metabolomic profiling

We performed untargeted metabolomic profiling of serum from

32 patients with ERA and 19 healthy controls. The baseline

characteristics of the participants are described in Table 1. A total

of 81 individual metabolites were detected by GC-TOF-MS

(Supplementary Material, Table S1), but the concentrations of

only 11 were significantly different between ERA and control

samples : methionine , 2-hydroxybutyr ic ac id , and 3-

hydroxyisovaleric acid were higher in ERA serum than in control

serum, whereas 3-hydroxybutyric acid/3-hydroxyisobutyric acid,

glycolic acid, sarcosine, glyceric acid, 4-hydroxyproline,

creatinine, phenylalanine, and myo-inositol were lower (Table 2,

Figure 1A). The levels of four metabolites (threonine, lactic acid, 2-

hydroxyisovaleric acid, and alanine) were also different between

groups but did not reach statistical significance (Table 2, Figure 1B).
3.2 Analysis of serum signatures for
diagnosis of early RA

To identify the most relevant metabolites that would allow us to

correctly identify ERA based on the serum metabolomic profile, we

performed a PLS-DA data analysis using data sets of the

aforementioned 15 deregulated metabolites. The score plot of the

PLS-DA model showed a partial separation between patients and

controls (Supplementary Material, Figure S1A), but the model

overfitting, measured as the Q2/R2 ratio (R2—how well the

model predicts the calibration of variables, and Q2—how well the

model predicts ERA) was 0.38, indicating a moderate level of

predictive accuracy (Supplementary Material, Figure S1B). A

model is considered predictive when the Q2/R2 ratio is greater

than 0.5 (11). A heat map (Supplementary Material, Figure S1C)

based on the 15 metabolic features showed a trend for ERA features

to cluster separately.

We next performed a VIP analysis to examine the contribution

of the 15 metabolites in determining the presence of ERA. We

found that 5/15 metabolites had a VIP score ≥1 (glyceric acid, lactic

acid, 2-hydroxybutyric acid, 3-hydroxysovaleric acid, and 2-

hydroxyvaleric acid) and were considered important in the model

for determining ERA onset (Figure 2A).

To evaluate the usefulness of the five metabolites as potential

diagnostic biomarkers of ERA in serum, we next performed logistic

regression analysis and generated ROC curves. Supplementary

Material, Table S2 lists the different combinations performed with

the five selected metabolites. The results showed that the area under

the curve (AUC) of each individual variable, such as lactic acid, 3-
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hydroxybutyric acid, 3-hydroxyisovaleric acid, and 2-

hydroxyisovaleric acid, was below 0.8, and only glyceric acid

showed an AUC above 0.8. Notably, the presence of glyceric acid

outperformed the other individual variables, alone or in

combination. We then generated a multivariate regression model

combining each potential metabolite to test which combination was
Frontiers in Immunology 04
better for ERA diagnosis. Results showed that two models had the

highest AUC, specificity, and sensitivity values. The first panel

comprised glyceric acid, lactic acid, and 3-hydroxyisovaleric acid,

with an AUC of 0.963 and with 94.4% specificity and 93.5%

sensitivity, and could correctly classify 96.7% of patients with

ERA. The second panel comprised glyceric acid, lactic acid, 3-
TABLE 2 Metabolite levels in the serum of patients with ERA and controls.

Metabolites (Relative Units)
Control (n=19) Early RA (n=32)

p-value
Median (IRQ) Median (IQR)

Lactic Acid 25.90 (24.16, 28.24) 28.46 (24.04, 31.44) 0.07

Glycolic Acid 0.09 (0.08, 0.11) 0.08 (0.07, 0.10) 0.028

Alanine 20.64 (18.70, 21.22) 18.71 (17.05, 20.83) 0.073

2-Hydroxybutyric Acid 2.45 (1.59, 2.94) 3.27 (2.30, 4.77) 0.008

Sarcosine 0.06 (0.05, 0.06) 0.05 (0.05, 0.05) 0.017

3-Hydroxybutyric Acid/3-Hydroxyisobutyric Acid 0.98 (0.57, 1.52) 1.44 (1.02, 3.64) 0.034

2-Hydroxyisovaleric Acid 0.70 (0.50, 1.04) 0.85 (0.72, 1.25) 0.073

3-Hydroxyisovaleric Acid 0.11 (0.09, 0.14) 0.14 (0.11, 0.16) 0.023

Glyceric Acid 0.88 (0.66, 1.05) 0.44 (0.27, 0.53) <0.001

Threonine 9.56 (8.01, 10.06) 8.25(6.99, 9.40) 0.059

Methionine 2.18 (1.84, 2.45) 1.89 (1.64, 1.99) 0.008

4-Hydroxyproline 3.76 (2.62, 4.78) 2.74 (2.46, 3.80) 0.039

Creatinine 0.39 (0.34, 0.48) 0.36 (0.31, 0.43) 0.039

Phenylalanine 7.84 (7.51, 8.13) 7.18 (6.62, 7.62) 0.004

Myo-Inositol 0.67 (0.59, 0.83) 0.57 (0.50, 0.66) 0.029
fro
TABLE 1 Baseline characteristics of the studied cohorts.

Control (n=19) ERA (n=32)

Variables Median (IQR) Median (IQR) P value

Age (years) 48.00 (45.00, 52.00) 50.50 (42.50, 55.75) 0.301

BMI (kg/m2) 25.61 (24.72, 28.41) 27.30 (23.90, 30.76) 0.681

Sex (F/M) 14/5 22/10 0.772

Smoking (Yes/No) 8/11 16/16 0.761

Glucose (mM) 5.24 (4.38, 5.52) 4.80 (4.50, 5.24) 0.355

Creatinine (mM) 64.80 (59.70, 71.80) 56.14 (50.83, 70.50) 0.067

Total cholesterol (mM) 5.11 (4.21, 5.86) 4.84 (4.22, 5.44) 0.299

HDL-cholesterol (mM) 1.28 (0.93, 1.40) 1.13 (0.91, 1.32) 0.554

Triglycerides (mM) 1.11 (0.82, 1.47) 1.10 (0.80, 1.62) 0.772

GGT (mkat/L) 0.27 (0.21, 0.42) 0.26 (0.21, 0.39) 0.605

C-reactive protein (mg/L) 1.13 (0.72, 1.71) 6.80 (3.70, 20.00) <0.001

Anti-ACPA (U/ml) 1.41 (1.16, 1.52) 116.50 (45.55, 317.50) <0.001

RF (UI/mL) ND 158.50 (41.25, 309.25) -
BMI, body mass index; HDL, high-density lipoprotein; GGT, gamma-glutamyl transferase; CRP; C-reactive protein, ACPA, anti-citrullinated protein/peptide antibody; RF, rheumatoid factor;
ND, not determined; F, female; M, male; mM, millimolar; L, liter, mkat; microkatal, IQR; interquartile range.
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hydroxyisovaleric acid, and 2-hydroxyisovaleric acid, with an AUC

of 0.965 and with 94.4% specificity and 93.5% sensitivity, and could

also correctly classify 96.7% of patients with ERA (Figure 2B).

Accordingly, the best metabolite combination panel for identifying

ERA was the first panel, as it comprised only three metabolites.

Notably, comparison of the ROC curves of ACPA, CRP, and the

selected metabolomic panel (glyceric acid, lactic acid, and 3-

hydroxyisovaleric acid) for ERA diagnosis revealed that the latter

outperformed classical ACPA biomarker diagnosis by 2.9% and

CRP by 15.4%, thus improving the preclinical detection of ERA

(Figures 2B, C).

The selected metabolomic panel for ERA diagnosis (glyceric

acid, lactic acid, 3-hydroxyisovaleric acid) was then back-evaluated

with PLS-DA to test the strength of the model. The results showed

that subjects were clearly segregated into two differentiated groups:

control and ERA (Figure 2D). The PLS-DA model overfitting,

measured as the Q2/R2 ratio, was 0.93, indicating that the model
Frontiers in Immunology 05
has strong accuracy and clearly distinguishes patients with ERA

from healthy controls (Figure 2E).
3.3 Metabolite functional
enrichment analysis

Although not all 15 deregulated metabolites were selected as a

part of the biomarker panel, they might all function at the onset of

RA by being higher or lower in the disease environment. We, thus,

performed functional analyses with all 15 metabolites using the

KEGG metabolite library to have a better understanding of the

pathophysiology of ERA. The results showed that four pathways

were significantly disturbed: aminoacyl-tRNA biosynthesis; glycine,

serine, and threonine metabolism; glyoxylate and dicarboxylate

metabolism; and phenylalanine, tyrosine, and tryptophan

biosynthesis (Figure 3A). Pathways are shown in order of
B

A

FIGURE 1

Metabolites differentially altered in serum from patients with ERA. Box plots of relative abundance of the 15 discriminatory metabolites analyzed in
serum: (A) Significantly different metabolites between ERA and healthy controls, (B) Dysregulated metabolites with no significant differences. Results are
expressed as median (25th percentile, 75th percentile range). Statistical differences between groups are indicated: * p < 0.05; ** p < 0.01; ***p < 0.001,
****p<0.0001.
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decreasing significance from top to bottom based on p-values and

false discovery rate values in Figure 3B. With respect to aminoacyl-

tRNA biosynthesis, 4/48 metabolites incorporated in the KEGG

library for this pathway were found to match in the pathway: L-

phenylalanine, L-methionine, L-alanine, and L-threonine. All were

found to be decreased in the serum of patients with ERA. For the
Frontiers in Immunology 06
glycine, serine, and threonine metabolism pathways, 3/33

metabolites were identified: sarcosine, L-threonine, and glyceric

acid. For glyoxylate and dicarboxylate metabolism, 2/32 metabolites

were identified: glycolic acid and glyceric acid. Finally, in the

phenylalanine, tyrosine, and tryptophan biosynthesis pathway, 1

of 4 metabolites was identified: L-phenylalanine (Figure 3B).
B

C

D E

A

FIGURE 2

Metabolite ERA panel design. (A) Variable importance in projection (VIP) scores of the 15 selected variables are shown in the model (Glyceric Acid, 2-
Hydroxybutyric Acid, Lactic Acid, 3-Hydroxyisovaleric Acid, 2-Hydroxyisovaleric Acid, Alanine, 4-Hydroxyproline, Glycolic Acid, Myo-Inositol,
Phenylalanine, Threonine, Sarcosine, Methionine, Creatinine and 3-Hydroxybutyric/3-Hydroxyisobutyric Acid). Variables with scores close to or
greater than 1 were considered important in the model. The column to the right displays a heatmap showing the abundance of the top 15
metabolites based on VIP scores of patients with ERA versus healthy controls. (B) Metabolite-based best models as diagnostic classifiers for ERA.
(C) Receiver operating characteristic (ROC) curve values showing predictive efficiency for distinguishing ERA from healthy controls. Percentage of
correct diagnostic values was obtained by multivariate models AUC, area under the curve; 95% CI (confidence interval). (D) Partial least squares
discriminant analysis (PLS-DA) model to evaluate the potential of the three metabolites to discriminate between ERA and controls in 3D. (E)Values of
the classification performance assessed by accuracy, goodness of fit (R2), and predictive ability (Q2) for the top three components. Three
components best classify the model shown with the red asterisk using leave-one-out cross-validation.
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4 Discussion

The metabolic changes that occur in patients with ERA are

complex and interconnected, involving several pathways and

mechanisms (4). Although the specific metabolic alterations may

differ between patients and disease stages, the identification of

shared metabolic networks might provide a tool for disease

diagnosis that yields insights into disease-related mechanisms.

Here we have identified a metabolic signature to aid in the early

diagnosis of RA. Our findings reveal that 15 of 81 detected serum

metabolites showed differences in concentration between patients

with ERA and healthy controls.

Decision model analysis incorporating the 15 dysregulated

metabolites revealed that the best discriminatory metabolites for

ERA diagnosis were glyceric acid, 2-hydroxybutyric acid, lactic acid,

3-hydroxyisovaleric acid, and 2-hydroxyisovaleric acid. Further

regression analysis using combinations of these five metabolites

showed that a panel consisting of glyceric acid, lactic acid, and 3-

hydroxyisovaleric acid was superior for ERA patient identification

with 96.7% accuracy, outperforming the classical ACPA marker by

2.9% and the CRP inflammatory marker by 15.4%.

Pathway analysis of the dysregulated metabolites uncovered

amino acid metabolism as one of the most affected pathways in

ERA; specifically, aminoacyl t-RNA biosynthesis, which plays an
Frontiers in Immunology 07
important role in protein synthesis by binding amino acids to their

tRNAs. This route has been previously described as related to

immune responses as well as being dysregulated in autoimmune

diseases such as RA (12). Indeed, a study attempting to predict

synovial gene expression by analyzing serum metabolic profiles of

patients with RA on methotrexate concluded that serine/glycine/

phenylalanine metabolism and the biosynthesis of aminoacyl-

tRNAs were related to TNF-a/CD3E and B-cell/plasma signatures

(13), pointing to the involvement of these pathways in the

regulation of lymphocytes in the rheumatoid synovium.

Several metabolomics studies using biofluids obtained from

patients with established RA have reported a decrease in amino

acid levels together with a decrease in glucose and an increase in

fatty acid metabolites and serum cholesterol (14, 15). For instance,

Zhou et al. (16) reported that the altered metabolites in serum from

patients with established RA feed into pathways such as glycolysis,

fatty acid, and amino acid metabolism, tricarboxylic acid cycle, and

the urea cycle.

Glyceric acid was one of the three signature metabolites in our

diagnostic panel that was found at lower levels in patients with ERA

than in healthy controls. Glyceric acid is a product of glycerol

oxidation; in turn, glycerol can be used to synthesize triacylglycerols

through glycerolipid metabolism, which is increased in patients

with pre-clinical and ERA (17). Conversely, other authors (18)
B

A

FIGURE 3

Metabolic set enrichment analysis. (A) Metabolite set enrichment overview from quantitative enrichment analysis by Kyoto Encyclopedia of Genes
and Genomes (KEGG) metabolite set library, showing corresponding fold enrichments and computed p-values (*p<0.005). Bar colors are based on
p-values (lower p-values correspond to darker red), while bar lengths are based on the fold enrichment. (B) Identified ERA discriminant metabolites
allocated to related pathways. Total: total metabolites allocated in the KEGG pathway; Hits: number of ERA-altered metabolites marching in the
pathway; HolmP: Bonferroni Holm<-p. Adjust method; FDR, False discovery Rate.
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found higher glyceric acid levels in serum metabolomic studies

when comparing patients with RA and healthy controls. This

discrepancy with our findings could be due to the different cohort

composition in the aforementioned study, which included patients

with established RA and patients who were being treated with

disease-modifying antirheumatic drugs and corticosteroids.

The second metabolite constituting our ERA panel was lactic

acid, which was increased in the serum of patients with ERA when

compared with control counterparts, albeit not reaching

significance, likely due to the small sample number. Lactic acid is

an essential organic acid in cellular metabolism that also contributes

to the progression of RA from the first phases of inflammation to

the last phases of bone destruction (19). Lactate is mainly produced

in the cytoplasm under conditions of hypoxia or high-throughput

glycolysis in rapidly proliferating cells – two processes that occur in

RA – which can explain the increased concentration found in the

synovial fluid of patients with RA (20, 21). The inflamed joint has

been recognized as a site with low levels of glucose and high

amounts of lactate, which is in part responsible for the acidic

environment of RA synovitis (14).

Our proposed panel model also included the metabolite 3-

hydroxyisovaleric acid, a by-product of the leucine degradation

pathway, which we found in significantly higher amounts in

patients with ERA. A previous metabolomics study using urine

samples from patients with immune-mediated inflammatory

diseases found lower levels of 3-hydroxyisovaleric acid in the

disease cohort than in controls (22), which contrasts with our

findings. However, the cohorts differed between this study and

ours, as did the sample type and detection method. While we

found lower levels of serum 3-hydroxyisovaleric acid, the serum

levels of leucine were not significantly different between ERA and

control cohorts in our study, likely because the differences in the levels

of 3-hydroxyisovaleric acid in the serum of patients with ERA

compared with controls were not sufficiently high to reflect leucine

changes at an early stage of the RA pathology. In line with this finding,

different levels of leucine have been reported according to RA disease

progression and are associated with other factors such as age, sex, and

diet (23). Leucine levels have also been linked to muscle protein

breakdown in response to energy expenditure and inflammation (24).

We are aware that one limitation in our study is the lack of

validation in a different ERA cohort; however, patients with RA

naïve to treatment are not easy to recruit. Moreover, further

research will be needed to establish the clinical utility of our

proposed panel to standardize their use for routine practice.

In conclusion, a serum metabolite signature panel composed of

glyceric acid, lactic acid, and 3-hydroxyisovaleric acid was the best

combination for ERA diagnosis, outperforming classical clinical

diagnostic markers such as ACPA. Notably, the application of

metabolomics can help to better elucidate pathways involved in

ERA, which might guide the development of novel approaches for

its diagnosis and/or treatment. Despite these advantages, however,

it is important to note that metabolomic panels are still an emerging

technology in the clinical setting. As medical research advances, the

integration of metabolomic panels and other advanced technologies
Frontiers in Immunology 08
into clinical practice may revolutionize ERA diagnosis, treatment,

and management, ultimately improving patient outcomes.
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