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Objective: Sepsis related injury has gradually become the main cause of death in

non-cardiac patients in intensive care units, but the underlying pathological and

physiological mechanisms remain unclear. The Third International Consensus

Definitions for Sepsis and Septic Shock (SEPSIS-3) definition emphasized organ

dysfunction caused by infection. Neutrophil extracellular traps (NETs) can cause

inflammation and have key roles in sepsis organ failure; however, the role of

NETs-related genes in sepsis is unknown. Here, we sought to identify key NETs-

related genes associate with sepsis.

Methods: Datasets GSE65682 and GSE145227, including data from 770 patients

with sepsis and 54 healthy controls, were downloaded from the GEO database

and split into training and validation sets. Differentially expressed genes (DEGs)

were identified and weighted gene co-expression network analysis (WGCNA)

performed. A machine learning approach was applied to identify key genes,

which were used to construct functional networks. Key genes associated with

diagnosis and survival of sepsis were screened out. Finally, mouse and human

blood samples were collected for RT-qPCR verification and flow cytometry

analysis. Multiple organs injury, apoptosis and NETs expression weremeasured to

evaluated effects of sulforaphane (SFN).

Results: Analysis of the obtained DEGs and WGCNA screened a total of 3396

genes in 3 modules, and intersection of the results of both analyses with 69

NETs-related genes, screened out seven genes (S100A12, SLC22A4, FCAR,CYBB,

PADI4, DNASE1, MMP9) using machine learning algorithms. Of these, CYBB and

FCAR were independent predictors of poor survival in patients with sepsis.

Administration of SFN significantly alleviated murine lung NETs expression and

injury, accompanied by whole blood CYBB mRNA level.
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Conclusion: CYBB and FCAR may be reliable biomarkers of survival in patients

with sepsis, as well as potential targets for sepsis treatment. SFN significantly

alleviated NETs-related organs injury, suggesting the therapeutic potential by

targeting CYBB in the future.
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1 Introduction

Sepsis is an immune dysfunction syndrome caused by

pathogens and accompanied by severe clinical manifestations,

including inflammation-related injury and multiple organ

dysfunction (1). More than 18 million cases of severe sepsis occur

annually, resulting in fatality rates as high as 30%–70% (2). Sepsis

has gradually become the leading cause of death in non-cardiac

patients in intensive care units, but the underlying pathological and

physiological mechanisms remain unclear.

Neutrophils dominate the innate immune response during

sepsis (3). The chemotaxis, phagocytosis, and bactericidal

functions of neutrophils, which are established to occur during

sepsis, are involved in the process of multiple organ failure via a

complex mechanism (4, 5). Neutrophil extracellular traps (NETs)

are composed of nuclear DNA, forming a scaffold structure.

Antimicrobial peptides, histones, and various bactericidal factors

are attached to the scaffold of nuclear DNA, NETs are function by

immobilization, capture, and killing of pathogens (6). During sepsis,

the activation of NETs by toll-like receptors (TLRs) plays a crucial

role. However, when NETs overdevelop, the excessive release of

inflammatory mediators triggers a cascade of continuous NETs

release, which can result in substantial tissue and organ damage (7).

Hence, NETs are an essential component of organ failure during

sepsis (8), This phenomenon has garnered significant attention in

the field of medical research due to its implications in the

pathogenesis of sepsis-related complications. Currently, several

targets related to neutrophil extracellular traps (NETs) have been

identified, such as PAD4 inhibitors, TLR4 inhibitors, DNA

degraders, and NET-inhibitory factors, which can reduce the

release of NETs. Among them, the PAD4 inhibitor CI-Amidine,

targeting PAD4, effectively inhibits the generation of NETs in septic

mice and improves their survival. TAK-242 and Eritoran, as TLR4

inhibitors, have entered clinical trials but have not been able to

improve the 28-day mortality rate in severe sepsis patients (9).

Therefore, there is an urgent need for more NETs-related targets in

sepsis to improve the survival of sepsis patients.

Weighted Gene Coexpression Network Analysis (WGCNA) can

link gene clusters with highly correlated expression levels to related

phenotypic traits (10), as well as categorizing genes into several

modules, corresponding to clinical traits (11, 12), facilitating

identification of classes of synergistic gene clusters. Moreover,

least absolute shrinkage and selection operator (LASSO)
02
regression and root mean square error (RMSE), a new type of

machine learning algorithm, can more clearly define target genes.

Here, we used these approaches to elucidate the mechanisms

underlying NETs-mediated sepsis, providing evidence applicable

to both diagnosis of severe sepsis and establishment of

therapeutic strategies.
2 Materials and methods

2.1 Data download and preprocessing

Bioinformatics methods were applied to capture experimental

data related to sepsis. Methods were implemented using the

GEOquery software package in R (version 4.1.1, http://r-

project.org/) (13). Freely available data were downloaded from

the NCBI Gene Express ion Omnibus (GEO)(https : / /

www.ncbi.nlm.nih.gov/geo/), including the Homo sapiens sepsis-

related expression profiles: GSE65682 and GSE145227. The

GSE65682 dataset contains data from blood samples from 760

patients with sepsis and 42 healthy controls, while GSE145227

comprises blood sample data from 10 patients with sepsis and 12

healthy controls. Data were processed for repeat and missing values,

as well as for consistency, data sorting, and outliers. Finally, the

resulting clinical information was used for bioinformatic analysis.

Genes related to NETs (n = 69) were derived from a report by

Zhang et al. (14).

Normal and tumor tissue expression data were obtained from

the GTEx database and The Cancer Genome Atlas (TCGA), which

provides RNA-sequencing and clinical data for 33 types of cancer.
2.2 WGCNA

The first step in WGCNA was to select a soft threshold, which is

a method of deriving an optimal limit value. The formula applied

was: x̂ i = softðzilwi) = sign(zi)maxf0, jzij − lwig.
The scale-free topology fitting index was 1 to 20. Using a

continuous adjacency matrix, the constructed network was fit to

the power law distribution, which was closer to the actual data.

Then, topology overlap and adjacency matrices (minModuleSize =

30 for module splitting) were constructed according to the gene

expression data. Using a flexible dynamic tree cutting algorithm,
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dendrograms were generated including identifiable modules in

different colors. Finally, modules significantly related to

phenotype data were identified, and module eigengenes

determined for each module.
2.3 Identification of differentially expressed
genes associated with NETs

WGCNA-derived module genes, DEGs, and NETs-related

genes were intersected, machine learning used to narrow the

range, and then ROC curves drawn for screened NETs-related

genes classified into high- and low-expression groups. Clinical

data from GSE65682 were used to draw Kaplan-Meier (KM)

curves to further clarify molecules associated with sepsis diagnosis

and patient survival.
2.4 Machine learning

The LASSO method is a compression estimation approach

based on the idea of reducing the variable set. By constructing a

penalty function, it can compress the coefficients of variables, so

that some regression coefficients become 0, to achieve

variable selection.

As a binary classification model, support vector machines

(SVMs) map the feature vectors of instances to points in space

and determine the best classification by dividing the hyperplane

with the largest interval. Through further screening of the 13 genes

identified by intersection analysis, the point with the smallest cross-

validation error was marked, to screen out target genes.
2.5 Single gene expression and
organ distribution

The Human Protein Atlas (HPA) database (version: 21.1)

(https://www.proteinatlas.org/) was used to construct mRNA

expression maps of seven core NETs-related genes.
2.6 DEG screening and functional
enrichment analysis

To identify DEGs between sepsis and healthy groups, the limma

package in R was used to screen for differential genes (threshold,

adjusted P (adjP) < 0.05, log2 fold-change (FC) > |0|). Further, the

ggplot2 package was used to generate volcano plots, heatmaps, and

Venn diagrams.

Gene ontology (GO) enrichment analysis was applied to predict

gene function. GO classifies gene functions into three categories:

cellular component (CC), molecular function (MF), and biological

process (BP). Kyoto Encyclopedia of Genes and Genomes (KEGG)

is a widely-used database that stores information about genomes,

biological pathways, diseases, and drugs. GO and KEGG

enrichment analyses were performed and visualized using the
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GOplot package, with false discovery rate < 0.05 considered

statistically significant. Pathview (15) was used to visualize KEGG

pathways associated with NETs.
2.7 Protein-protein interaction
network construction

The STRING database (http://string-db.org, version 11.5)

online tool was used to predict and visualize PPI network models

based on the seven screened NETs-related genes.
2.8 Prediction of related microRNAs,
transcription factors and drugs

Regnetwork (https://regnetworkweb.org/) (16) was used to

predict miRNAs and TFs upstream of the seven screened genes,

and Cytoscape software (17) applied to construct and visualize the

central gene-TF-miRNA interaction network. NetworkAnalyst (18)

(https://www.networkanalyst.ca/) was applied to analyze the

interactions between hub genes and drugs, including chemical

and gene interactions.
2.9 Gene set enrichment analysis

GSEA is a method for assessing whether a gene set differs

significantly between two biological states. Expression datasets are

often used to estimate changes in pathways and biological processes.

GSEA was performed using gene sets downloaded from the

MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb/

index.jsp); P < 0.05 was considered statistically significant.
2.10 Immune cell infiltration analysis

CIBERSORT (19) is an algorithm that uses gene-based

deconvolution to infer 23 human immune cell types, and applies

marker gene signatures to quantify the relative scores for each cell

type. To enhance the robustness of the results, CIBERSOFT uses

Monte Carlo sampling to obtain deconvolution P values for each

sample, and the abundance of immune cells can also be estimated

based on gene expression data. Here, gene expression matrix data

were uploaded to CIBERSORT and differences with P < 0.05

considered significant. Bar charts were generated in R using

ggplot2. In addition, ggboxplot (20) was used to draw boxplots to

visualize the correlation of infiltration of 23 immune cell types.

Furthermore, ggplot2 was used to visualize the relationship between

sepsis-related NETs and immune cells.
2.11 Clinical correlation analysis

To investigate the clinical prognostic value of NETs-related genes

in sepsis, receiver operating characteristic (ROC) curves and KM
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curves were used to screen meaningful genes, and a nomogram,

including multiple clinical features, established to predict the 7-, 14-,

21-, and 28-day survival of patients with sepsis. Nomogram accuracy

was evaluated using calibration curve analysis.
2.12 Animal experiments

Mice (male; body weight, 25–30 g,C57/BL6) were obtained from

the Animal Research Center of Nanjing University (Nanjing).

Animals were housed and maintained in a pathogen-free facility

at Sun Yat-sen University Experimental Animal Center, according

to the Sun Yat-sen University “Guidelines for Experimental

Animals”. Mice were provided with standard laboratory water

and food and maintained at 20°C and 50% humidity, with a 12 h

light/dark cycle.

A cecal ligation and puncture (CLP) mouse sepsis model was

generated, and mice were sacrifacied after 2 days. To construct the

CLP model, mice were anesthetized by intraperitoneal injection

with sodium pentobarbital (50 mg/kg) until there was no response

to pinching of the toes using forceps. The abdominal skin was

prepared using depilatory ointment, disinfected with iodine three

times, and a sterile towel used to cover the surgical field. Then, a

1.5–2 cm midline incision of the abdomen was made to expose the

cecum. In the sham operation group, the was cecum exposed but

not treated. In the CLP group, the cecum was ligated with 6-0 non-

absorbable sterile surgical silk at a distance halfway between the

distal end and the base of the cecum. Next, the cecum was

punctured 1 cm from the distal end using a 21G sterile needle;

before cecal perforation, the cecum contents were pushed to the

distal end of the cecum, and puncture of blood vessels was avoided.

After removing the needle, a small amount of feces was squeezed

from the puncture hole, to ensure patency. Finally, the wound was

sutured layer-by-layer. Postoperative fluid rehydration was

conducted by subcutaneous injection of 1 ml pre-warmed 0.9%

sterile saline (37°C) per mouse. For postoperative analgesia,

buprenorphine (0.05 mg per kg) was injected subcutaneously

every 6 h for 2 days.
2.13 Total RNA extraction and real-time
quantitative polymerase chain reaction

Total RNA samples were extracted from whole blood for use in

RT-qPCR using TRIzol (Invitrogen, Life Technologies, USA),

according to the manufacturer’s instructions. Total RNA purity

and concentration were evaluated using an ultraviolet

spectrophotometer (BioMate 3S UV-visible spectrophotometer;

ThermoFisher Scientific). Total RNA samples aliquots (1 µg) were

used to synthesize cDNA, using a cDNA Synthesis Kit (Roche

Applied Science, Indianapolis, USA), and qRT–PCR conducted

with a reverse transcription system (LC-480, Roche, USA) using

SYBR Master Mix (Roche Applied Science). The housekeeping

genes, GAPDH and HPRT, served as internal controls for cDNA

normalization. All primer sequences used in this study are listed in

Table S3.
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2.14 Immunofluorescence assay

Lung tissue specimens were cut into 4 µm sections after

embedding in paraffin. Frozen tissue samples were dehydrated

with 15% and 30% sucrose. Slides were deparaffinized and

rehydrated using xylene and gradient ethanol concentrations

(100%, 95%, 80%, 70%, and 50%). Antigen retrieval was

conducted by microwaving samples in 1× EDTA buffer (pH 6.0)

for 15 min. Following blocking with 1% goat serum in PBS and 0.1%

Triton X-100 for 30 min, cit-H3 (CST, 83506, 1:400), Ly6G

(Servicebio,GB11229,1:400) antibodies were added to slides and

incubated at 4°C overnight. Slides were then washed with PBS three

times and incubated with FITC-conjugated secondary antibody at

room temperature for 1 h, followed by staining with DAPI for

5 min. Slides were then examined under a microscope (Zeiss).
2.15 Flow cytometry analysis

A total of 2 × 105 bronchoalveolar lavage fluid (BALF) cells were

collected and suspended in 500 ml PBS. Antibodies against Ly6G,
F480, and CD45were added to cells, which were then incubated for

30 min at 4°C in the dark. After washing with 1 ml 1× PBS, sample

fluorescence was analyzed using a thirteen-color FACS Calibur

instrument (Beckman Coulter, Hercules, CA, USA) and FlowJo

software (BD Biosciences, USA).
2.16 Clinical data and specimen collection

The Ethics Committee of the Third Affiliated Hospital of Sun

Yat-Sen University (Guangzhou, China) approved this study, and

this study was conducted in accordance with the “Declaration of

Helsinki”, with informed consent from the patients. Three patients

with sepsis after liver or kidney organ transplantation were included

in the study, as well as three healthy individuals. Patient data were

collected retrospectively from clinical records.
2.17 Statistical analysis

All data processing and statistical analyses were conducted

using R software (version 4.1.1). Comparisons of continuous

variables were performed using t-tests, and comparisons of

categorical variables were by chi-squared analyses or Fisher’s

exact test. All calculations were two-tailed and P < 0.05 was

considered statistically significant.
3 Results

3.1 Identification of DEGs in training
set data

First, as shown in the flowchart (Figure 1), we identified DEGs

between the sepsis and healthy groups in the GSE65682 dataset for

use in further analysis using the limma package in R. First, data
frontiersin.org
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were normalized (Figures S1A, B), and a threshold of adjP < 0.05,

log2 FC > |0| used to screen DEGs between the healthy and the

sepsis groups. A total of 8973 DEGs were obtained, including 4931

with log2 FC > 0 and 4041 with log2 FC < 0; corresponding volcano

and heat maps are presented in Figures 2A, B. Next, GO and KEGG

enrichment analysis of DEGs was conducted (Figures 2C–E;

Table 1). Enriched MF categories included: neutrophil-mediated

immunity, neutrophil activation, neutrophil activation involved in

immune response, and neutrophil degranulation, indicating that the

molecular function of sepsis is associated with neutrophils. The

main enriched CC category was mitochondrial matrix. We

previously demonstrated that mesenchymal stem cell exosomes

can be delivered through mitochondria to treat NETs due to

hepatic ischemia-reperfusion. KEGG analysis mainly identified

enrichment of signaling pathways related to infection (Figures

S1C, D). Further, topological mapping revealed that leukocyte

cell-cell adhesion and lymphocyte differentiation were involved in

the final biological pathway (Figure 2F). These data suggest that

NETs play a pivotal role in sepsis.
3.2 WGCNA

Next, we investigated potential crucial gene modules associated

with sepsis by using WGCNA to correlate each module with

corresponding clinical features for analysis of biological processes.
Frontiers in Immunology 05
All genes in the GSE65682 dataset were included in WGCNA

(Figure 3A) and screened for a suitable soft threshold powers

value. The results showed that the most suitable number was 6

(Figures 3A, B). Subsequently, we generated and merged a

clustering tree (Figures 3C, D), and then assessed the correlations

between the modules, and found that the results failed to reach

statistical significance (Figure S2B). Correlation analysis within

modules demonstrated the reliability of the module description,

while there were no substantial connections between modules

(Figure S2A). As shown in Figure 3E, a total of three modules

(green, light cyan, and yellow-green) with correlation co-efficient

values ≥ 0.4 were screened (Figure 3E).

We next performed GO and KEGG enrichment analyses on the

genes in the three modules identified as clinically relevant to sepsis

(Figures 3F–H). Our results indicate that the yellow-green module

genes were related to ribonucleoprotein complex biogenesis (Figure

S2C), green module gene was related to ATPase activity (Figure

S2E), and genes in the light cyan module were related to neutrophil

degranulation, neutrophil activation involved in immune response,

and neutrophil-mediated immunity, among other processes

(Figure S2D).

Together, these results shown that three modules (green, light

cyan, and yellow-green) were related to sepsis, where the light cyan

module was associated with neutrophil immune processes, the

yellow-green module with ribosomes, and the green module with

energy activity.
FIGURE 1

Flowchart of the study in this research.
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3.3 Screening and expression of NETs-
related genes in sepsis

Our data from both DEGs and WCNA indicated that biological

processes involving neutrophils have an important impact on

sepsis, and NETs are established to have critical roles in sepsis.

Therefore, we speculated that key NETs-related genes are likely to

have important functions in sepsis. Based on a literature search, we

obtained 69 NETs-related genes. By intersecting data from

WGCNA (3396 genes) and DEGs (8973 genes) with the 69

NETs-related genes, we identified 13 genes (Figure 4A): RIPK3,

PADI4, ITGAM, FCAR, CYBB, SIGLEC14, S100A12, ALPL,

DNASE1, G0S2, TLR7, SLC22A4, and MMP9. These 13 genes

were then compared with the GSE65682 dataset, and they were
Frontiers in Immunology 06
found to be significant DEGs between the healthy and sepsis groups

(Figures 4B–D).

GO KEGG enrichment analysis of these 13 genes was then

performed using the clusterprofiler package in R (Figures 4E, S3;

Table 2), and the identified enriched pathways were closely related

to NETs. We also analyzed the relationship between each gene and

pathway (Figure 4F; Table 3) and the resulting data indicated that

most genes were related to neutrophil activation.

Enrichment analysis of these 13 NETs-related genes indicated

that they were also related to the NF-kB pathway and the NADPH

oxidase complex (Figure S3). Indeed, recent studies have confirmed

that NETs can function through the NF-kB pathway in both

inflammation and cancer (21). Similarly, the NADPH oxidase

complex can lead to the generation of reactive oxygen species
B

C D

E F

A

FIGURE 2

Difference analysis of training set GSE65682. (A) Differential analysis volcano map. (B) Differential analysis heat map. (C) GO functional enrichment
analysis (including BP MF CC). (D) KEGG pathway enrichment analysis results. (E) GO KEGG circle chart analysis results. (F) BP topology.
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(ROS), which play a crucial role in ROS-dependent NETs (22).

Based on our results, the NF-kB pathway and NADPH are likely to

play important roles in the involvement of NETs in sepsis.
3.4 Machine learning

Lasso and SVM machine learning methods were used to further

narrow the scope of NETs-related genes involved in sepsis. The 13

identified genes were screened by the Lasso method, which resulted

in narrowing to six genes (Figure 5A). Further, four genes were

screened by the SVMmethod (Figure 5B). Finally, seven genes were

obtained after combination of the genes identified by each method:

S100A12, SLC22A4, FCAR, CYBB, PADI4, DNASE1, and MMP9

(Figure 5C). These seven NETs-related genes were expressed

differently in normal tissues (Figure S7); six of the genes, except

DNASE, were all expressed at the highest level in bone marrow.

Further, levels of FCAR expression were second-highest in lung

tissue, while those of CYBB, FCAR, MMP9, and PADI4 were

second-highest in lymphoid tissue.
3.5 Functional network construction

3.5.1 Gene-gene and protein-protein correlations
We used the R package, circlize, to conduct correlation analysis

of the seven core NETs-related genes, and found that their levels

were all positively correlated with one another (Figure 6A),

indicating that these seven core genes promote each other and

function together in the formation of NETs during sepsis.

The proteins encoded by the seven core genes were also

associated with one another; DNASE1 and FCAR were

independent, while the other proteins were all associated

(Figure 6B). CitH3 and LL37 had been identified as markers of

neutrophil extracellular traps (NETs). Analysis of expression
Frontiers in Immunology 07
changes in NETs-related KEGG pathways indicated that citH3

and LL37 tended to increase (Figure 7).

To clarify the respective roles of the seven NETs-related genes,

correlation analysis of the seven genes with all other genes was

conducted using GSE65682 data (Figure S6). Additionally, based on

the results of the correlation analysis, single-gene GSEA was

performed on reactomes using the R language clusterprofiler

package. The results showed that CYBB, FCAR, MMP9, and

PADI4 were related to neutrophil degranulation, while S100A12

and SCL22A4 were associated with NETs transcription processes,

and DNASE1 was related to extracellular matrix degradation.

Hence, the seven genes play different roles in different stages of

NETs development in sepsis.

3.5.2 MiRNAs, TFs, and drugs
We next predicted miRNAs and TFs that may be involved in

regulation of the seven key genes associated with NETs using

Regnetwork (https://regnetworkweb.org/) to predict miRNAs and

TFs, and used Cytoscape software to visualize the results. We

identified 36 miRNAs and 43 TFs in total (Figure 6C), among

which 14 miRNAs were predicted to regulate FCAR had and 26 TFs

were associated with MMP9; one TF was predicted to regulate

multiple genes (Table S2); NFKB1 can regulate the three genes,

MMP9, FCAR, and CYBB. To predict drugs that affect the seven key

NETs-related genes, we used NetworkAnalyst (https://

www.networkanalyst.ca/) to analyze the relationships between

hub genes and drugs (Figure 6D); the results are presented in

Table S1.
3.6 Relationship between the seven core
genes and immune infiltration

To further confirm the role played by immune cells in sepsis, we

evaluated the degree of immune cell infiltration using data from
TABLE 1 GO and KEGG pathway enrichment analysis of candidate genes in the most significant terms.

ID Description GeneRatio BgRatio pvalue p.adjust qvalue zscore

GO:0140014 mitotic nuclear division 32/196 264/18670 7.53e-25 2.33e-21 2.01e-21 -0.353553391

GO:0000280 nuclear division 34/196 407/18670 4.63e-21 7.16e-18 6.16e-18 -0.685994341

GO:0048285 organelle fission 35/196 449/18670 1.10e-20 1.14e-17 9.78e-18 -0.507092553

GO:0005819 spindle 25/202 347/19717 2.04e-14 6.25e-12 5.57e-12 -1

GO:0072686 mitotic spindle 15/202 109/19717 3.72e-13 5.71e-11 5.09e-11 -0.25819889

GO:0005876 spindle microtubule 12/202 59/19717 7.07e-13 7.24e-11 6.45e-11 -0.577350269

GO:0008017 microtubule binding 16/191 246/17697 1.08e-08 4.80e-06 4.31e-06 -1.5

GO:0035173 histone kinase activity 5/191 17/17697 7.74e-07 9.93e-05 8.92e-05 1.341640786

GO:0015631 tubulin binding 16/191 336/17697 7.79e-07 9.93e-05 8.92e-05 -1.5

hsa04110 Cell cycle 11/95 124/8076 1.88e-07 3.81e-05 3.62e-05 2.110579412

hsa04114 Oocyte meiosis 10/95 129/8076 2.44e-06 2.48e-04 2.35e-04 0.632455532

hsa04218 Cellular senescence 10/95 156/8076 1.34e-05 9.06e-04 8.60e-04 1.897366596
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GSE65682 and the ssGSEA function of the GSVA package in R.

Further, we analyzed the correlations between sepsis and infiltration

of 23 types of immune cell (Figures 8A, B). According to the

immune infiltration levels in the two groups (patients with sepsis

and healthy controls), activated B cells, activated CD4 T cells,

activated CD8 T cells, CD56-bright natural killer cells, CD56-dim
Frontiers in Immunology 08
natural killer cells, immature B cells, immature dendritic cells,

myeloid-derived suppressor cells, monocyte natural killer T cells,

T follicular helper cells, type 1 T helper cells, and type 2 T helper

cells were down-regulated in the sepsis group. Further, activated

dendritic cells, gamma delta T cells, macrophages, mast cells,

natural killer cells, neutrophil, plasmacytoid dendritic cells,
B
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FIGURE 3

WGCNA analysis on the GSE65682 dataset. (A) The sample clustering dendrogram corresponding to healthy and sepsis samples. (B) Filter the soft
threshold powers value, the most appropriate when the screening result is 6. (C) Clustered dendrograms are cut at a height of 0.4 to detect and
combine similar modules. (D) Display and merge of clustering trees (E) Association of gene modules with clinical traits (Screen the modules whose
correlation is greater than or equal to 0.4, and screen out 3 modules in total Green, lightcyan, yellowgreen). (F) Correlation between yellow green
module genes and Sepsis traits (G) Correlation between light cyan module genes and Sepsis traits. (H) Correlation between green module genes and
Sepsis traits.
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regulatory T cells, type 17 T helper cells were significantly up-

regulated in sepsis; however, there was no significant difference in

eosinophils between the two groups. These results suggest that

immune infiltration has an important role in sepsis. Further,
Frontiers in Immunology 09
consistent with our results, neutrophils were significantly

upregulated in sepsis.

After in-depth analysis, we found that DNASE1, FCAR, and

SLC22A4 played important roles in neutrophil infiltration
B
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FIGURE 4

Differential expression and GO KEGG analysis of NETs- related genes in sepsis. (A) The genes screened by WGCNA, the difference genes are
expected to take the intersection of NETs genes, and 13 genes are obtained. (B) Differential expression of 13 genes. (C) 13 genes are displayed
individually with a volcano map. (D) 13 genes are displayed individually with a heat map. (E) GO KEGG bubble plot of 13 genes. (F) Chord diagram
display of 13 genes. (****p<0.0001).
TABLE 2 GO and KEGG enrichment analysis for NETs related genes.

ID Description GeneRatio BgRatio pvalue p.adjust qvalue

GO:0002283 neutrophil activation involved in immune response 7/13 488/18670 1.20e-08 2.22e-06 1.33e-06

GO:0070820 tertiary granule 5/13 164/19717 4.57e-08 1.92e-06 1.11e-06

GO:0015651 quaternary ammonium group transmembrane transporter activity 1/13 10/17697 0.007 0.085 0.056

hsa04670 Leukocyte transendothelial migration 3/8 114/8076 1.46e-04 0.006 0.005
DEG, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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(Figures 8C–E). Interestingly, not all of the identified seven core

genes were involved in neutrophil infiltration, indicating that the

process of NETs generation is not completely consistent with the

neutrophil infiltration process, and warranting further exploration.
3.7 Analysis of the validation dataset

GSE145227 was selected as the verification set for validation

analysis. First, we normalized the data (Figures S5A, B), and

screened for DEGs using a threshold of adjP < 0.05. A total of

8868 DEGs between the two groups were obtained, among which,

3784 had log2 FC > 0 and 5084 log2 FC < 0; the corresponding

volcano plot and heatmap are shown in Figures S4A, B. Verification

analysis of the seven core genes in GSE145227 demonstrated that

the expression of MMP9, SLC22A4, FCAR, PADI4, and S100A12

differed significantly between the sepsis and healthy groups, and all

of them showed an increasing trend; however, levels of CYBB and

DNASE1 did not differ significantly between the groups.

Nevertheless, the mean level of CYBB expression in the sepsis

group was higher than that in the healthy group (Figure S4E). A

volcano plot and heatmap of the five DEGs are presented in Figures

S4C, D. GSEA indicated that sepsis was primarily related to innate

immunity and neutrophil degranulation (Figure S5C), consistent
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with our previous analysis and suggesting that neutrophils have an

important role in sepsis.
3.8 Search for clinically significant genes

To clarify the significance of the seven key genes related to

NETs in the diagnosis of sepsis, we performed ROC analysis on the

two datasets. First, we used a heatmap to visualize the DEGs in the

two datasets (Figure 9A). In GSE66582, the genes with the top three

area under the ROC curve (AUC) values were S100A12 (0.997),

FCAR (0.992), and MMP9 (0.971), while in the GSE145227 dataset

the genes with the top three AUC values were MMP9 (0.87),

S100A12 (0.856), and SLC22A4 (0.855) (Figure 9B).

To evaluate the significance of the 7 key NETs-related genes to

patient survival, we analyzed patient data from GSE65682. Our

findings implied that higher CYBB and FCAR expression were

significantly and positively associated with higher mortality rates

in the sepsis group (Figures 9C, D).

To examine whether the survival-associated genes, CYBB and

FCAR, have value for prediction of clinical features in sepsis, we

constructed survival prediction models including patient sex, age,

pneumonia, thrombocytopenia, ICU-acquired pneumonia,

diabetes, and abdominal sepsis, as well as CYBB and FCAR
B CA

FIGURE 5

Machine learning for screening key genes. (A) Lasso screened 6 genes. (B) SVM screened 4 genes. (C) Get 7 genes after taking the union.
TABLE 3 Enrichment analysis for NETs related genes.

terms ID Description GeneRatio pvalue geneID Count

BP GO:0002283 neutrophil activation involved in immune response 7/13 1.20e-08
ITGAM/FCAR/CYBB/SIGLEC14/

S100A12/DNASE1/MMP9 7

BP GO:0042119 neutrophil activation 7/13 1.38e-08
ITGAM/FCAR/CYBB/SIGLEC14/

S100A12/DNASE1/MMP9 7

CC GO:0070820 tertiary granule 5/13 4.57e-08
ITGAM/FCAR/CYBB/SIGLEC14/

MMP9 5

CC GO:0070821 tertiary granule membrane 4/13 1.21e-07 ITGAM/FCAR/CYBB/SIGLEC14 4

MF GO:0015651
quaternary ammonium group transmembrane

transporter activity 1/13 0.007 SLC22A4 1

MF GO:0016813
hydrolase activity, acting on carbon-nitrogen (but not

peptide) bonds, in linear amidines 1/13 0.008 PADI4 1

KEGG hsa04670 Leukocyte transendothelial migration 3/8 1.46e-04 ITGAM/CYBB/MMP9 3

KEGG hsa04145 Phagosome 3/8 3.42e-04 ITGAM/FCAR/CYBB 3
fron
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expression levels; these multiple factors were combined to predict

the survival of patients with sepsis in ICU. Using a calibration curve

fitted to patient 7-, 14-, 21-, and 28-day survival, we found that the

data were evenly arranged on the diagonal, indicating that the

nomogram had predictive value (Figures 9E, F).
3.9 CYBB and FCAR are critical targets for
treatment of sepsis

Bioinformatics analysis showed that CYBB and FCAR levels are

related to the survival of patients with sepsis. Therefore, we

collected 12 human whole blood samples(6 sepsis patiens and 6

healthy) and extracted RNA for analysis. CYBB and FCAR levels

were significantly elevated in sepsis patients compared with the

healthy group (Figure 10B).

In animal experiments, the mice were randomly divided into

two groups by rolling dice, a sham group and a sepsis group, with 5

mice in each group. After 2 days, mice were sacrificed and their

peripheral blood collected for RT-qPCR analysis. Notably, CYBB

expression was increased in CLP group animals relative to controls

(Figures 10A, C). According to the results of our drug prediction

analysis, we identified three drugs predicted to target both FCAR
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and CYBB (Figure S8): 3,4,5,3,4 ’-pentachlorobiphenyl,

antirheumatic agent, and sulforaphane(SFN), of which 3,4,5,3,4’-

pentachlorobiphenyl is listed as a class 1 carcinogen by the World

Health Organization, while antirheumatic drugs and SFN have

potential to contribute to improvement of survival in patients

with sepsis in the future. SFN is an isothiocyanate abundant in

broccoli, and a common antioxidant that can both exert anti-

inflammatory effects through the Nrf2/ARE pathway (23) and

inhibit TNFa via RhoA/ROCK signaling (24). In a study of 45

people administered SFN for 14 days, 60% of patients with asthma

showed improvement in symptoms and a significant reduction in

airway resistance (25). In another study, macrophages were isolated

from patients with chronic obstructive pulmonary disorder (n = 43)

treated by SFN, and the results showed that macrophages increased

the bacteria clearance rate by 40%–95%, and that inflammatory

indicators were also reduced (26). Furthermore, SFN can improve

the survival rate of mice with sepsis (27), and the drug has been

tested in various clinical trials (28). In order to evaluate the specific

location where SFN acts in the CYBB protein, we performed

molecular docking analysis predictions. Using Autodock Vina

v.1.2.2 (29), we obtained the binding pose and interactions

between SFN and the CYBB protein. Our results indicate that

SFN can bind to three sites in CYBB, namely MET902, LEU905,
B

C D

A

FIGURE 6

Functional network construction. (A) Correlation analysis of 7 core genes was performed. (The red line represents positive correlation, the green line
represents negative correlation, the darker the color, the stronger the correlation). (B) Protein correlation analysis of 7 core genes using string database.
(C) Use Regnetwork (https://regnetworkweb.org/) to predict miRNAs and transcription factors (TFs) upstream of 7 genes, and use cytoscape software for
visualization. (D) Use NetworkAnalyst (https://www.networkanalyst.ca/) to analyze the relationship between hub gene and drug.
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and ASP967, with a low binding energy of -3.632 kcal/mol

(Figure 10F). Accordingly, we predict that SFN may be widely-

used to treat patients with sepsis in the future.

We found that both CYBB and FCAR were expressed at high

levels in normal human lung tissues (Figure S7), while FCAR was

not expressed in murine tissues. Therefore, we administered SFN to

further investigate use of this drug as a potential therapeutic

strategy targeting CYBB signaling in mouse. The mice were

divided into three groups, a sham group, a sepsis group, and a

sepsis+SFN group, with 4 mice in each group.RT-qPCR showed

that SFN suppressed CYBB expression in vivo (Figure 10E),

Meanwhile, there was no significant change in the expression of

neutrophil Ly6G (Figures 10D, 11D, E). Since CYBB is mainly

expressed in the lungs in humans, we focused on the changes in

lung injury caused by sepsis (Figure 11). and used American

Thoracic Society work report method to assess lung injury (30).

We then observed the pharmalogical effects on the liver, heart,

spleen, and kidneys of septic mice (Figure 12).

Immunofluorescence(IF) analysis revealed that SFN

significantly reduced sepsis-related lung injury by decreasing

levels of NETs, but not wet/dry ratio of the lungs, balf cell count

or balf protein concentration (Figures 11A–C).
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To exclude the possibility that SFN influenced the number of

neutrophils and macrophages, we next undertook FACS to count

numbers of Ly6G+ cells and F4/80 + cells in BALF (Figures 11D–F).

The results showed that there were no significant differences

between the control and SFN groups, consistent with lung tissue

Ly6G mRNA expression analysis (Figures 11G, H). In addition, we

observed by IF that administration of SFN significantly contributed

to alleviated sepsis-induced lung injury and apoptosis, accompanied

by reduced (Figures 11I–N). Of note, our data confirmed that SFN

also reduced NETs-related injury in organs such as liver,kidney,

spleen but not heart (Figures 12A–G). These findings were

consistent with the results of the TUNEL assay(Figures 12 H–L),

further supporting the potential therapeutic value of SFN in treating

sepsis-induced multi-organ damage.Thus, our data demonstrated

the effects of CYBB inhibition on sepsis induced NETs-related

multiple organs injury.
4 Discussion

The main purpose of this study was to identify key genes related

to sepsis NETs using machine learning and verify them with in vivo
FIGURE 7

The expression changes of 7 core genes in the KEGG NETs pathway (red means increased, green means decreased).
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experiments. Our data broaden understanding of the

physiopathology and molecular mechanisms underlying sepsis,

and provide new targets for sepsis treatment. We performed

statistical analyses of two datasets (training and validation sets)

using the limma package in R language to identify differentially

expressed mRNAs. In the GSE65682 dataset, we detected 4931 up-

and 4041 down-regulated genes. GO and KEGG analyses

demonstrated that the DEGs were enriched for the mitochondrial

matrix CC, consistent with previous research from our team on

liver ischemia-reperfusion. Topological mapping showed that

biological pathways including leukocyte cell-cell adhesion and

lymphocyte differentiation were also enriched. Significantly

associated genes and module membership were also assessed by

WGCNA and three modules related to sepsis were screened. GO

enrichment analysis of the genes in these three modules

demonstrated that they were related to neutrophil activation

involved in immune response, neutrophil-mediated immunity,

ribonucleoprotein complex biogenesis, ATPase activity, and

neutrophil degranulation, among other processes (Figure S3D).

Based on these findings, combined with our previous research

experience, we speculated that some key genes involved in NETs

production during sepsis may play a role in the modules screened as
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important; therefore, we took the intersection of DEGs, key module

genes, and NETs-related genes for functional analysis. Moreover,

machine learning was applied to narrow down the eigengenes.

Furthermore, to verify the selected signature genes GSEA,

interaction, and PPI analyses were conducted to study the

connection between NETs-associated genes and sepsis. Web-

based tools were also used to predict miRNAs and TFs that

regulate the seven screened genes related to sepsis NETs, and to

predict drugs that can target the genes. Analysis of the GSE65682

dataset indicated that immune infiltration has an important role in

sepsis, and that neutrophils were significantly upregulated in sepsis.

Additionally, the GSE145227 dataset was selected for use in

verification analysis and to explore the clinical significance of the

seven genes identified as related to sepsis NETs (S100A12, SLC22A4,

FCAR, CYBB, PADI4, DNASE1, MMP9), which all had diagnostic

significance. In particular, CYBB and FCAR were significantly

associated with survival in patients with sepsis, and both genes

were validated using animal experiments and analysis of

clinical specimens.

Several previous studies have linked FCAR and CYBB to sepsis.

FCAR encodes a transmembrane glycoprotein receptor in the Fc

region of IgA, which is highly expressed in neutrophils. Wehrli et al.
B
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FIGURE 8

Assessment of the extent of immune cell infiltration using data from GSE65682. (A) Correlation between sepsis and immune cell infiltration. (B) Differences in
immune cell infiltration between sepsis and healthy groups. (C–E). Display of individual genes and immune infiltration. (*p<0.05, **p<0.01, and ***p<0.001
and ns means not significant).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1253833
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


You et al. 10.3389/fimmu.2023.1253833
(31) found that FCAR can stimulate changes in cells, including

cytoplasmic vacuolization, mitochondrial swelling, and nuclear

pyknosis. Further, FCAR can regulate neutrophil activity and

induce various forms of neutrophil death, consistent with the

results of our research. As shown in Figure 7, research on NETs

to date has focused on IgG, but IgA, as the second largest immune

protein, also plays a key role in inflammatory immunity, similar to
Frontiers in Immunology 14
FCgR, which can lead to recruitment of the downstream tyrosine

kinase, SYK, which causes inflammatory damage (32). Different

from FCAR, CYBB, also known as NOX2, has been extensively

studied in sepsis.Giusy Tiseo et al. discovered that levels of soluble

NOX2-derived peptides were significantly elevated in sepsis

patients and septic shock patients compared to healthy controls,

and a stair-like increase was observed between the two patient
B

C

D

E

F

A

FIGURE 9

The roles of CYBB and FCAR in the diagnosis and prognosis of sepsis. (A) Use a heatmap to display the differential expression of 7 genes in two data
sets (the value represents the logFC value of the differential analysis). (B) 7 genes predict the ROC curve of Sepsis (GSE65682 and GSE145227).
(C) Survival analysis of CYBB in GSE65682 (only those with high expression and poor prognosis, p less than 0.05). (D) Survival analysis of FCAR in
GSE65682. (E) Multivariate nomogram analysis (F) 7,14,21,28-day survival rate calibration curve.
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groups. The deceased group showed a tendency towards higher

levels of soluble NOX2-derived peptides compared to the survival

group, which was consistent with the results of our study (33).

Additionally, Joseph LC et al. found that NOX2 increases oxidative

stress, leading to mitochondrial dysfunction and septic myocardial

injury (34). Further studies found that CYBB can lead to an increase

in NETs by stimulating ROS (35). Previous research in our
Frontiers in Immunology 15
laboratory demonstrated that changes in mitochondrial

permeability transition pore (mPTP) can affect mitochondrial

ROS and thus NETs generation. Further, we used bioinformatics

analysis to predict that elevated CYBB will lead to increased mPTP,

thereby increasing NETs. Husain et al. (36) found that inhibiting

CYBB could not only reduce neutrophil immunosuppression in

critically ill patients with sepsis, but also reduce sepsis bacterial
B C
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FIGURE 10

The validation of CYBB and FCAR in both humans and animals, and the validation of SFN in animals. (A) Sepsis modeling process. (B) Expression of
NETs-related genes in peripheral blood of sepsis mice (n=6/group). (C) Expression of NETs-related genes in peripheral blood of septic patients (n=3/
group). (D) The relative expression level of Ly6G RNA in mouse blood. (E) The relative expression level of CYBB RNA in mouse blood. (n=4/group,
Data are presented as the means ± SE, *p<0.05, **p<0.01, and ns, not significant). (F) Prediction of the location of SFN’s action in the CYBB protein.
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FIGURE 11

SFN reduce pulmonary NETs and CYBB, thereby repaired sepsis-
induced lung injury. (A) Wet/dry ratio of mouse lung. (B) Cell count in
bronchoalveolar lavage fluid (BALF) from mouse.(n=4/group).
(C) Protein concentration in BALF from mouse. (D) Detection of Ly6G
+ and F480+ cells in mouse BALF using flow cytometry.
(E) Comparison of the number of Ly6G+ cells in mouse BALF using
flow cytometry. (F) Comparison of the number of F480+ cells in
mouse BALF using flow cytometry.(n=4/group). (G) Measurement of
CYBB expression in mouse lung using qPCR. (H) Measurement of
Ly6G expression in mouse lung using qPCR. (I) HE staining and local
magnification of mouse lung (Upper scale bar=100 mm, The bottom
scale bar=50um,n=4/group). (J) Comparison of lung injury score of
mouse lung HE staining. (K) Immunofluorescence staining of mouse
lung (H3cit in green, Ly6G in red, DAPI in blue, Scale bar=100 mm). (L)
Comparison of NETs expression intensity in mouse lung
immunofluorescence staining (M) TUNEL staining of mouse lung. (N)
Comparison of the number of TUNEL-positive cells in three groups of
mouse lung after TUNEL staining (Data are presented as the means ±
SD. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, and ns means not
significant).
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FIGURE 12

SFN alleviates sepsis-induced multi-organ damage by reducing the
formation of NETs and decreasing apoptosis. (A) HE staining of mouse
liver, heart, spleen, and kidney.(liver and spleen Scale bar=100 mm,heart
and kidney Scale bar=50µm). (B) Evaluate the liver injury status of
sepsis-induced liver histopathology (HE slides) using the Suzuki
score.(n=4/group). (C) Immunofluorescence staining of mouse liver,
heart, spleen, and kidney (Ly6G in red, H3-cit in green, DAPI in blue,
Scale bar=100 mm, n=4/group). (D) Expression of NETs in liver cells. (E)
Expression of NETs in heart cells. (F) Expression of NETs in spleen cells.
(G) Expression of NETs in kidney cells. (H) TUNEL staining of mouse
liver, heart, spleen, and kidney to observe apoptosis(n=4/group,Scale
bar=100 mm). (I) Comparison of TUNEL-positive cells in mouse liver. (J)
Comparison of TUNEL-positive cells in mouse heart. (K) Comparison of
TUNEL-positive cells in mouse spleen. (L) Comparison of TUNEL-
positive cells in mouse kidney (Data are presented as the means ± SD.,
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, and ns means not
significant).
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infection and organ damage, similar to the findings of our study.

Inhibition of CYBB can also inhibit microglial activation and

improve cognitive impairment after sepsis (37), as well as

promoting sepsis myocardial injury through the ERK1/2-TNFa
pathway (38).

The formation of NETs is currently believed to occur through

three pathways. In the first pathway, induced by Staphylococcus

aureus, neutrophil nuclear membranes rupture, and vesicles form,

encapsulating DNA that is transferred to the cell membrane. These

vesicles then fuse with the cell membrane, releasing the enclosed

DNA into the extracellular space, thus forming NETs. This process

typically takes 30 to 60 minutes (39). In this pathway, the

neutrophil’s nucleus and cell membrane remain intact, preserving

the cell’s activity and phagocytic function. Consequently, it is also

known as active NETs (40). The second pathway involves

neutrophil nuclear membrane degradation mediated by phorbol

myristate acetate (PMA). In this process, the chromatin within the

neutrophil condenses, leading to eventual cell lysis after

approximately 3 to 4 hours (41). This pathway is characterized by

activated neutrophils undergoing chromatin decondensation and

subsequent cell death, and is thus referred to as suicidal NETs.The

third pathway is a ROS-dependent mechanism in which neutrophils

release mitochondrial DNA to form NETs. This process is

associated with changes in ROS-induced NADPH (42). While

PAD4 is an important target and CI-Amidine has demonstrated

efficacy in reducing NETs and improving sepsis, its role in

inhibiting NET formation in the mitochondrial NETs pathway is

limited (9). As described in Figure 7, CYBB can increase ROS and

mtROS levels through NADPH, thereby influencing the generation

of mitochondrial pathway NETs. This can further enhance

therapeutic efficacy and reduce adverse outcomes of NETs-

associated inflammatory diseases.

Our study had some limitations. First, a larger patient cohort

was warranted. Although we verified the gene expression findings in

mice, in an effort to overcome the inherent limitations of

bioinformatics technology, we must recruit more patients in

future studies. Second, our data on NETs-related genes are based

on bioinformatics predictions, which have a high false positive rate;

therefore, more experimental data are needed to validate our

findings. Finally, the infection period of sepsis was not explored

in the study as this information was not included in the GEO data,

and NETs behave differently during different periods; hence, more

detailed clinical information should be included in future analyses.

Together, we illustrated by machine learning that CYBB and

FCAR were significantly associated with sepsis-related mortality.

Our study demonstrated the therapeutic potential of targeting the

two NETs-related genes in treatment of sepsis.
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