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is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 08 September 2023

DOI 10.3389/fimmu.2023.1253667
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Introduction: Neutrophil extracellular traps (NETs) are web-like structures

composed of nuclear and granular components. The primary role of NETS is

to prevent the dissemination of microbes and facilitate their elimination.

However, this process is accompanied by collateral proinflammatory adverse

effects when the NET release becomes uncontrollable, or clearance is impaired.

Although NET-induced organ damage is conducted primarily and indirectly via

immune complexes and the subsequent release of cytokines, their direct effects

on cells are also remarkable. NETosis plays a critical pathogenic role in several

renal disorders, such as the early phase of acute tubular necrosis, anti-neutrophil

cytoplasmic antibody-mediated renal vasculitis, lupus nephritis, thrombotic

microangiopathies, anti-glomerular basement membrane disease, and diabetic

nephropathy. Their substantial contribution in the course of these disorders

makes them a desirable target in the therapeutic armamentarium. This article

gives an in-depth review of the heterogeneous pathogenesis and physiological

regulations of NETosis and its pivotal role in renal diseases. Based on the

pathogenesis, the article also outlines the current therapeutic options and

possible molecular targets in the treatment of NET-related renal disorders.

Methods: We carried out thorough literature research published in PubMed and

Google Scholar, including a comprehensive review and analysis of the

classification, pathomechanisms, and a broad spectrum of NET-related kidney

disorders.

Conclusions: NETosis plays a pivotal role in certain renal diseases. It initiates and

maintains inflammatory and autoimmune disorders, thus making it a desirable

target for improving patient and renal outcomes. Better understanding and

clinical translation of the pathogenesis are crucial aspects to treatment, for

improving patient, and renal outcomes.
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NETosis, neutrophil extracellular traps, renal diseases, lupus nephritis, ANCA
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1 Introduction

Neutrophil granulocytes are crucial members of innate immunity.

Their antimicrobial arsenal includes 1) the release of granular proteins

such as neutrophil elastase (NE) and myeloperoxidase (MPO), 2) the

phagocytosis via the production of reactive oxygen species (ROS) inside

the phagosome, and 3) the formation of neutrophil extracellular traps

(NETs) (1–3).

NETs are web-like structures of nuclear and granular

components released from the membrane of activated

neutrophils. The granular components are the contents of the

primary (azurophilic) granules, such as NE, cathepsin G, MPO,

and LL-37 (cathelicidin) as well as the secondary and tertiary

granules (lactoferrin, gelatinase) (4). Highly decondensed

chromatin fibers and citrullinated histone proteins make up the

majority of the nuclear components. Four main forms of NETosis

(the mechanism of releasing NETs) are known today: lytic

(suicidal), non-lytic (vital), caspase 11/4-mediated, and

mitochondrial NETosis.

Traditionally, cell death is categorized either as accidental or

programmed cell death. Accidental cell death – necrosis – is an

uncontrolled process that occurs as a result of an overwhelming

stimulus that is accompanied by inflammatory responses caused by

releasing components of the dying cell such as heat shock proteins,

uric acid, and nuclear proteins. Programmed cell deaths include

apoptosis, pyroptosis, necroptosis, and autophagy. Apoptosis occurs

in non-inflammatory conditions and is precisely conducted by a

cascade of molecular events (membrane blebbing, size reduction,

chromatin condensation, and DNA fragmentation) ended with the

engulfment of the granule-packed cellular components by

phagocytes, without breaking the cell membranes (5). Pyroptosis

is a process, driven by the inflammasome and Gasdermin-D, during

which the cell swells until its membrane eventually breaks down (6).

Necroptosis is a lytic form of cell death and mimics both the

characteristics of apoptosis and necrosis and it is mediated by the

receptor-interacting protein kinase (RIPK3) and the mixed lineage

kinase domain-like (MLKL) pseudokinase. During autophagy, the

primary role is to meet metabolic needs and to recycle certain

cytoplasmic proteins and organelles by engulfing and covering them

in vesicles that fuse with lysosomes to digest their contents. In

contrast to the other canonical forms of programmed cell death,

NETosis can proceed differently depending on the stimuli and the

environment (7, 8).

The first evidence of NETosis was described in 1996 by Takei

et al., who found that phorbol-12-myristate-13-acetate (PMA)-

induced neutrophils died by a previously unknown mechanism

other than apoptosis or necrosis (9). Later, in 2004, Brinkmann et al.

revealed that activated neutrophils release their nuclear and

granular contents to the extracellular space, where they form a

web-like network to immobilize and kill bacteria (4). It is well-

known that NETs can bind microbes to prevent them from

spreading and eliminate them, but they may also convey

unfavorable effects in tissue damage, atherosclerosis, thrombosis,

or malignancies (10–12).
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Furthermore, the role of NETosis was already described in

autoimmune conditions. Enhanced production or decreased

clearance of the NETs causes dysregulated immunity, autoantigen

modification and externalization, and tissue damage (13). The

importance of NETosis has been demonstrated in the

pathogenesis of a variety of disorders, such as systemic lupus

erythematosus (SLE), rheumatoid arthritis (RA), antineutrophil

cytoplasmic antibody (ANCA)-associated vasculitis (AAV),

psoriasis and gout (14).

In this review article, we summarize the heterogeneous

pathogenesis and physiological regulations of NETosis and its

pivotal role in renal diseases. Based on the pathogenesis, the

article also discusses current therapeutic options and possible

molecular targets in the treatment of NET-related renal disorders.
2 Pathomechanisms

2.1 Lytic (suicidal) NET formation

The most extensively studied type of NET formation is called

“suicidal” or “lytic”, also referred as NETosis. This is indeed a form

of cell death because once the neutrophils release their contents,

they eventually perish (Figure 1A).

Based on the involvement of nicotinamide adenine dinucleotide

phosphate (NADPH)-oxidase, lytic NETosis was used to be divided

into NADPH-dependent and NADPH-independent forms. Later it

became clear that the NADPH-independent pathway is conducted

by mitochondrial ROS (mtROS) production, hence, the term,

“NADPH-independent” was modified to “mitochondria-

dependent NETosis” (15). On the other hand, since NADPH-

oxidase may be induced by mtROS - NADPH-oxidase can engage

in both processes.

Furthermore, triggering stimuli have a pivotal role and the

signalization of NETosis depends on them. Proteomic analysis

showed diversity in terms of NET-constitution and post-

translational modifications, which suggests that the stimulus

determines the biological effects (16).

Conventional lytic NETosis is usually initiated by complement

proteins (such as C3b, C5a), cytokines, and ligands binding to Toll-

like receptors (TLR) or IgG-Fc receptors (17). Upon receptor

activation, calcium storage is released from the endoplasmic

reticulum. Increased cytoplasmic calcium levels activate protein

kinase C (PKC) via the RAF-MEK-MAPK/ERK signaling pathways

and induce the phosphorylation of gp91phox. This stimulates the

membrane-bound subunits of NADPH-oxidase to assemble into

the functional enzyme in the cytoplasmic or phagosome

membranes. Thus, the reactive oxygen species (ROS) generation

is initiated (18, 19).

Simultaneously, the disintegrated azurophilic granules, MPO,

NE, and other lytic enzymes are released into the cytosol. By

oxidizing it, MPO facilitates the release of NE into the cytoplasm,

however, the exact role of the lytic enzymes in this process still

needs to be elucidated (20, 21).
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The cytosolic fibrous network also falls victim to degradation.

The disassembly of actin and vimentin molecules is promoted by

calcium influx. Activated by calcium level increase and

citrullination, calpain - a serine protease – facilitates the

decondensation of micro- and intermedier filaments and nuclear

lamin as well (22). The intactness of the microtubular network,

however, does not affect the NETosis (23). NE binds and degrades

the actin fibers (preventing concurrent phagocytosis), thus making

its way to the nucleus. Cooperating with Gasdermin-D, NE
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destructs the nucleus envelope and enables water influx (21).

Here NE proceeds to cleave histones which eventually leads to

chromatin decondensation (24–26).

By binding calcium ions or activated by ROS, protein-arginine

deiminase 4 (PAD4) adopts its catalytically active form. PAD4

translocates to the nucleus which induces citrullination of the

arginine amino acids, thus reducing the positive charge and

loosening the histone-DNA interaction. PAD4 also has direct

effects on chromatin decondensation via inhibition of linker
FIGURE 1

The forms of NETosis. (A) Lytic (suicidal) NET formation. By the activation of TLR (e.g., TLR2, TLR4, TLR7, TLR9) or IgG-Fc receptors (FcgRIIa and/or
FcgRIIIb) calcium is released from the ER, activating PKC via the RAF-MEK-MAPK/ERK pathway. PKC triggers the assembly of the membrane-bound
subunits of NADPH-oxidase, which starts generating ROS. ROS and/or calcium activates PAD4, which translocates to the nucleus and induces the
citrullination of arginine amino acids, loosening the histone-DNA interaction, and inhibits the H1 histone-mediated compaction causing chromatin
decondensation. Simultaneously, enzymes (MPO, NE) are released from the granules. NE and the calcium-activated calpain degrade the cytosolic
filamentous network and the nuclear lamina. With the participation of Gasdermin-D, NE destructs the nuclear envelope and enables water influx. NE
cleaves histones causing further chromatin decondensation. Eventually, Gasdermin D-mediated pore opening of the plasma membrane leads to the
externalization of the DNA, cytosolic and granular proteins. (B) Non-lytic (vital) NET formation. Different stimuli induce non-lytic NET formation, like
bacteria, and fungi via TLRs (e.g., TLR2, TLR4, TLR7, TLR9) or complement receptors (e.g., CR1, CR3, CR4, C5aR1). Calcium influx starts through the SK-
channels leading to PAD4 and NE activation. They translocate to the nucleus and decondense the chromatin. Unlike lytic NETosis, NADPH oxidase is not
involved in the process, and the nuclear content is released from the cell in vesicles. It takes approximately 5-60 minutes, compared to the lytic form,
which takes about 3-4 hours. (C) Caspase-mediated NETosis. LPS activates caspase-11/4 via an uncanonical inflammasome pathway. Then caspase-11/4
activates Gasdermin D, which starts forming pores on the nuclear-, plasma- and granular membranes, enabling calcium influx and NE, MPO release.
Caspase-11/4 enters the nucleus and cleaves histones, while the calcium-activated PAD4 citrullinates the arginine amino acids. Although NE, MPO, and
PAD4 facilitate the process, their activities are not prerequisites for NETosis. (D) Mitochondrial NETosis. LPS, GM-CSF, C5a or IC induction elevates
cytosolic calcium level, which opens SK channels and leads to mtROS production, and mitochondrial DNA release. ER, endoplasmatic reticule; DNA,
deoxyribonucleic acid; GM-CSF, granulocyte-macrophage colony-stimulating factor; IC, immune complexes; IgG-FcR, immune globulin G – fragment
crystallizable receptor; LPS, lipopolysaccharides; MPO, myeloperoxidase; mtROS, mitochondrial reactive oxygen species; NAPDH oxidase, nicotinamide
adenine dinucleotide phosphate oxidase; NE, neutrophil elastase; PAD4, protein arginine deiminase 4; PKC, protein kinase-C; ROS, reactive oxygen
species; SK-channels, small conductance calcium-activated potassium channels; TLR, Toll-like receptor.
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histone-mediated compaction (23). Ultimately, these processes lead

to the decondensation of the chromatin structure (27, 28).

Gasdermin D-mediated pore openings induce the progressive

permeabilization of the plasma membrane which leads to the

externalization of the DNA, cytosolic and granular proteins (29).

Of note, pore formation changes the intracellular calcium gradient,

which further promotes PAD4 activation (30).
2.2 Non-lytic (vital) NET formation

During “vital” or “non-lytic” NET formation neutrophils

maintain their viability and antimicrobial functions (e.g.,

engaging in recruitment, chemotaxis, and phagocytosis) after they

release the nuclear or mitochondrial DNA (Figure 1B).

Non-lytic NETosis is initiated by the detection of stimuli of

complement receptors and activated platelets. Staphylococcus aureus,

Escherichia coli, and Candida albicans can also cause non-lytic NET

formation by activation of complement receptor (CR) -1, -3, -4 and

TLR - 2, -4 ligands NADPH independently. Calcium influx starts

through the small conductance potassium channel member three (SK)

and activates PAD4 and NE. They translocate to the nucleus where

they decondense the chromatin. Eventually, chromatin is expelled to

the extracellular space by vesicular transport, in which the blebs fuse

with the plasma membrane again. This mechanism maintains the

integrity of the plasma membrane and the anucleated neutrophils

(cytoplasts) stay alive, keeping their ability to do their antimicrobial

functions: migrate and phagocytose. This process takes approximately

5-60minutes, compared to the lytic form of NETosis, which requires 3-

4 hours (20).
2.3 Other types of NETosis

The third form of NET formation is conducted by caspases.

Cytosolic lipopolysaccharide (LPS) induction of neutrophils

activates murine caspase-11 or the human ortholog caspase-4 via

an uncanonical inflammasome pathway to enable Gasdermin D

cleavage into the pore-forming fragments. Upon entering the

nucleus, caspase-11/4 degrades the histones and chromatin.

Gasdermin D forms pores on granules as well, liberating NE/

MPO. Calcium influx through the pores activates PAD4 and

citrullinates histones. Although NE, MPO, and PAD4 facilitate

the process, their activities are not prerequisites for NETosis –

caspase-induced chromatin cleavage converges in a similar

molecular pathway as lytic NETosis (31) (Figure 1C).

Another pathway that leads to NETosis is the Ca2+-ionophore-

induced mitochondrial ROS (mtROS) production. Elevated

cytosolic calcium level opens SK channels, mediates mtROS

production, and induces apoptosis and NET formation (15, 32).

Granulocyte-macrophage colony-stimulating factor (GM-CSF),

LPS, complement component 5a (C5a), or ribonucleoprotein-

containing immune complexes also activate neutrophils to release

mitochondrial DNA and ROS (33). Oxidized mtDNA has potent
Frontiers in Immunology 04
proinflammatory and type I interferon stimulatory properties that

seem to play a pivotal role in the pathogenesis of lupus nephritis

(LN) (34). Although mtROS-induced NETosis is known as

NADPH-oxidase-independent NETosis, the crosstalk with

NADPH-oxidase to produce additional ROS has already been

demonstrated (32) (Figure 1D).

In conclusion, the contribution of PAD4 and ROS are the most

relevant factors to group the processes. Lytic NETosis is ROS-

dependent, and the participation of PAD4 is not obligatory, while

non-lytic NET formation occurs in the absence of ROS with the

important role of PAD4. Table 1 summarizes the main

characteristics of NET formation.
2.4 Clearance of NETs

The control of NET formation and elimination is inevitable to

maintain tissue homeostasis. Lytic neutrophil remnants are mainly

taken up by macrophages. NET-contents function as danger-

associated molecules and they are recognized by membrane-bound

receptors (intracellular adhesion molecule 1, 3, liver X receptor, Mer

tyrosine kinase) or soluble pattern recognition proteins (galectin-3, C3,

C1q, annexin A1, factor-H related protein, C-reactive protein,

clusterin, milk fat globule EGF factor 8). Scavenging macrophages

identify NETotic neutrophils by “eat-me” signals or by the loss of

“don’t eat-me” signals and phagocytosis takes place. Interestingly,

neutrophil LL-37 interacts with extracellular anionic molecules such

as dsDNA or dsRNA and aids their uptake bymacrophages. Typically,

the degradation of the apoptotic (and the NETotic) neutrophils creates

a net anti-inflammatory microenvironment, hence this process differs

from the traditional phagocytosis, so the term, “efferocytosis” was

coined (35). After NETosis, interferons and other proinflammatory

cytokines prime macrophages to M1 macrophages. M1 macrophages

are characterized by the ability to secrete inflammatory cytokines and

costimulatory molecules. Furthermore, upon interaction with NETs,

M1 macrophages release DNA in a PAD4-dependent manner (36).

Hence, they not only phagocyte the intercellular debris but also

exacerbate inflammation. However, over time, M1 macrophages also

activate their own caspase-activatedDNase to degrade the surrounding

extracellular DNA, and, the macrophage phenotype shifts toward an

anti-inflammatory effector function, to the M2 macrophages (36).

Although the molecular background of phenotype shifting is not fully

unraveled, a crosstalk between the M1 and M2 polarizing pathways is

proved. The increase of cell death byM1macrophages is recognized by

M2 phenotypes and they establish a predominantly anti-inflammatory

milieu, therefore, themicroenvironment commits to tissue remodeling

and immune tolerance (37–39). Interestingly, M2 macrophages also

contribute to the initial M1 polarization by releasing inflammatory

cytokines upon encountering NETs (36). This highlights that

macrophages could be further subdivided based on their functionally

distinct roles (40).

The complement system also facilitates the clearance of cellular

debris. All three complement pathways are involved in the removal

of NETs; however, the classical pathway components, C3, C4, C5,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1253667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Juha et al. 10.3389/fimmu.2023.1253667
and C1q have a higher affinity toward secondary necrotic cells like

NETs. They either interact directly with DNA and mitochondrial

DAMPs (damage-associated molecular patterns) or via immune

complexes. Complement members do not only take part in

opsonization but also aid the removal of NET remnants by

activating serine proteases C1r and C1s (35).

Since DNA forms the backbone of NETs, DNases are central

participants in degradation and digestion. The DNase complex

contains three different enzymes (DNase I, DNase II, and DNase1-

like 3 protein) with different functions (41). DNase I is responsible for

the removal of protein-freeDNA;whileDNase1-like 3 protein degrades

protein-associated DNA, including DNA packed in microvesicles, and

DNase II digests the DNA from apoptotic cells (41, 42). Plasminogen,

on the other hand, penetrates necrotic cells, accumulates in the

cytoplasm and nucleus, and activates plasmin by tissue-type or

urokinase-type plasminogen activator. Plasmin degrades histone H1

and facilitates internucleosomal DNA cleavage by DNase1 (43).

During NETosis, a substantial amount of serine proteases (e.g.,

PR3, MPO, NE, cathepsin G) are released into the extracellular

space increasing the detrimental effects. To oppose this,

ceruloplasmin disrupts MPO and limits MPO-dependent ROS

generation, and alpha1-antitrypsin inhibits NE, PR3, and

cathepsin G by forming complexes with them (44, 45).
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3 The pathological roles of NETosis

3.1 Autoimmunity

While the beneficial effects of NETs have long been recognized,

more recent studies have revealed that NETs also play a role in

various pathological conditions, some of which may not be

beneficial. The possibility that NETs may be involved in

autoimmune diseases was initially suggested in 2004 by

Brinkmann et al., leading to an increase in research on the subject

(4). The role of NETosis in systemic lupus erythematosus (SLE),

rheumatoid arthritis (RA), and ANCA-associated vasculitis (AAV)

is well known today, but authors suggest that NETosis may also play

a crucial role in other autoimmune and autoinflammatory

conditions, such as type 1 diabetes mellitus, inflammatory bowel

disease, gout, antiphospholipid syndrome, and in other rheumatic

diseases (46–50).

Autoimmune diseases arise from the combination of genetic

and environmental factors. NETs can be involved in breaking

immune tolerance and triggering autoimmunity in a variety of

pathways. After the initiation of an environmental factor, the

propagation phase is characterized by inflammation and tissue

damage. NETs contribute to propagation by epitope spreading
TABLE 1 Comparison of NETosis forms.

Lytic (suicidal) Non-lytic
(vital)

Caspase-
mediated

Mitochondrial

Duration 3-4 hours 50-60 minutes depends on
stimuli

depends on stimuli (C. albicans: 30
min; mito-antigens: 3-4h)

Stimuli crystals (cholesterol, monosodium urate, calcium carbonate)
auto-Abs, ICs
viruses, bacteria, fungi, parasites
DAMPS (histone, LDL)
protein fibers
tumor cells
cytokines (TNFa, CXCL2, IL-1, IL-8, IL-18)
LPS, activated platelets, PAF
NO, H2O2
PMA

Bacteria: E. coli, S.
aureus
Fungi: C. albicans
LPS
IL-8
PAF
ICs
complements (e.g.,
C3b, C5a)

cytosolic LPS
cytosolic G(-)
bacteria

Ca2+-ionophores
GM-CSF
LPS
C5a
ribonucleoprotein-containing ICs
UV

Receptors TLRs (e.g., TLR2, TLR4, TLR7, TLR9), NOD-like Rs
C-type lectin Rs, complement Rs, FcRs (e.g., FcgRIIa and/or
FcgRIIIb), chemokine Rs (e.g., CXCR1, CXCR2 and CXCR4)
Siglec, RAGE, PSGL1

CRs (e.g., CR1, CR3,
CR4, C5aR1)
TLRs (e.g., TLR2,
TLR4, TLR7, TLR9)
activated platelets

to be identified to be identified
TLRs (e.g., TLR7, TLR9)
CRs (e.g., C5aR1)

ROS dependent independent independent (see
details in text)

mtROS-dependent

PAD4 independent dependent not obligatory

NE dependent not obligatory

MPO dependent not obligatory

In
disease

AAV sepsis, RA, cancer SLE, LN
Empty cells indicate that no matching data was found in the literature.
AAV, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis; C5a, complement 5a; CR, complement receptor; CXCL2, chemokine (C-X-C motif) ligand 2; CXCR, chemokine
receptor; DAMP, damage-associated molecular patterns; GM-CSF, granulocyte-macrophage colony-stimulating factor; H2O2, hydrogen peroxide; ICs, immune complexes; IL, interleukin;
mtROS, mithocondrial reactive oxygen species; LN, lupus nephritis; LPS, lipopolysaccharides; NE, neutrophil elastase; NO, nitrogen oxide; NOD, nucleotide oligomerization domain; PAD4,
protein arginine deiminase 4; PAF, platelet-activating factor; PMA, phorbol-12-myristate-13-acetate; PSGL-1, P-selectin glycoprotein ligand-1; R, receptor; RA, rheumatoid arthritis; RAGE,
receptor for advanced glycation end products; ROS, reactive oxygen species; SLE, systemic lupus erythematosus; TLR, Toll-like receptor; TNF-a, tumor necrosis factor alfa; UV, ultraviolet.
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and NET-forming cellular components (such as histones, DNA, and

granular proteins) can serve as autoantigens for later

antibody production.

Furthermore, NETs interplay with the adaptive immune

system. LL-37-DNA complexes enhance autoantibody production

on B-cells via TLR9 (51). Activated neutrophils release B cell-

activating factor (BAFF) which upregulates the CD21 and CD19

co-receptor expression and prolongs the B-cell survival by

decreasing proapoptotic proteins (52). The NET-derived

immunoglobulins bind to the FcgR of the neutrophils and initiate

further NETosis, creating a vicious circle (53). NETs prime CD4+

T-cells directly on T-cell receptors with a lower threshold, thus T-

cell response is increased upon suboptimal NET component

stimulation. On the other hand, T-cell response is also elicited in

a dendritic cell-mediated manner. NETs induce costimulatory

CD80 and CD86 on dendritic cells which interacts with T-cell

CD28 for activation and survival, as well as interleukin

(IL) production.

Interferon overproduction is a hallmark in the pathogenesis of

several autoimmune disorders. Plasmacytoid dendritic cells are the

primary interferon-producing cells, and they can be activated by

NET-induced LL-37, HMGB1 (high mobility group box 1 protein),

and DNA via TLR9 (54). NETs also mediate the activation of

caspase-1, leading to inflammasome activation via the NLRP3

(NOD-like receptor family, pyrin domain containing) in

macrophages. Inflammasome activation results in IL-18 and -1b
secretion which further promotes NET formation (55).

Autoimmunity also occurs in case of failure to remove apoptotic

and NETotic cells. As an example, NADPH-oxidase or PAD4

knock-out mice develop lupus-like disorders which contradict the

studies that suggested improvement in the case of administration of

NADPH-oxidase or PAD4 inhibitors in NET-related autoimmune

diseases (56). Both enzymes are required for cellular debris removal

by macrophages and the total absence of them exacerbates

autoimmunity instead of ameliorating it (57). Furthermore, DNA

accumulation as a result of the lack of DNase activity leads to

prolonged inflammation and the presence of NET autoantigens. In

susceptible individuals self-tolerance breaks, and an autoimmune

response develops (41).
3.2 Autoinflammation

Based on the current classification, autoimmune and

autoinflammatory diseases are positioned at opposite ends of a

spectrum. In autoinflammatory diseases, immune tolerance

remains intact and the pathomechanism is not driven by

autoantigen-autoantibody interactions. Local and external factors,

such as infections, mechanical damage, or temperature effects have

a significant impact in triggering the disease, leading to innate

immune responses and tissue damage (58, 59). These pathologies

can be classified based on their genetic origin, distinguishing

between monogenic and polygenic diseases, where the NF-kB, the
NLRP3 inflammasome, and the IL-1b pathway play an important

role in the signalization (60, 61).
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Based on Matzinger’s “danger-theory”, in autoinflammatory

diseases damage-associated molecular patterns (DAMPs) and

pathogene-associated molecular patterns (PAMPs) serve as trigger

factors for the innate immune system (62). Neutrophils engage in

the process, however, the exact role of NETosis is still elusive. The

various immunogenic proinflammatory factors released during

NETosis can maintain sterile inflammation as an amplification loop,

partly by stimulating the innate immune system to further recruitment

and cytokine production by netting DNA, histone, and antimicrobial

peptides; and partly via the activation of NLRP3-caspase 1

inflammasome system and IL-1b production (63, 64). matrix

metalloproteinase (MMP)-mediated endothelial injury is a direct

tissue-damaging consequence of histones and LL-37 (65). Prolonged

IL-1b and IL-18 production can trigger T-cell differentiation and IL-18

can induce T-helper 1 and B cells. Accordingly, in some immunological

cases, we can speak of autoinflammatory-autoimmune diseases of

mixed etiology (like juvenile idiopathic arthritis, rheumatoid arthritis,

Behcet’s disease, or adult-onset Still syndrome) (59, 66).
3.3 Thrombosis and atherosclerosis

Arterial and venous thrombotic and thromboembolic events can

also occur via NETosis. NETs can serve as a scaffold for platelets to

aggregate (10). Local hypoxia, NET compounds stimulate the

endothelium further to release procoagulant factors and promote

thrombus and NET formation. Additionally, tissue factor (TF) is

released along with DNA, activating the extrinsic coagulation cascade

pathway and increasing the risk of blood clots in the arterial and

venous systems (67, 68). Along with the immunogenic effects, NETs

also significantly contribute to vascular injury. Cytokines and

extracellular histones damage endothelial cells directly as well as

promote endothelial-mesenchymal transition (69). The NET-

compound MMP-9 activates endothelial MMP-2 leading to

endothelial cell death and augmenting the activity of collagenolysis,

while interferons inhibit the endothelial progenitor’s differentiation (65,

70). NET proteins also modify the high-density lipoprotein (HDL) via

oxidation, stirring it into a proatherogenic direction (71). Endothelial

cells have limited capacity to take up the remnants of NETs, and

persistent exposure to them provokes vascular leakage by demolishing

intercellular junction proteins (69). Ultimately, these changes result in

compromised endothelial function and vascular damage. Macrophages

are recruited to remove NETs and promote plaque formation (11).

Taken together, all these alterations lead to atherosclerotic diseases and

an augmented potential to rupture and thrombus formation.
3.4 Tumorigenesis

The cancerogenic and tumorigenic roles of NETosis were observed

as well (72). NETs can be found in large quantities around the

tumorous microenvironment. NETs abolish tumor cells through

their lytic enzymes and disrupt the extracellular matrix and

intercellular connections, which can facilitate the migration of tumor

cells (12, 73). NETs also assist the spread of cancer by capturing and
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helping metastatic cells to adhere to the tissue. They can also serve as a

physical barrier, protecting tumor cells from cytotoxicity (73).
3.5 Kidney injury

The effect of NETosis on renal cells is primarily conducted by

the immune complexes and the consequently induced cytokines.

However, the direct effect of NETosis on renal cells is not fully

elucidated and only a limited number of studies are available. The

releasing endogenous antigens from NETs are aggravating the

inflammation since they act as DAMPs and further prime
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neutrophils and trigger NET production (37). Most importantly,

extracellular histones convey significant cytotoxic effects with

cytokines such as interferon and induce epithelial-mesenchymal

and PEC (parietal epithelial cell) progenitor proliferation, thus

crescent formation (74). Histones activate TLR-2,4 and NLRP3.

NLRP3 mediates caspase-1 molecular complex (inflammasome)

activation and promotes IL-1 and IL-18 cleavage to mature forms.

Caspase-1 elicits pyroptosis in endothelial cells and it also

contributes to platelet activation, aggregation, and microthrombus

formation thus hemodynamic disturbances (75). NETs cause

changes in the slit diaphragm-associated proteins, such as

podocin and nephrin, provoking podocyte effacement and
FIGURE 2

The effects of NETosis in kidney injury. (A) Crescent formation. Some NETosis products, such as histones and cytokines cause crescent formation by the
induction of epithelial-mesenchymal and PEC progenitor proliferation. (B) Thrombosis. NETosis is heavily involved in clot formation. Besides NETs can serve
as a scaffold for platelets, their contents damage the endothelium directly, oxidize HDL and stir it towards a proatherogenic direction, demolish the
intracellular junctions and provoke vascular leakage, as well as stimulate the endothelium for further procoagulant factor (TF) release. (C) Podocyte foot
process effacement. NETs disrupt the integrity of the slit-diaphragm by damaging the junctional proteins (podocin and nephrin), leading to the dysfunction of
the glomerular filtration barrier, and causing proteinuria. (D) Mesangial proliferation. NETs cause ECM proliferation and the increment of mesangial cell count,
leading to fibrosis. (E) Tubular injury. NETs play multiple roles in maintaining the destructive loop of tubular injury. NETosis-associated cytokine release causes
tubuloepithelial cell necrosis, while histones have direct cytotoxic effects and help to prime neutrophils for further NETosis. ECM, extracellular matrix; HDL,
high-density lipoprotein; NET, neutrophil extracellular traps; PEC, parietal epithelial cells; TF, tissue factor.
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inducing consequential proteinuria. They induce podocyte cell

hypertrophy, mitotic catastrophe, and eventually podocyte cell

death as well (76). NETs hasten tubular epithelial cell apoptosis

and further NET formation (74, 77) (Figures 2A-E).
4 Renal disorders with NET formation

One of the major objectives of this review was to summarize

renal diseases in which NET formation is involved in the

pathogenesis of the diseases. In the following paragraphs, we

elaborate on these renal disorders.
4.1 SLE and lupus nephritis

SLE is a multiorgan autoimmune disease characterized by the

dysregulation of both the innate and adaptive immune systems,

leading to inflammation and severe tissue damage across the body.

About 30-50% of SLE patients develop lupus nephritis, which is a

severe complication with proteinuria, kidney function loss, and

increasing risk of mortality. 10-30% of the patients will progress to

end-stage renal disease in 5 years. Impaired tolerance, aberrant

response to self-antigens, and type I interferons are considered

crucial in SLE development and pathogenesis, in which NETosis

plays a critical role (4) (Figure 3A).

Low-density granulocytes (LDGs) are highly granular

pathogenic granulocytes displayed in a high concentration in SLE
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patients. These neutrophils can be characterized by their ability to

produce high amounts of proinflammatory cytokines, including type

I interferons, and their increased propensity to undergo spontaneous

NETosis (70, 78). Moreover, LDGs have a hyperability to produce

mitochondrial ROS, which - as mentioned above - is adequate to

generate NETs even in the lack of NADPH-oxidase and further

stimulates interferon gene transcription (79).

This process is perpetuated by nucleic-acid-containing immune

complexes. They activate neutrophils via FcgR pathways and induce

mitochondria-dependent NETosis (79, 80). It is widely known that

ultraviolet (UV) radiation exacerbates the pre-existing lupus

disease. UV radiation induces NETosis wavelength- and dose-

dependently. Penetrating the epidermis, UV-A and blue light

induce ROS-production and subsequent MPO- and NE-

dependent NETosis (81). UV-C radiation triggers mtROS

generation, mtDNA decondensation, and caspase 3 cleavage,

hence, features of both apoptosis and NETosis. Nevertheless, it is

important to bear in mind that UV-C does not have biological

importance since it is completely absorbed by the ozone layer (82)

On the other hand, oxidized mtDNA, exposed LL-37, and

HMGB1-DNA complexes activate plasmacytoid dendritic cells via

TLR9/TLR7, as well as endocytosed nucleic acid-autoantibody

complexes can initiate type I interferon production, contributing

to the prominent interferon signature in SLE (69, 83, 84). LL-37 and

other NET proteins activate the NLRP3 inflammasome in

macrophages, increasing the IL-1 and IL-18 secretion. As positive

feedback, IL-18 and interferon a further stimulate the process of

NET formation (2).
FIGURE 3

The role of NETs in lupus nephritis (A) and ANCA-associated vasculitis (B). Lupus nephritis (A) Immune complexes activate neutrophils via the FcgR
pathway and induce mitochondria-dependent NETosis. The NET-content (oxidized mtDNA, LL-37, and HMGB1-DNA complexes) later activates
plasmacytoid dendritic cells via TLR7 or TLR9 and initiate type I interferon production, while macrophages are activated via the NLRP3
inflammasome pathway and facilitate IL-1 and IL-18 secretion. ANCA-associated vasculitis (B) Neutrophil priming occurs in response to various
cytokines (TGFb, TNFa, IFN, LPS, C5a, IL-1, -6, -8, -17), which reduces the neutrophil activation threshold. Then, MPO and PR3 are released onto the
cell surface, where ANCA crossbinds them to neutrophil FcgRIIa and induces uncontrolled ROS and lytic enzyme bursts. After the burst, MPO and NE
migrate to the nucleus, where NETosis begins. ANCA, anti-neutrophil cytoplasmic antibodies; AAV, ANCA-associated vasculitis; C5, complement
factor 5; FcgR, fragment crystalline gamma receptor; HMGB1, high mobility group box 1; IFN, interferon; IL, interleukin; LDG, low-density
granulocytes; LPS, lipopolysaccharide; MPO, myeloperoxidase; mtDNA, mitochondrial DNA; NE, neutrophil elastase; NLRP3, NLR family pyrin domain
containing 3; pDC, plasmacytoid dendritic cell; PR3, proteinase 3; ROS, reactive oxygen species; TGF-b, transforming growth factor beta; TLR, Toll-
like receptor; TNF-a, tumor necrosis factor alpha.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1253667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Juha et al. 10.3389/fimmu.2023.1253667
To conclude, NET formation in SLE is mostly NADPH-oxidase

independent and induced primarily by immune complexes through

FcgR signaling (85).

The accumulation of NETs is a common phenomenon in SLE

and increases the exposure of nucleic acids and proteins to B-cells

and plasmacytoid dendritic cells to generate high levels of

interferons. There are three known ways in which the clearance

of NETs may be impaired: 1) mutations and polymorphisms of

DNase I, which lead to inadequate enzyme function, 2) inhibition of

DNase by autoantibodies, and 3) the presence of anti-NET

antibodies, that hide the binding sites from DNase I (86–89). In

the latter form, autoantibodies recruit complement; C1q binds to

DNA and prevents DNase I from degrading NETs (90).

Furthermore, oxidized DNA is more resilient to DNase

degradation (91). In summary, the altered clearance results in a

longer exposure time to NETs and autoantigens, therefore it

correlates with the severity of the disease. In parallel with this, the

amount of DNase I in the kidney and urine decreases as lupus

nephritis progresses (92).
4.2 Anti-neutrophil cytoplasmic antibody-
associated vasculitis

Anti-neutrophil cytoplasmic antibody (ANCA)-associated

vasculitis (AAV) is a necrotizing small vessel vasculitis

characterized by the presence of circulating ANCAs. Based on the

circulating antibodies and clinical manifestations, three main forms

of AAV are distinguished: microscopic polyangiitis (MPA),

granulomatosis with polyangiitis (GPA), and eosinophil

granulomatosis with polyangiitis (EGPA). Renal involvement with

nephritis syndrome (kidney function loss, hematuria, high blood

pressure) is a common manifestation of AAVs occurring in most

cases of MPA and frequently in GPA, however, it is rare in EGPA

(93). The diagnostic hallmark of AAV is antibodies targeted against

granular proteins of neutrophils: MPO and PR3.

Neutrophil priming is presumed to be the key step in NET

formation in AAV. Priming is a process in which the neutrophil

response is enhanced by an activating stimulus. Priming undergoes

with the help of proinflammatory cytokines (such as transforming

growth factor-beta, tumor necrosis factor a, interferon-a, -g, IL-1,
-6, -8, -17) complements (C5a), and LPS. After neutrophil

activation, MPO and PR3 exteriorize on the cell surface. ANCA

crossbinds these antigens with neutrophil FcgRIIa and induces

uncontrolled ROS and lytic enzyme bursts. After the burst, MPO

and NE migrate to the nucleus and NETosis begins and run its

course in an NADPH-oxidase-dependent pathway, via the lytic

NETosis. This is a pivotal difference compared to SLE (94, 95).

Although ANCA stimulation is suggested to be a key to NET

formation, recent studies highlight a possibility of an ANCA-

independent manner of NETosis. NETosis still occurs when ANCA

IgG and IgA are depleted, or when the C5a receptor is inhibited. It does

not correlate with serum tumor necrosis factor a (TNF-a), IL-6, -8
(priming cytokines), or conventional inflammatory markers like CRP

or erythrocyte sedimentation rate. In fact, the level of NETosis is higher

in ANCA-negative AAV patients. Additionally, even though relapse in
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AAV is commonly triggered by a concurrent infection, NET formation

in AAV patients was lower during severe infection than in patients with

relapsing AAV. To sum up, the exact mechanism of NET formation in

AAV patients remains unknown and the increased level of NETs is

linked to autoimmunity and clinical disease activity rather than

concomitant infection (96) (Figure 3B).
4.3 Diabetic nephropathy

Diabetes can affect kidney function through several

mechanisms. Classic diabetic nephropathy is considered a

microvascular complication of diabetes, which will lead to

proteinuria and glomerulosclerosis. Although diabetes is closely

associated with inflammation and oxidative stress, the role of

neutrophils in this process is almost neglected. Increased glucose

level upregulates PKC activity and induces NADPH-oxidase

overstimulation and oxidative burst regardless of the type of

diabetes. As described above, oxidative burst is a pivotal step in

NET formation. Inflammatory cytokines and free fatty acids inhibit

insulin signaling by phosphorylation of inhibitors of nuclear factor

kappa-B kinase (IKKb) and c-Jun N-terminal kinase 1 (JNK1),

which are also inflammatory pathway mediators, and induce NFkb
(nuclear factor kappa-light-chain-enhancer of activated B cells)

translocation to the nucleus, resulting in various proinflammatory

gene activation which is necessary for the priming process (97).

Moreover, high extracellular glucose polarizes macrophages to a

proinflammatory M1 phenotype. Interacting with NETs, M1-

macrophages not only exacerbate the proinflammatory response

but also go under apoptosis and release extracellular DNA. This

mechanism is initiated specifically by NETs and contributes to an

augmented load of free DNA and the progression of the disease

(36). Although the underlying pathomechanisms in the

development of diabetic kidney disease are complex and go

beyond the scope of this review, it is clear that NETosis is

noticeably involved in the process.
4.4 Acute tubular necrosis

Acute tubular necrosis (ATN) is the most common form of acute

kidney injury (AKI), and it is characterized by the destruction of the

tubular epithelial cells leading to a rapid kidney function loss with

oliguria or anuria. It may occur as a result of ischemic or toxic impacts.

Acute tubular necrosis is accompanied by a massive inflammatory

response including recruitment, activation of immune cells, and

increased proinflammatory cytokine production. Renal cell necrosis

releases necrotic cell debris which is introduced as DAMPs. The innate

immune system and especially neutrophils are the major responder

and effector cells in AKI and play a role in the crescendo-type

inflammation (98). DAMPs, such as histones generate a secondary

autoimmune amplification loop by further priming neutrophils,

activating them to form NETs, further deteriorating the kidney

injury and exposing even more endogenous epitopes (77).

Uromodulin is a constitutively secreted protein by epithelial cells in

the thick ascending limb and the distal tubule into the tubular lumen.
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Uromodulin binds and aggregates cytokines in the lumen and stays

inert inside the luminal compartment. However, in case of tubular

damage, uromodulin compiles in the interstitium as crystal-like

structures and they can activate antigen-presenting cells and elicit the

NLRP3-inflammasome-caspase-1 pathway (99). In the late phase of the

injury, macrophages infiltrate the injured tissue and in the

proinflammatory environment, they undergo an M1-phenotype shift

contributing to necroinflammation. Contrary to necrosis, apoptosis is a

balanced and regulated physiological mechanism that halts the

exaggerated inflammatory process. Apoptosis of the recruited

immune cells polarizes phagocytes to M2 phenotype and favors an

anti-inflammatory milieu by secreting Il-10, TGF-b, and growth

factors. This environment promotes not only suspending the

inflammatory vicious circle but also contributes to the regeneration

of epithelial and vascular healing and fibrosis (37).
4.5 Anti-glomerular basement
membrane disease

Anti-glomerular basement membrane (GBM) disease is a rare

autoimmune disorder in which antibodies are produced against type

IV collagen and presents with rapidly progressive glomerulonephritis

and alveolar hemorrhage (100). Anti-GBM IgG binds FcgRIIa in a

shear-force-dependent manner. FcgRIIa binding causes F-actin

polymerization via the Abl/Src mediated pathway. Their interaction

and actin polymerization leads to an endothelial CD18 integrin (Mac-

1) activation, and integration-mediated adhesion takes over selectin-

mediated rolling. Thus, neutrophil attachment to the endothelial cells

in the capillaries is sustained. Eventually, FcgR engagement triggers

intravascular ROS, protease, and NET generation (101, 102). This

mechanism with the extensive NET formation and the consequent

exaggerating necroinflammation explains the substantial renal damage

in anti-GBM glomerulonephritis which not only confines to the

glomeruli but also affects the interstitium and the tubules.
4.6 Hemolytic uremic syndrome

Hemolytic uremic syndrome (HUS) is a thrombotic

microangiopathy caused by enterohemorrhagic Shiga toxin (Stx) -

producing bacteria (Shigella dysenteriae or enterohemorrhagic

Escherichia col i) . The syndrome is character ized by

thrombocytopenia, hemolytic anemia, and acute renal failure. It is

one of the main causes of acute kidney injury in children and has no

specific treatment.

In hemolytic uremic syndrome, neutrophils are prone to

undergo NETosis. There are several mechanisms behind it: 1)

Shiga toxin is believed to be a potent neutrophil activator and

NET inducer. 2) Uric acid is released from the injured cells in a

great quantity, crystallizes, and triggers NET formation. 3) Higher

dose of Stx induces NETosis in a ROS-dependent manner. 4) Stx

enhances P-selectin expression on LPS-treated platelets and

promotes neutrophil activation and aggregation (102).

Furthermore, exaggerated endothelial damage and thrombosis

formation can be observed in HUS. Besides the excessive release of
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endothelial toxic NET contents, LPS, and Stx-treated platelets also

contribute to endothelial damage (102). The role of neutrophil

extracellular traps in atypical hemolytic uremic syndrome and

thrombotic microangiopathies, however, is unclear.
4.7 Autoinflammatory diseases with
renal involvement

Gout is an autoinflammatory condition characterized by

monosodium urate (MSU) crystal deposition in the joints and the

kidneys. High uric acid concentration is also a risk for nephrolithiasis.

MSUs are taken up by phagocytes and either directly damage the

cell membrane causing necrosis and necrotic debris release leading to

inflammatory cell recruitment, cytokine and chemokine production, or

activating the NLRP3-caspase-1 inflammasome system resulting IL-1b
release (50, 103). Recruited neutrophils undergo NADPH-dependent

lytic NETosis, partly via direct activation by MSUs and partly by the

inflammatory mediators (104). Uniquely, NETosis has a dual role in

gout. Besides perpetuating inflammation, NETosis also limits it by

engulfing MSUs preventing them from further phagocyte activation.

MSU-stimulated neutrophils form aggregated NETs, which can

proteolytically degrade and inactivate cytokines and chemokines

stopping gout attack and resolving inflammation (105, 106).

Familial Mediterranean Fever (FMF) is a monogenic

autoinflammatory disease, with clinical characteristics of fever

attacks, joint pain, and skin rashes. During fever attacks, neutrophils

produce large amounts of NETs which perpetuate inflammation via

directly derived IL-1b and by inducing polymorphonuclear cells for

further IL-1b production. However, NETs also have a self-limiting,

therefore anti-inflammatory effect, as they can prevent further NETosis

and stop the fever attack (107, 108). The most common kidney damage

caused by FMF is amyloidosis, but IgA nephropathy and

mesangioproliferative glomerulonephritis were also described (109).
5 Potential therapeutic targets
in NETosis

Since the signalization of NETosis is sprawling, the number of

potential therapeutic targets is extensive. Nevertheless, NET

inhibition in renal disorders is not exhausted yet, most agents are

yet to be trialed in kidney diseases. Here we list the most examined

and most promising drug candidates in clinical practice.
5.1 Disease-modifying antirheumatic drugs

5.1.1 Conventional synthetic DMARDs
5.1.1.1 Recombinant DNase

DNase is responsible for the disassembly of the NET-related

nucleoproteins and facilitates the clearance by macrophages.

Recombinant DNase eliminates the NETosis products and delays

the development of antibodies against them. Nevertheless,

recombinant DNase I treatment is controversial. It does have a

good efficacy to reduce NETs in COVID-triggered acute respiratory
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distress syndrome via inhaled route or when administered

intravenously in lupus nephritis patients and anti-MPO ANCA

mouse model, however, intravenous or subcutaneous administration

failed to achieve sufficient bioactive serum concentration in humans

(94, 110, 111). Recombinant DNase I is inactivated rapidly by G actin

by forming a complex with it. To overcome this limitation, adeno-

associated virus vectors were used in a lupus-prone mice (NZBWF1)

model. This way, DNaseI activity was maintained for more than 6

months, and renal neutrophils, NETs, IgG, and C3 were significantly

reduced. However, this way of rhDNase administration still did not

extend lifespan and preserved renal function (112).

5.1.1.2 Toll-like receptor inhibitors

Hydroxychloroquine (HCQ) and chloroquine (CQ) are anti-

malarial drugs frequently used in autoimmune diseases, due to their

immunomodulatory effects. They inhibit NET formation by

antagonizing TLR-3, - 7, -8 , -9 (113) . Furthermore,

hydroxychloroquine also has an inhibitory effect on cyclic GMP-

AMP synthase (cGAS), a cytosolic DNA sensor responsible for type

I interferon response. Taken together, the downstream

proinflammatory cytokine production will be suppressed (114).

Chloroquine has been shown to reduce autophagy and increase

the pH in lysosomes, impeding antigen presentation on MHC class

II molecules for CD4+ T-cells. Additionally, hydroxychloroquine is

suggested to inhibit PAD4 as well (115). Utilizing these

pharmacological effects, hydroxychloroquine and chloroquine are

demonstrated to reduce SLE and especially lupus nephritis flares,

help to maintain remission and delay the onset of complications

(116, 117). Hydroxychloroquine attenuated anti-GBM nephritis in

WKY rats as well which was attributed to the suppression of JNK/

p38 MAPK phosphorylation (118).

The dual TLR 7/8 inhibitor enpatoranwaswell-tolerated in a phase

1 study in healthy participants and a current WILLOW study is

evaluating its efficacy in SLE patients, however, patients with active

lupus nephritis have been excluded (NCT05162586) (119). TLR

inhibition with GIT27 (VGX-1027) mitigated kidney injury in a

diabetic experimental mouse model. GIT27 targets primarily TLR4

but also interferes with TLR2/6 signaling pathways in macrophages

which results in a lower profibrotic and proinflammatory profile, lower

albuminuria, and mesangial expansion (120). TAK-242 and eritoran

are selective TLR4 inhibitors while NI-0101 is a humanized

monoclonal antibody against TLR4 (121). TAK-242 ameliorated

rhabdomyolysis, acetaminophen, and contrast-induced acute kidney

injury (122–124). TAK-242 also reduced serum creatinine and blood

urea nitrogen concentration in sepsis-mediated kidney injury (125).

Nevertheless, it is important to bear in mind that TLR4 activation and

the subsequent proinflammatory response are crucial for bacterial

clearance in sepsis.

Taken together, Toll-like receptor inhibitors are promising

therapeutic agents in NETosis-related diseases, however, in

previous clinical trials none has yet been proven clinically useful

(126, 127).

5.1.1.3 Calcineurin inhibitors

Cyclosporin, tacrolimus, and voclosporin are calcineurin

pathway inhibitors widely used in organ transplants and
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autoimmune disorders. They bind cytophilin and downregulate the

transcription factor nuclear factor of activated T cells (NFAT) and

inhibit the calcineurin pathway. Studies proved a significant influence

on neutrophils suppressing chemokinesis, adhesion, angiotensin II

response, phagocytic activity reduction, and reducing the extent of

IL-8 induced NETosis (128). Calcineurin inhibitors also block T-cell

overactivation and podocyte alteration. This results in

proinflammatory mediator release from T-cells and cytoskeleton

stabilization and apoptosis inhibition in podocytes emphasizing

their powerful roles in autoimmune renal disorders (129).

Although calcineurin inhibitors are not recommended as first-line

therapy in lupus nephritis, cyclosporin, and tacrolimus can be used in

combination with mycophenolate-mofetil in nephrotic range

proteinuria. The combination of voclosporin and mycophenolate-

mofetil was associated with a higher rate of complete remission at 6

months as compared with mycophenolate alone (130).

Tacrolimus improved albuminuria and tubulointerstitial damage,

and ameliorated macrophage infiltration and proinflammatory

cytokine expression in diabetic db/db mice (131). Tacrolimus was

proved to recover the nephrin expression, thus maintaining the

structural and functional integrity of podocytes in diabetic Sprague-

Dawley rats (132).

5.1.1.4 Colchicine

Colchicine is an alkaloid derivative that has pleiotropic anti-

inflammatory effects. It attaches to soluble tubulin in an almost

irreversible manner and inhibits the elongation of the microtubules.

In higher concentrations, it also promotes microtubule

depolymerization, alters endothelial E-selectin distribution,

promotes L-selectin shedding on neutrophils, inhibits superoxide

production and NLRP3. Colchicine inhibits immune response by

dampening neutrophil chemotaxis, recruitment, adhesion,

inflammasome activation, and NETosis as well. Colchicine blocks

inflammatory response via regulating NF-kB and caspase-1 (133).

The advantageous effects of colchicine in NETosis were proved in a

small subset of patients, however, its potential renal toxicity in

comprised kidney function limits its use in possible utilization in

NET-related kidney disorders (134–136). Colchicine was studied in

a randomized controlled double-blind clinical trial in diabetic

nephropathy where colchicine decreased neutrophil-related

chronic inflammation; however, it did not lower creatinine,

urinary albumin/creatinine ratio and did not prevent overt

nephropathy either (137).

5.1.1.5 PAD4-inhibitors

Inhibition of PAD4 via Chlor-amidine (Cl-amidine) irreversibly

blocks the active sites of the enzyme via covalent modification (138).

GSK484 and GSK199 are selective and reversible inhibitors that

bind to PAD4 with a high affinity (139).

Cl-amidine significantly inhibits NET formation in NZMmodel

of murine lupus, reduces complement consumption, glomerular

IgG deposition, and although not significantly but reduces

albuminuria. Cl-amidine administration to NZM mice improved

endothelium-dependent vasorelaxation and delayed arterial

thrombosis which was partly attributed to the reduction of NET

formation (140). Following PAD inhibition, immune complex
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deposition, interstitial inflammation, and urine albumin/creatinine

ratio decreased in MRL/lpr lupus nephritis model as well (141, 142).

Cl-amidine attenuated kidney injury in a rabbit model of LPS-

induced acute kidney injury. Cl-amidine decreased histopathologic

signs of acute kidney injury, as well as elevated creatinine and blood

urea nitrogen (143). GSK484 mitigated renal ischemia-reperfusion

injury in C57BL/6 mice by reducing NETosis (144).

Although PAD4 inhibition proved to be effective in the

suppression of NETosis in several in vitro and in vivo animal

models, clinical trials have not been conducted yet. On the other

hand, inhibition strategy with PAD4 is a double-edged sword since

it inhibits essential NET formation as well.

5.1.2 Targeted synthetic DMARDs
5.1.2.1 Tyrosine kinase and JAK-inhibitors

Bosutinib is a selective dual Abl/Src inhibitor used in chronic

myeloid leukemia (CML) to inhibit the Bcr-Abl fusion protein.

However, based on this function, the utilization of bosutinib might

be reevaluated and repurposed. It proved to be beneficial in anti-

GBM glomerulonephritis since it averted an early step of

inflammation. Bosutinib reduced the FcgRIIa-mediated adhesion,

neutrophil recruitment, and NET formation in an in vitro

experiment (101). Another selective Abl/Src inhibitor dasatinib

significantly reduced neutrophil and macrophage influx in skin

wounds, thus accelerating healing and reducing scarring (145). On

the other hand, it is important to note that the multi-tyrosine kinase

inhibitor ponatinib increases NET production which contributes to

vascular toxicity in CML patients (146).

Neutrophil Bruton’s tyrosine kinase (Btk) mediates reactive

oxygen species generation via TLR4-signals, and integrin-

mediated recruitment and activation (147–149). Btk inhibitors

reduced proteinuria and improved glomerular histopathology in

lupus-prone animal models (150–153). Elsubrutinib is currently

under the scope for efficacy in SLE patients including lupus

nephritis alone or in combination with upadacitinib compared to

placebo (NCT03978520). Nevertheless, previous studies with Btk

inhibitors (fenebrutinib, evobrutinib) did not bring the expected

results in SLE patients, though patients with active LN were

excluded (154, 155).

Spleen tyrosine kinase (Syk) is an adapter protein that is

responsible for phosphorylating several other adapter proteins to

propagate signalization cascades resulting in cytokine/chemokine

release via NF-kB, actin cytoskeleton remodeling, proliferation, and

differentiation via the MAPK pathway and also for survival via the

NFAT (nuclear factor of activated T cells) pathway (156). Syk is

activated by phosphorylation upon ANCA binding to FcgRIIa in

TNF-a–primed neutrophils and induces respiratory burst. Syk is

also an essential regulator in B-cell receptor-mediated signalization

and enhanced function is related to the pathogenesis of

autoimmune disease and B-cell leukemias and lymphomas as well

(157). Fostamatinib is a highly selective Syk inhibitor, and it was

proven to improve MPO-ANCA glomerulonephritis in a pre-

clinical ANCA vasculitis model in Wistar Kyoto rats (158).

Fostamatinib delayed renal progression in NZB/NZW mice in

lupus nephritis model and anti-GBM glomerulonephritis in
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Sprague-Dawley and WKY rats (159–161). Fostamatinib has not

undergone a clinical investigation yet. A trial had commenced years

ago that targeted SLE patients, but it was withdrawn before it could

have been started (NCT00752999).

Downstream inhibition of the JAK/STAT pathway with

tofacitinib is proven to lower NET formation (162). Tofacitinib

decreased proteinuria, reduced mesangial cell proliferation, and

glomerular IgG deposition. Furthermore, after tofacitinib

administration in MRL/lpr mice, TGF-b receptor 1 was reduced

in renal tissues, thus tofacitinib alleviated renal fibrosis in MRL/lpr

mice model (163). Other JAK inhibitors, like baricitinib, peficitinib,

upadacitinib and filgotinib are approved as disease-modifying

antirheumatic drugs (164).

Baricitinib was a promising agent in SLE, however, it failed to

decrease the SLEDAI (Systemic Lupus Erythematosus Disease

Activity Index) or the BILAG class in SLE-BRAVE II study (165).

Although lupus nephritis patients were excluded from this trial, other

ongoing studies are taking chances on baricitinib and LN patients

(NCT05686746). Brepocitinib and upadacitinib are other JAK

inhibitors that are currently subjects to SLE studies, however, renal

involvement with brepocitinib is among the exclusion criteria

(NCT03845517, NCT03978520). The phase II result of the

upadacitinib study is expected to be published soon (NCT03978520).

An abundance of evidence showed the progression of diabetic

kidney disease is boosted by inflammation that is mediated by the

JAK-STAT pathway. Baricitinib decreased the urinary albumin/

creatinine ratio from baseline at 6 months compared to placebo

(166). This finding is supported by two previous trials in which

patients with diabetic nephropathy received monocyte

chemoattractant protein 1 (MCP1) inhibitors (167, 168).

Ruxolitinib contributed to lower proinflammatory cytokine levels

and regulated podocyte autophagy in diabetic kidney disease (169,

170). Although it has been proven that ruxolitinib blunts NET

formation in chronic myeloproliferative neoplasms and its NET

inhibiting role has not been investigated in renal disorders, it is

suspected that NET suppression also contributes to the

amelioration of diabetic nephropathy (171, 172).

Tofacitinib attenuated LPS-induced acute kidney injury by

inducing intrarenal proinflammatory cytokine production and

reducing oxidative stress (173). The same effect was reached when

C-X-C Motif Chemokine Receptor 1 and 2 (CXCR1/2) was

inhibited by the chemokine C-X-C motif ligand 8 (CXCL8)

antagonist, G31P (174).

5.1.3 Biological DMARDs
5.1.3.1 C5-inhibitors

Priming via C5a-C5a receptor interaction is crucial in NET

formation. The C5a receptor antagonist, avacopan, and the anti-C5a

monoclonal antibody, eculizumab have been both proven to reduce

NET formation (2). The orally administered avacopan was approved

as an adjunct therapy for microscopic polyangiitis and granulomatosis

with polyangiitis which permits a lower glucocorticoid exposure and

reduces the glucocorticoid-related toxicity, thus improving patient

quality of life (175). Eculizumab is an anti-C5 monoclonal antibody

that inhibits complement-mediated thrombotic microangiopathy and
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significantly improves renal function in patients with atypical

hemolytic-uremic syndrome (176). Eculizumab is a therapeutic

option in individuals with lupus nephritis who developed

subsequent thrombotic microangiopathy and patients with

refractory lupus nephritis might benefit from supplementary

eculizumab therapy as well (177). Moreover, in a case report

eculizumab was used as rescue therapy and improved renal

outcome in two patients with anti-GBM glomerulonephritis (178).

5.1.3.2 Interferon pathway inhibitors

As previously described, type I interferons elicit numerous

immunological effects, including the assistance of NET formation.

Therefore, interferon blockade is an ideal pharmacological

approach to decrease NET production. Sifalimumab and

rontalizumab are monoclonal antibodies against interferon a and

aid their neutralization. Both of them underwent trials in SLE

patients and reached superiority above placebo, however, in these

trials, patients with renal involvement were excluded (179, 180).

Anifrolumab is a human immunoglobulin targeted against subunit

1 of the interferon a receptor, conveying a general inhibition signal

(181). Anifrolumab decreased the BILAG (British Isles Lupus

Assessment Group)-based Composite Lupus Assessment (BICLA)

index in SLE patients in the TULIP study, however, this study also

excluded lupus nephritis patients (182). Nevertheless, the TULIP-

LN study evaluated the efficacy of anifrolumab in renal

involvement. Unfortunately, the primary endpoint of the study

was not met, there was no significant improvement in the 24-hour

protein/creatinine ratio from baseline to 52 weeks in anifrolumab-

treated patients versus placebo. Authors explain the results by the

suboptimal dosing and the increased clearance of anifrolumab

associated with proteinuria (183).

5.1.3.3 Depletion of B-lymphocytes

B-cells contribute to NET formation mainly via antibody

production and immune complexes; however, they are also potent

sources of cytokines for priming. The primary B-lymphocyte

depleting agents are rituximab (anti-CD20 monoclonal antibody)

and belimumab (B-lymphocyte stimulator (BLyS)/BAFF inhibitor

human monoclonal antibody). They are used mostly individually but

sequential therapy also has its rationale: belimumab targets CD20+

and CD20- plasmablasts but spares the CD27+ memory cells, while

rituximab reduces CD20+ cells effectively - including CD27+

memory cells- but does not affect CD20- plasmablast cells (184).

Obinutuzumab is a new-generation anti-CD20 monoclonal antibody

designed to overcome rituximab resistance. Obinutuzumab has a

greater affinity for FcgRIII and employs different mechanisms of

action. It evokes a greater direct B-cell death by a more potent

antibody-dependent cellular toxicity and phagocytosis (185).

Rituximab used to be a promising agent in proliferative lupus

nephritis, but the renal response rate was not superior over

mycophenolate-mofetil and glucocorticoids at 1 year (LUNAR

study) (186). Nevertheless, it may still be considered in persistent

disease activity or in repeated flares (187). On the contrary, belimumab

helped to reach renal response beside standard therapy (BLISS-LN

study) so it was included in Kidney International Improving Global
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Outcomes (KDIGO) guidelines as the first on-label monoclonal

antibody in SLE treatment (187, 188). The combination of

belimumab and rituximab effectively reduced NET formation in

human SLE by reducing the circulating immune complexes (189).

An ongoing randomized controlled study (SynBioSe-2) is investigating

the combination treatment protocol of belimumab followed by

rituximab in lupus nephritis patients compared to prednisolone and

mycophenolate-mofetil induction (NCT03747159). Nevertheless, an

in vitro study contradicted this result and showed enhanced NETosis

after Rituximab treatment (190). The NOBILITY trial was designed to

evaluate the hypothesis that adding obinutuzumab to the standard

glucocorticoid and mycophenolate-mofetil treatment improves the

rate of complete renal remission compared to the treatment without

obinutuzumab. Obinutuzumab add-on therapy was superior to

placebo in proliferative lupus nephritis to reach complete renal

response at 2 years (191).

The induction and maintenance protocol of ANCA-associated

glomerulonephritis also involves rituximab. Beside glucocorticoids, the

standard induction therapy is either cyclophosphamide and/or

rituximab (187). Rituximab is also highly efficient in relapsing disease

and anti-PR3 ANCA-positive patients resulted in a higher remission

rate post-rituximab treatment (192, 193). Belimumab was studied as a

maintenance agent, but it did not reduce the risk of relapse. However,

utilizing the two agents’ additive synergistic effects, an ongoing study

(COMBIVAS - NCT03967925) uses rituximab and belimumab

combination therapy as induction in PR3 vasculitis. Obinutuzumab

was reported to reach remission successfully in three cases of ANCA-

associated vasculitis. An ongoing randomized, double-blind study

(ObiVas) is currently recruiting participants for a phase II study to

compare the efficacy of rituximab and obinutuzumab in AAV

patients [ISRCTN13069630].

Rituximab use has been reported for the treatment of anti-GBM

with various outcomes. Although B-cell depletion inhibition is not

part of the KDIGO treatment guidelines and standard-of-care

approaches in anti-GBM glomerulonephritis, rituximab may be

initiated in cases of refractory to standard therapy or in relapsed

disease (187, 194). Although anti-GBM antibody vanishes after

rituximab therapy in the majority of cases, it cannot halt kidney

injury or reverse dialysis dependency (194). However, the negative

renal outcome is an inherent consequence of the rapid

pathomechanism of anti-GBM glomerulonephritis not the

inefficacy of immunosuppressive therapies.

5.1.3.4 Interleukin antagonists

Tocilizumab is a humanized monoclonal antibody against the

interleukin-6 receptor. It decreases endothelial dysfunction and

oxidative stress and downregulates low-density granulocytes in

rheumatoid arthritis.

Tocilizumab has already been proven effective in large-vessel

vasculitis and a few reports also reported remission in microscopic

polyangiitis with tocilizumab. SATELITE study is going to evaluate

the efficacy in patients with granulomatosis with polyangiitis

(NCT04871191).

Tocilizumab showed a promising clinical and serological

response in SLE patients; however, patients with fulminant renal
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involvement were excluded. PF-04236921 is a fully-humanized

monoclonal antibody against IL-6 that was not significantly

different from placebo for reducing the disease activity (195).

Tocilizumab ameliorated proteinuria in streptozotocin-induced

diabetic nephropathy rat model and attenuated histological changes

and was also beneficial for podocytes in mice (196, 197).

Tocilizumab mitigated kidney function deterioration in a case

report, however, clinical trials have been not conducted yet (198).

Anakinra (human IL-1 receptor antagonist), canakinumab

(human monoclonal antibody against IL-1b) and rilonacept

(soluble decoy receptor) are used mostly in the treatment of

autoinflammatory diseases (e.g., juvenile idiopathic arthritis,

gout). In vitro, pre-treatment with anakinra successfully reduced

NET formation in PMA-induced NETosis in a time- and dose-

dependent manner (199). Anakinra was successfully used to

partially inhibit NET production in experimental gout models.

Both anakinra and canakinumab attenuated MSU-induced

NETosis via altering NLRP3-inflammasome activation and IL-1b
release (50, 200). Rilonacept is an IL-1a and IL-1b trap, which is

approved in the treatment of cryopyrin-associated periodic

syndromes and recurrent pericarditis (201), however, exact effect

on NETs is not well described.

The anti-IL-18 monoclonal antibody GSK1070806 have been

tested in renal transplant delayed graft function (202), obesity and

type 2 diabetes (203), but was not proven effective. Recombinant

human IL-18 binding protein, which neutralize IL-18 along with IL-

37 had more success in experiments and clinical trials in psoriasis,

rheumatoid arthritis, hemophagocytic lymphohistiocytosis, and

adult onset Still disease (204). To date, there is no approved

treatment targeting IL-18.

5.1.4 Miscellaneous
5.1.4.1 Antioxidants

Amino salicylates scavenge ROS superoxide and recover SOD

activity, NF-kB, MPO, and proinflammatory cytokine production.

The inhibitory effect of 5-aminosalicylic acid and acetylsalicylic acid

on NETosis was proved, making them a potentially ideal

supplementary therapy in NET-related kidney disorders (205, 206).

N-acetylcysteine reduces NETosis by modulating ROS

production (207).

N-acetylcysteine (NAC) slightly reduces albumin/creatinine ratio

and suppresses renal fibrosis in diabetic nephropathy in diabetic rat

models (208, 209). High-dose NAC decreased SLEDAI scores and

BILAG classes significantly in a randomized double-blind clinical

trial, though patients with acute flare threatening vital organs were

excluded (210). Pre- and post-treatment with NAC in septic rats were

protective against kidney injury while long-term administration of

NAC worsened organ failure and did not improve albuminuria. As a

matter of fact, high-dose NAC administration in patients with over

24-hour duration sepsis resulted in cardiac depression, hypotension,

and worsened acute kidney injury (211–215). Interestingly, NAC

employed protective effects when administered in short-term

ischemia in Wistar rats. NAC treatment decreased renal vascular

resistance, thus increased renal blood flow and prevented

histopathological changes when ischemia was applied for 30
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minutes compared to 45 minutes. This suggests that NAC

treatment might have a therapeutic window to utilize the

nephroprotective effect (216). NAC also failed to offer renal

protection in patients with stage 3 chronic kidney disease at risk of

contrast-induced nephropathy (217).

Besides being a potent antidiabetic drug, metformin has mTOR

and consequential mtROS production inhibitory effects. During

PMA- and/or Ca-induced NETosis, metformin effectively reduced

NETosis via inhibition of NADPH-oxidase and the membrane

translocation of PKC-bII (218).
Metformin improves renal function in MRL/lpr lupus-prone

mice. It decreased the proinflammatory cytokines and the levels of

anti-nuclear antibody and anti-double stranded DNA antibodies.

Metformin administration also attenuated histopathological

damages (219). A post hoc analysis demonstrated that metformin

decreased the incidence of flares in SLE patients, though patients

with renal impairment were excluded (220). A study aimed to

evaluate the preventive effects of metformin in lupus nephritis

(NCT04145687), however, the current status is unknown.

Metformin inhibits mitochondrial respiratory complex I, and

reduces ATP synthesis, hence increases AMP/ATP and ADP/ATP

ratios. It leads to the activation of adenosine-monophosphate-

activated kinase (AMPK). AMPK inhibits hepatic gluconeogenesis,

lowering glucose toxicity. Metformin alleviates the glucose- and

advanced glycation product (AGE)-induced NF-kB activation, ROS

production, and the subsequent proinflammatory cytokine

production (221). By this, metformin does not only repress

intrarenal inflammation but also proliferation and fibrosis (222).

Idebenone is a ubiquinone analog antioxidant agent with ROS

scavenger properties, hence a mitochondrial ROS inhibitor. It

defends membranes from lipid peroxidation and restores ATP

production in the mitochondria (223). In MitoTEMPO study it

was proved to inhibit spontaneous NET formation of low-density

granulocytes and decrease disease activity in SLE (224).

5.1.4.2 Vitamin D

Vitamin D is a fat-soluble secosteroid with pleiotropic function.

The role in NETosis was shown by Handono et al. who studied SLE

patients with hypovitaminosis D. Results showed that vitamin D3

substitution inhibited NETosis activation and decreased

consequential endothelial damage, however, the pathomechanism

remains unknown (225). Vitamin D was significantly lower in

patients with lupus nephritis compared to patients with either

active SLE without nephritis or inactive SLE (226). Another study

demonstrated an inverse correlation between SLEDAI and serum

25-hydroxy-cholecalciferol and proved that higher levels of vitamin

D were associated with a decrease in urine protein/creatinine

ratio (227).

Although a negative correlation was observed between 25-

hydroxy-cholecalciferol and Birmingham vasculitis activity score

(BVAS) in AAV, no difference was revealed in 25-hydroxy-

cholecalciferol levels among AAV patients with and without renal

involvement (228).

A double-blind, randomized-controlled study demonstrated

that the vitamin D analog paricalcitol decreased urinary albumin
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excretion significantly compared to placebo (229). Another

randomized-controlled trial with type 2 diabetic patients showed

a faster decline in estimated glomerular filtration rate in patients

with 25-hydroxy-cholecalciferol deficiency (230).

Macrophage and lymphocyte infiltration in ischemia-induced

kidney injury was proven to be significantly higher and the risk of

acute kidney injury was 1.2- and 1.5-fold higher in patients with 25-

hydroxy-cholecalciferol insufficiency and deficiency (231, 232).
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Although vitamin D has a pleiotropic effect in acute kidney

injury, the participation of NETosis cannot be omitted either (231).

5.1.4.3 Antibiotics

Azithromycin exerts a dose-dependent ROS inhibition, hence

preventing the NET release. Gentamicin and chloramphenicol also

decrease NETosis, the latter probably via decreasing MPO activity.

Nevertheless, their efficacy was tested merely preclinically (233, 234).
TABLE 2 Potential therapeutic targets of NETosis.

Disease-modifying antirheumatic drugs (DMARDs)

Conventional synthetic DMARDs (csDMARDs)

Recombinant DNase dismantles NETs and accelerates clearance

Toll-like
Receptor
inhibitors

Hydroxychloroquine inhibits NET formation by antagonizing Toll-like receptors (TLR-3, 7, 8, 9); has inhibitory effects on cyclic GMP-AMP
synthase (cGAS), and has PAD4 inhibitory functions

Chloroquine inhibits NET formation by antagonizing Toll-like receptors (TLR-3, 7, 8, 9); reduces autophagy, and increases the pH in
lysosomes, impeding antigen presentation on MHC class II molecules for CD4+ T-cells

Enpatoran dual TLR7/8 inhibitor

GIT27 (VGX-1027) targets primarily TLR4 but also interferes with TLR2, TLR6 signaling pathways in macrophages

TAK-242 selective TLR4 inhibitor

Eritoran selective TLR4 inhibitor

Calcineurin-
inhibitors

Cyclosporin suppresses chemokinesis, adhesion, and angiotensin II response, hence reduces phagocytic activity, blocks T-cell overactivation
and podocyte alteration

Tacrolimus suppresses chemokinesis, adhesion, and angiotensin II response, hence reduces phagocytic activity

Voclosporin suppresses chemokinesis, adhesion, and angiotensin II response, hence reduces phagocytic activity

Colchicine inhibits immune response by dampening neutrophil chemotaxis, recruitment, adhesion, inflammasome activation, and
NETosis.

PAD-4
inhibitors

Chlor-amidine irreversibly blocks PAD4 active site via covalent modification

GSK484 selectively and reversibly binds to PAD4

GSK199 selectively and reversibly binds to PAD4

Targeted synthetic DMARDs (tsDMARDs)

JAK/STAT
inhibitors

Tofacitinib decreases proteinuria, reduces mesangial cell proliferation and glomerular IgG deposition; in MRL/lpr mice reduces TGF-b
receptor 1 in renal tissues, thus alleviates renal fibrosis

Ruxolitinib alleviates renal fibrosis in MRL/lpr mice model; lowers proinflammatory cytokine levels and regulates podocyte autophagy in
diabetic kidney disease

Baricitinib decreases the urinary albumin/creatinine ratio from baseline at 6 months compared to placebo

Peficitinib

Upadacitinib

Filgotinib

Brepocitinib

Tyrosine
kinase
inhibitors

Bosutinib Abl/Src inhibitor: reduces the FcgRIIa-mediated adhesion, neutrophil recruitment, and NET formation

Dasatinib reduces neutrophil and macrophage influx in skin wounds

Bruton
tyrosine kinase
inhibitor

Elsubrutinib reduces proteinuria and improves glomerular histopathology in lupus-prone animal models

Upadacitinib reduces proteinuria and improves glomerular histopathology in lupus-prone animal models

(Continued)
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TABLE 2 Continued

Disease-modifying antirheumatic drugs (DMARDs)

Spleen
tyrosine kinase
inhibitors

Fostamatinib highly selective Syk inhibitor, improves MPO-ANCA glomerulonephritis in a pre-clinical ANCA vasculitis model in Wistar
Kyoto rats; delays renal progression in NZB/NZW mice in lupus nephritis model and anti-GBM glomerulonephritis in
Sprague-Dawley and WKY rats

Biological DMARDs (bDMARDs)

Complement 5
inhibitors

Eculizumab inhibits complement-mediated thrombotic microangiopathy and significantly improves renal function in atypical HUS

Avacopan anti-C5a receptor antagonist

Interferon
pathway
inhibitors

Sifalimumab monoclonal antibody: binds to interferon alpha and aids their neutralization

Rontalizumab monoclonal antibody: binds to interferon alpha and aids their neutralization

Anifrolumab human immunoglobulin: binds to the subunit 1 of interferon alpha receptor

Depletion of
B-lymphocytes

Belimumab anti-BlyS/BAFF, reduces circulating immunocomplexes

Rituximab anti-CD20, reduces circulating immunocomplexes

Obinutuzumab anti-CD20, reduces circulating immunocomplexes

Interleukin
antagonists

Tocilizumab anti-IL-6R antibody; improves endothelial function and decreases oxidative stress in RA, reduces the low-density granulocytes
and NETosis

Canakinumab monoclonal antibody against IL-1b

Anakinra IL-1R blocker; reduces NET formation in a time- and dose-dependent manner, has a calcium-dependent role in the MPO and
NE activation

Rilonacept soluble decoy receptor, which acts as an IL-1a and IL-1b trap

GSK1070806 anti-IL-18 monoclonal antibody

Rh-IL-18 BP neutralizes IL-18 along with IL-37

Other NI-0101 humanized monoclonal antibody against TLR4

Miscellaneous

Antioxidants N-acetylcysteine modulates ROS production

Amino salicylates scavenges ROS superoxide, recovers SOD activity, NF-kB, MPO and proinflammatory cytokine production

Metformin mTOR and mtROS inhibitor; inhibits the NADPH oxidase and the membrane translocation of PKC-bII

Idebenone ubiquinone analog antioxidant; scavenges ROS, defends membranes from lipid peroxidation and restores ATP production in
the mitochondria

DPI NADPH oxidase inhibitor; binds to the subunits and prevents electron flow and ROS production

MitoTEMPO Mitochondrial ROS scavenger; decreases spontaneous NETosis serum and anti-dsDNA levels, lowers proteinuria and renal IC
deposition

Vitamin D unknown pathomechanism

Antibiotics Azithromycin inhibits ROS

Chloramphenicol decreases MPO activity

Gentamicin unknown pathomechanism

PKC
inhibitors

Ro-31-8220 pan-PKC inhibitor; blocks PMA-induced NET formation

Go 6976 PKC-a and b inhibitor, reduces ROS production in PMA-induced NETosis

LY333531 PKC inhibitor with a high selectivity for PKC-b, reduces ROS production by blocking the p47phox phosphorylation of
NADPH-oxidase in PMA-induced NETosis

PA-dPEG24 peptide inhibitor of C1; dose-dependently blocks the MPO pathway of NET formation

Prostaglandins PGE2 cAMP–PKA pathway modulators; limits NETosis in an exchange protein activated by cAMP- and protein kinase A-dependent
manner (EP2 and EP4 Gas-coupled receptors)

Dibutyryl
cAMP

cell‐permeable cAMP analog

(Continued)
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5.1.4.4 Gasdermin D inhibition

Inhibition of Gasdermin D effectively halts the cascade of

inflammatory molecule release in NETosis. Disulfiram suppresses

pyroptosis by covalently modifying and inhibiting Gasdermin D

(235). LDC7559 is a small molecule that was also proven to inhibit

Gasdermin D and delay NETosis (236).

5.1.4.5 Protein-kinase C inhibition

The protein-kinase C isoenzyme family plays a role in the

downstream pathways of NETosis. The pan-PKC inhibition with

Ro-31, PKC-a, and b-inhibitor Go 6976, and PKC-b inhibition

with LY333531 reduce NET formation (237). PKC-d inhibitor

rottlerin prevented glucose-induces ERK activity and decreased

TGF-b1-induced collagen synthesis in mesangial cells in an in

vitro diabetic nephropathy model but it did not affect NET

formation according to another study (237, 238).

Table 2 summarizes the potential therapeutical targets of

NET formation.
6 Conclusions

The pivotal role of neutrophil extracellular traps in the

pathomechanism of renal disorders is an evolving hot topic (239,

240). NETs are not only generated by infectious stimuli, but they are

also essential in several autoimmune and acute kidney disorders. A

more in-depth understanding of the formation, regulation, and

dysregulation of NETs offers potential therapeutic targets in kidney

diseases leading to better patient and renal outcomes.
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TABLE 2 Continued

Disease-modifying antirheumatic drugs (DMARDs)

Rolipram PDE4 inhibitor

Butaprost EP2 receptor agonist

LDC7599 Gasdermin-D inhibitor; inhibits pore-formation in the nuclear and plasma membrane and prevents NETosis

Disulfiram Gasdermin-D inhibitor; inhibits pore-formation in the nuclear and plasma membrane and prevents NETosis
AMP, adenosine monophosphate; ANCA, anti-neutrophil cytoplasmic antibodies; ATP, adenosine triphosphate; BAFF, B-cell activating factor; BLyS, B lymphocyte stimulator; cAMP, cyclic
adenosine monophosphate; cGMP, cyclic guanosine monophosphate; dsDNA, double-stranded deoxyribonucleic acid; dsRNA, double-stranded ribonucleic acid; IC, immune complex; IL,
interleukin; MHC, major histocompatibility complex; MPO, myeloperoxidase; mTOR, mammalian target of rapamycin; mtROS, mitochondrial reactive oxygen species; NADPH oxidase,
nicotinamide adenine dinucleotide phosphate oxidase; NE, neutrophil elastase; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; PAD4, protein arginine deiminase 4; PDE4,
phosphodiesterase-4 inhibitor; PKC-bII, protein kinase C beta II; PMA, phorbol myristate acetate; RA, rheumatoid arthritis; Rh-IL-18 BP, recombinant human IL-18 binding protein; ROS,
reactive oxygen species; Syk, spleen tyrosine kinase; SOD, superoxide dismutase; TGF-b, transforming growth factor beta.
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Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell
(2016) 166(1):88–101. doi: 10.1016/j.cell.2016.05.034

43. Napirei M, Wulf S, Mannherz HG. Chromatin breakdown during necrosis by
serum Dnase1 and the plasminogen system. Arthritis Rheum (2004) 50(6):1873–83.
doi: 10.1002/art.20267

44. Chapman AL, Mocatta TJ, Shiva S, Seidel A, Chen B, Khalilova I, et al.
Ceruloplasmin is an endogenous inhibitor of Myeloperoxidase. J Biol Chem (2013)
288(9):6465–77. doi: 10.1074/jbc.M112.418970

45. Duranton J, Bieth JG. Inhibition of proteinase 3 by [Alpha]1-Antitrypsin in vitro
predicts very fast inhibition in vivo. Am J Respir Cell Mol Biol (2003) 29(1):57–61.
doi: 10.1165/rcmb.2002-0258OC

46. Jariwala MP, Laxer RM. Netosis in rheumatic diseases. Curr Rheumatol Rep
(2021) 23(2):9. doi: 10.1007/s11926-020-00977-6

47. Wang Y, Xiao Y, Zhong L, Ye D, Zhang J, Tu Y, et al. Increased neutrophil elastase
and proteinase 3 and augmented netosis are closely associated with b-cell autoimmunity
in patients with type 1 diabetes.Diabetes (2014) 63(12):4239–48. doi: 10.2337/db14-0480

48. Bennike TB, Carlsen TG, Ellingsen T, Bonderup OK, Glerup H, Bogsted M, et al.
Neutrophil extracellular traps in ulcerative colitis: A proteome analysis of intestinal
b iops ie s . Inflamm Bowe l Di s (2015) 21(9 ) :2052–67 . do i : 10 .1097/
MIB.0000000000000460

49. Li T, Wang C, Liu Y, Li B, Zhang W,Wang L, et al. Neutrophil extracellular traps
induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J
Crohns Colitis (2020) 14(2):240–53. doi: 10.1093/ecco-jcc/jjz132
frontiersin.org

https://doi.org/10.1016/j.immuni.2021.06.006
https://doi.org/10.1038/nrneph.2016.71
https://doi.org/10.1146/annurev.immunol.23.021704.115653
https://doi.org/10.1126/science.1092385
https://doi.org/10.1136/bmj.322.7301.1536
https://doi.org/10.1038/s41423-022-00905-x
https://doi.org/10.1038/s41423-022-00905-x
https://doi.org/10.3389/fphar.2021.701564
https://doi.org/10.3389/fphar.2021.701564
https://doi.org/10.1002/jlb.59.2.229
https://doi.org/10.1073/pnas.1005743107
https://doi.org/10.1161/CIRCRESAHA.120.315931
https://doi.org/10.1016/j.thromres.2018.01.049
https://doi.org/10.1038/s41584-019-0352-1
https://doi.org/10.1016/j.autrev.2017.09.012
https://doi.org/10.1134/S0006297920100065
https://doi.org/10.1134/S0006297920100065
https://doi.org/10.1371/journal.pone.0218946
https://doi.org/10.1371/journal.pone.0218946
https://doi.org/10.1038/s41423-018-0024-0
https://doi.org/10.1038/s41423-018-0024-0
https://doi.org/10.4049/jimmunol.1201719
https://doi.org/10.3389/fimmu.2016.00302
https://doi.org/10.1016/j.csbj.2021.06.012
https://doi.org/10.1016/j.celrep.2014.06.044
https://doi.org/10.3389/fimmu.2019.02481
https://doi.org/10.1146/annurev-cellbio-020520-111016
https://doi.org/10.1146/annurev-cellbio-020520-111016
https://doi.org/10.1021/bi047505c
https://doi.org/10.1021/bi047505c
https://doi.org/10.7554/eLife.68283
https://doi.org/10.1083/jcb.201006052
https://doi.org/10.1182/blood-2018-11-844530
https://doi.org/10.1084/jem.20100239
https://doi.org/10.1073/pnas.1909546117
https://doi.org/10.1093/cvr/cvab329
https://doi.org/10.1126/sciimmunol.aar6676
https://doi.org/10.1126/sciimmunol.aar6676
https://doi.org/10.1073/pnas.1414055112
https://doi.org/10.1038/cdd.2009.96
https://doi.org/10.1038/nm.4027
https://doi.org/10.1111/imm.13423
https://doi.org/10.1016/j.jaut.2015.08.018
https://doi.org/10.23876/j.krcp.2018.37.3.185
https://doi.org/10.4049/jimmunol.1300436
https://doi.org/10.4049/jimmunol.1800159
https://doi.org/10.1155/2015/816460
https://doi.org/10.3390/cells10102667
https://doi.org/10.1016/j.cell.2016.05.034
https://doi.org/10.1002/art.20267
https://doi.org/10.1074/jbc.M112.418970
https://doi.org/10.1165/rcmb.2002-0258OC
https://doi.org/10.1007/s11926-020-00977-6
https://doi.org/10.2337/db14-0480
https://doi.org/10.1097/MIB.0000000000000460
https://doi.org/10.1097/MIB.0000000000000460
https://doi.org/10.1093/ecco-jcc/jjz132
https://doi.org/10.3389/fimmu.2023.1253667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Juha et al. 10.3389/fimmu.2023.1253667
50. Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E,
Kourtzelis I, et al. Neutrophil extracellular trap formation is associated with Il-1b
and autophagy-related signaling in gout. PloS One (2011) 6(12):e29318. doi: 10.1371/
journal.pone.0029318

51. Gestermann N, Di Domizio J, Lande R, Demaria O, Frasca L, Feldmeyer L, et al.
Netting neutrophils activate autoreactive B cells in lupus. J Immunol (2018) 200
(10):3364–71. doi: 10.4049/jimmunol.1700778

52. Ramanujam M, Davidson A. The current status of targeting Baff/Blys for
autoimmune diseases. Arthritis Res Ther (2004) 6(5):197. doi: 10.1186/ar1222

53. Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil
extracellular traps in autoimmunity and allergy: immune complexes at work. Front
Immunol (2019) 10:2824. doi: 10.3389/fimmu.2019.02824

54. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al.
Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide
complexes in systemic Lupus Erythematosus. Sci Transl Med (2011) 3(73):73ra19.
doi: 10.1126/scitranslmed.3001180

55. Fousert E, Toes R, Desai J. Neutrophil extracellular traps (Nets) take the central
stage in driving autoimmune responses. Cells (2020) 9(4):915. doi: 10.3390/
cells9040915

56. Kienhöfer D, Hahn J, Stoof J, Csepregi JZ, Reinwald C, Urbonaviciute V, et al.
Experimental lupus is aggravated in mouse strains with impaired induction of
neutrophil extracellular traps. JCI Insight (2017) 2(10):e92920. doi: 10.1172/
jci.insight.92920

57. Xu Q, Choksi S, Qu J, Jang J, Choe M, Banfi B, et al. Nadph oxidases are essential
for macrophage differentiation. J Biol Chem (2016) 291(38):20030–41. doi: 10.1074/
jbc.M116.731216

58. McGonagle D, McDermott MF. A proposed classification of the immunological
diseases. PloS Med (2006) 3(8):e297. doi: 10.1371/journal.pmed.0030297

59. Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G.
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