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As critical executors regulating many cellular operations, proteins determine

whether living activities can be performed in an orderly and efficient manner.

Precursor proteins are inert and must be modified posttranslationally to enable a

wide range of protein types and functions. Protein posttranslational

modifications (PTMs) are well recognized as being directly associated with

carcinogenesis and immune modulation and have emerged as important

targets for cancer detection and treatment. Lactylation (Kla), a novel PTM

associated with cellular metabolism found in a wide range of cells, interacts

with both histone and nonhistone proteins. Unlike other epigenetic changes, Kla

has been linked to poor tumor prognosis in all current studies. Histone Kla can

affect gene expression in tumors and immunological cells, thereby promoting

malignancy and immunosuppression. Nonhistone proteins can also regulate

tumor progression and treatment resistance through Kla. In this review, we

aimed to summarize the role of Kla in the onset and progression of cancers,

metabolic reprogramming, immunosuppression, and intestinal flora regulation

to identify new molecular targets for cancer therapy and provide a new direction

for combined targeted therapy and immunotherapy.

KEYWORDS

immunosuppression, lactylation (Kla), metabolic reprogramming, tumor
microenvironment (TME), Warburg effect
1 Introduction

Metabolic reprogramming is a vital characteristic of tumor cells and plays an important

role in tumor therapy, with the Warburg effect being the most widely studied. Even when

sufficient oxygen is available to support mitochondrial oxidative phosphorylation, tumor

cells tend to convert glucose into lactate (1). Lactate was formerly considered to be a
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metabolic waste; however, recent research has shown that it can

promote the formation and development of cancers through

activating the Gi protein-coupled receptor 81 (GPR81) signaling

pathway (2), influencing cell metabolism (3), and modulating the

tumor microenvironment (TME) (4).

Protein posttranslational modifications (PTMs) refer to the

process of changing the biochemical properties of proteins

through adding chemical groups to one or more amino acid

residues so that precursor proteins can have specific functions.

Common modifications include acetylation, ubiquitination,

methylation, phosphorylation, and glycosylation (5). PTMs are

closely related to carcinogenesis, and their pathological

significance involves all cancer characteristics, including

maintenance of proliferation signals, resistance to cell death,

induction of angiogenesis, and activation of invasion (6). PTMs

also play vital roles in TME regulation. Swamy et al. (7) found that

activated effector T cells contain more O-GlcNAcylation-modified

proteins than naïve T cells, suggesting that O-GlcNAcylation plays

an important role in T cell activation. Forkhead/winged helix

transcriptional factor P3 (FoxP3) is a transcriptional regulator

that plays an important role in regulatory T cell (Treg) growth.

Acetylation can enhance its ability to bind to chromatin, thereby

increasing the number and activity of Treg cells and inhibiting the

antitumor effects of the immune system (8). Therefore, targeting

PTMs to key proteins or pathways is an emerging strategy for

improving early cancer detection and treatment.

Lactylation (Kla) is a novel PTM. Zhao et al. (9) conducted the

first study on histone Kla in 2019, demonstrating that Kla refers to

the addition of a lactyl (La) group to a lysine residue in the histone

tail. Later studies established that Kla is prevalent in immune-

related cells (10), non-small cell lung cancer (NSCLC) (11), and

ocular melanoma (12), and that it is strongly associated with the

development of malignancies (13). This systematic review aimed to

examine the important role of Kla in tumor cell metabolism,

microenvironment, and immunosuppression, explore the

possibility of targeting Kla sites and catalytic enzymes for cancer

therapy, and provide a new direction for combined targeted cancer

therapy and immunotherapy.
2 Lactate regulation of tumor
metabolism and microenvironment

Glucose primarily generates energy via two metabolic pathways:

glycolysis and oxidative phosphorylation (Figure 1). Both pathways

begin with the conversion of glucose to pyruvate, followed by the

production of adenosine triphosphate (ATP) and nicotinamide

adenine dinucleotide (NADH). When oxygen is available, the

pyruvate produced during glycolysis is carried into the

mitochondria and transformed into acetyl-CoA, which

subsequently enters the tricarboxylic acid (TCA) cycle and

generates considerable energy (14, 15). However, in the absence

of oxygen, pyruvate is converted to lactate by lactate dehydrogenase

(LDH) (16). Under aerobic conditions, the glycolytic process in

normal mammalian cells is blocked, which is known as the Pasteur

effect (17). However, the glycolytic metabolism of tumor cells is
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significantly active even in the presence of an ample oxygen supply,

which is known as the Warburg effect (1).

The causes of the Warburg effect remain contentious, and

several theories provide preliminary explanations. One possible

explanation is that, under oxygen-sufficient conditions, the

efficiency of ATP production is not a limiting factor for cell

multiplication. When the capability of glucose metabolism to

produce ATP is impaired in normally proliferating cells, they

undergo cell cycle arrest and reactivate catabolism while

activating signaling pathways, such as AMP-activated protein

kinase (AMPK) and activating protein kinase B (AKT), to

maintain energy homeostasis (18, 19). Furthermore, cancer cells

constantly divide and require additional metabolic intermediates to

form macromolecules for their daughter cells. However,

mitochondrial oxidative phosphorylation converts all glucose into

CO2 to maximize ATP generation, in conflict with the requirements

of growing cells. During glycolysis, glucose can be transformed into

additional macromolecular precursors, such as acetyl-CoA for fatty

acid synthesis, glycolytic intermediates for nonessential amino acid

synthesis, and ribose for nucleotide synthesis, to enhance cell

proliferation (9). In addition, it has been shown that adverse

metabolic conditions in TME can lead to the activation of

transcription factors such as Krüppel-like factor 4 (KLF4) and

nuclear factor-kappa B (NF-kB), leading to the selection of the

Warburg phenotype through transcriptional reprogramming (20).

Previously, the lactate produced through glycolysis was

considered to be merely metabolic waste. However, in recent

years, an increasing number of studies have shown that lactate

plays a role in tumor growth. Lactate can be employed as a GPR81

ligand to activate the GPR81 signaling pathway, which can then

influence the expression of metabolism-related genes and promote

tumor growth (2). In addition, Vegran et al. (21) found that lactate

can enter endothelial cells through monocarboxylate transporter 1

(MCT1), causing degradation and phosphorylation of IkBa, and
then stimulating the autocrine NF-kB/interleukin (IL)-8 pathway to

cause cell migration and blood vessel formation. Lactate is also

closely related to TME (22). Proton-coupled lactate transport in

cancer or stromal cells creates an acidic environment with a pH

ranging from 6–6.6, leading to tumor development and treatment

resistance (23). Unlike exogenous pathogens, cancer cells are

derived from normal cells and express almost all the proteins that

normal cells express, so they are more difficult to distinguish by the

immune system. In lymphocytes, B cells can act as antigen-

presenting cells and secrete cytokines to exert anti-tumor effects

(24); Cytotoxic T lymphocytes (CTLs) can specifically recognize

tumor-associated antigens through major histocompatibility

complex (MHC) I on their surface, bind to tumor cells and

produce perforin and other cytotoxins to kill cancer cells (25);

Natural killer (NK) cells have no MHC or human leukocyte antigen

restriction and can release perforin, granzyme and cytokines to

destroy tumor cells (26). Among myeloid cells, the frequency of

dendritic cells in tumors was associated with a good prognosis,

while tumor-associated macrophages (TAM), especially M2

macrophages, were associated with a poor prognosis (27). It has

been reported that lactate generated from tumor cells can activate

the production of vascular endothelial growth factor (VEGF) and
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arginase 1 (Arg1), promoting TAM polarization to M2 and assisting

TAM in promoting tumor growth (28). Besides, the lactate

concentration in the TME can limit the lactate efflux of CTLs,

lowering the production of cytokines, perforin, and granzyme B,

and inhibiting CTL cytotoxicity (29). NK cells are potent innate

immune effectors that serve as the first line of defense against

cancer. Lactate induces NK cell apoptosis (30). Natural killer T

(NKT) cells are another type of immune cells with anti-tumor

activity. Lactate can inhibit the production of interferon-g (IFNg)
and IL-4 by NKT cells, inhibit their survival and proliferation, and

promote tumor development (31).

However, the specific mechanisms underlying lactate uptake

and utilization by tumor cells have not yet been fully elucidated. The

accumulation of lactate in the TME can be reduced through

increasing its uptake and utilization by tumor cells, thus reducing

its influence on tumor cells and immune cells, or through finding

effective targets to cause tumors to undergo aerobic metabolism

instead of the Warburg effect, thereby inhibiting tumor invasion.

These issues require urgent attention in the field of lactate

metabolism in tumors.
3 Lactylation: a new posttranslational
modification

Kla is a PTM protein first reported in 2019 (32). Subsequent

studies have further confirmed that Kla has an important function
Frontiers in Immunology 03
in relation to lactate and is involved in important activities such as

tumor proliferation (33), nervous system regulation (34), and

metabolic regulation (35).

Lysine is a basic amino acid and its sixth amino group is highly

active. After modification, this amino acid changes from basic to

acidic, leading to changes in protein polarity and function (36).

Lysine acylation is a widespread and highly conserved PTM that

affects various physiological and pathological processes through

epigenetic regulation. Using mass spectrometry analysis, Zhao et al.

(32) found a mass shift of 72.021 Da on lysine residues in three

proteolytic peptides, which increased in a dose-dependent manner

with an increase in lactate. Subsequently, they showed the existence

of Kla through tracking isotopic sodium l-lactate (13C3). Inhibition

of pyruvate dehydrogenase kinase (PDK) and LDH production by

dichloroacetic acid (DCA) and oxalate was found to cause Kla

inhibition (37, 38), whereas inhibition of mitochondrial oxidative

phosphorylation by rotenone caused an increase in Kla. This

implies that lactate levels are inextricably linked to local lactate

concentrations. Furthermore, stressors such as hypoxia and

bacterial infection can promote a change in cellular energy

metabolism into a glycolysis-dependent pattern, resulting in

increased lactate production and the activation of histone Kla (39).

Kla has also been shown to cause changes in the expression of

genes related to inflammatory responses (40), macrophage

polarization (32), and other processes. Several studies have shown

that Kla plays an important role in disease occurrence and

development (33, 34). However, research into “writers” and
FIGURE 1

The metabolic process of lactate. Lactate can be created intracellularly by glycolysis catalyzed by LDH, or it can be taken up from the outside via MCT1.
Intracellular lactate inhibits glycolytic enzymes while promoting the tricarboxylic acid cycle, generating a negative feedback loop. Lactate can also be
converted to lactoyl-CoA, which is involved in the lactylation of histone and non-histone proteins. HK-1, hemokinin-1; G6PD, glucose 6-phosphate
dehydrogenase; PKM, glycolytic enzyme pyruvate kinase M; MCT1, monocarboxylate transporters 1; LDH, lactate dehydrogenase; PDH, Pyruvate
dehydrogenase; SDH, succinate dehydrogenase; IDH, isocitrate dehydrogenase; TCA, Tricarboxylic acid; HDAC, histone deacetylase; Kla, lactylation.
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“erasers,” which are necessary for the occurrence and removal of

Kla, remains in its infancy and has yet to be expanded.

Lactate, a chiral molecule, typically exists as three optical isomers:

D-lactate, L-lactate, and racemic DL-lactate. L-Lactate is the most

common type of lactate. It increases dramatically in pathological

conditions such as tumors, sepsis, and autoimmune disorders (41).

According to previous research, L-lactate can be activated through

acyl-CoA synthetase and transported to lysine residues by histone

acetyltransferases such as p300 (32). D-Lactate is primarily

synthesized in cells through the metabolism of-carbonyl aldehydes

with high glycation activity, such as methylglyoxal (MGO) (42). D-

Lactate concentrations can increase dramatically when intestinal

function is impaired (43). Galligan et al. (44) found that

methylglyoxal, a byproduct of glycolysis, can combine with

glutathione to form lactoylglutathione (LGSH), which is catalyzed

by glyoxalase 1 (GLO1). Simultaneously, GLO2 hydrolyzes LGSH,

cycling glutathione, and produces D-lactate. LGSH can be employed

as a donor to supply lactate molecules to enhance the Kla of target

proteins; this reaction does not require enzyme catalysis. In addition,

Zhao et al. (45) found that common deacetylases HDAC1-3 and

SIRT1-3 have the ability to eliminate Kla, among which HDAC3 is

the most effective “eraser” for L- and D-lactylation (46) (Figure 2).

The study of Kla and its associated enzymes offers new

perspectives for targeted cancer treatment and has promising

practical applications. As an increasing number of histone Kla
Frontiers in Immunology 04
sites have been identified, the role of Kla in nonhistone proteins

is becoming increasingly understood and recognized. Among

glycolytic enzymes, Kla has been found to be widespread. For

instance, the Kla of aldolase A (ALDOA) is present in numerous

human tumor cell lines and can control glycolysis through

controlling the activity of metabolic enzymes (47). Through

thoroughly analyzing the tumor and nearby liver, Young et al.

(48) identified 9,275 Kla sites, of which 9,256 were found on

proteins other than histones, indicating that Kla is a broad

alteration that extends beyond histone and transcriptional

regulation. They also showed that the p53 pathway is controlled

by adenylate kinase 2 (AK2) Kla in hepatocellular carcinoma

(HCC), which contributes to a poor prognosis.
4 Lactylation promoting the
occurrence and development
of tumors

4.1 Lactylation affecting the metabolism of
tumor cells

The metabolic reprogramming of tumor cells, which promotes

rapid cell growth and proliferation through altering the metabolism,
FIGURE 2

The regulatory process of lactylation. There are two known modification pathways for lactylation. L-lactate can form lactoyl-CoA, which mediates
lactylation under the catalysis of P300. In addition, methylglyoxal can form LGSH under the catalysis of GLO1, and LGSH can also mediate the
lactylation of proteins, which does not require enzyme catalysis. LGSH can be decomposed into glutathione and D-lactate under the action of
GLO2. Both L-and D-lactate-mediated lactylation were abolished by HDAC3. LGSH, Lactoylglutathione; GLO, glyxoalase.
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is considered to represent a new cancer characteristic (49). The

most prevalent and basic type of research on tumor metabolism is

aberrant glucose metabolism (50). Tumor cells have a distinctive

glucose metabolism pattern compared with normal cells; even

under oxygen-sufficient conditions, they prefer glycolysis to the

tricarboxylic acid (TCA) cycle to obtain energy. Recent studies have

also found that many other metabolic pathways, including fatty acid

metabolism (51), cholesterol metabolism (52), and glutamine

metabolism (53), undergo reprogramming changes in tumor cells.

Hypoxia-inducible factor alpha (HIF-1a) is a key gene that

regulates the metabolic mode of tumor cells (54). Lactate

concentration can inhibit the activity of proline hydroxylase

(PHD) and weaken the ubiquitination and degradation of HIF-1a
by PHD, which indicates that lactate is closely related to tumor

metabolism (55). Previous studies have demonstrated that lactate

can be used as a source of three-carbon compounds in mammals.

Circulating lactate also allows uncoupling of glycolysis and TCA,

allowing glucose use to be regulated according to more advanced

bodily demands (56). Besides, lactate and pyruvate together can be

used as a circulating REDOX buffer to balance the NADH/NAD

ratio in cells and tissues (57). Chiarugi et al. (3) demonstrated that

lactate can activate the key enzymes ATP citrate lyase and acetyl-

CoA carboxylase in fatty acid synthesis, as well as the cholesterol

pathway, by redirecting citrate in prostate cancer cells. Meanwhile,

the current study showed that the accumulation of circulating

lactate is negatively correlated with fat oxidation (58). In recent

years, research concerning Kla has gain considerable momentum,

and its role in tumor metabolism has gradually been revealed.

Wan et al. (47) found that Kla regulates numerous glycolysis-

related enzymes. For example, Kla at the K147 site of fructose-

bisphosphate ALDOA is found in both humans and animals. After

Kla treatment, ALDOA activity was reduced, and its catalytic

function was suppressed, establishing a negative feedback loop.

Kla may also influence the function of other enzymes involved in

glycolysis. Kla of the human recombinant enolase (ENO1) disrupts

its interaction with substrates. Given the prevalence of metabolic

dysfunction in the TME and high lactate levels resulting from the

Warburg effect, it is plausible that Kla serves as a crucial link

between lactate, tumor metabolism, and patient prognosis.

In a study concerning hepatocellular cancer, Kla was found to

have primarily affected enzymes involved in metabolic pathways

such as the TCA cycle, glucose, amino acid, fatty acid, and

nucleotide metabolism. Kla at the K28 site then inhibited the

function of AK2 and promoted the growth and spread of liver

cancer cells (48). Studies concerning NSCLC have shown that

increased histone Kla levels may cause downregulation of

hemokinin-1 (HK-1) and pyruvate kinase M (PKM) in glycolysis,

and upregulation of succinate dehydrogenase (SDHA) and

isocitrate dehydrogenase 3 gamma (IDH3G) in the TCA cycle. As

a result, glucose absorption and glycolysis are inhibited,

mitochondrial homeostasis is maintained, and tumor

development occurs (11). Furthermore, Kla has been shown to

control the activity of enzymes involved in lipid metabolism in a

nonalcoholic fatty liver disease model. The presence of Kla at the

K673 site of fatty acid synthase inhibits its function and decreases

lipid accumulation in the liver (59).
Frontiers in Immunology 05
Tumor metabolic reprogramming can successfully increase

tumor cell proliferation, growth, migration, and invasion, among

other important biological functions (49). Therefore, targeting

tumor metabolism through exploiting metabolic variations

between tumor and normal cells is a promising anticancer

technique. As a new PTM, Kla plays an important role in the

regulation of tumor metabolism, especially glucose metabolism.

However, there have been few investigations of other basic

metabolic pathways such as lipid and amino acid metabolism.

Further exploration of the regulatory mechanism of Kla in tumor

metabolism and the search for more Kla sites could provide more

reliable targets for tumor therapy.
4.2 Regulation of TME

Changes in TME are also important factors affecting

carcinogenesis. Lactate is one of the most prominent metabolites

in TME. Lactate produced by tumor cells via the Warburg effect can

enter the extracellular microenvironment and promote

angiogenesis through upregulating the expression of angiogenesis-

related proteins. At the same time, it can regulate the metabolism of

immune cells and inhibit the proliferation of CD8+ T cells, NK cells,

and dendritic cells, thereby mediating immune escape (60, 61). The

degree of histone lysine Kla has been found to be higher in TAM

than in other tissues, implying that Kla plays an important

regulatory role in TME, which may provide a new direction for

tumor immunotherapy, antiangiogenesis therapy, and

targeted therapy.

Lactate accumulation can stimulate angiogenesis by activating

VEGF, transforming growth factor (TGF), IL-1, HIF-1a, and other

substances (62, 63). According to previous studies, Kla plays a

crucial role in this process. The high expression of hyaluronic acid

(HA)-binding protein KIAA1199 has been reported to be positively

correlated with tumor stage, overexpression of HIF-1a and

upregulation of angiogenesis markers (64, 65). Lactate enters

prostate cancer cells via MCT1 and promotes the Kla of HIF-1a,
keeping it stable under normoxic circumstances and boosting

KIAA1199 transcription. This discovery could lead to a promising

target for antiangiogenic tumor therapy (66).

Immune cells play a significant anticancer role in TME. They

can detect extracellular lactate levels and send intracellular signals

to alter their function in TME (29). As a result, the impact of Kla on

the efficacy of immunotherapy has attracted interest (Figure 3).

Tumor-infiltrating myeloid cells (TIMs) include TAMs, myeloid-

derived suppressor cells (MDSCs), and tumor-associated

neutrophils (TANs). They are closely related to tumor immune

escape and their functions are regulated through a variety of

ep i g ene t i c p roce s s e s . The inc r ea s ed expre s s i on o f

methyltransferase-like 3 (METTL3) in TIMs has been linked to

poor prognosis in patients with colon cancer (67). Lactate

stimulates METTL3 expression in TIMs through the H3K18 Kla.

METTL3 mediates the m6A modification of Janus kinase (JAK1)

mRNA, enhancing its protein translation efficiency and mediating

an increase in the phosphorylation level of its downstream protein

signal transducer and activator of transcription 3 (STAT3).
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Phosphorylated STAT3 can act as a transcription factor to regulate

the production and secretion of cytokines, such as IL-6 and IL-10,

resulting in immunosuppression. In addition, the presence of two

Kla sites in the zinc-finger domain of METTL3, which are required

for it to capture target RNA, has been confirmed. These findings

h igh l igh t the impor tance o f Kla in promot ing the

immunosuppressive capacity of TIMs (68).

Macrophages are one of the most important innate immune cells

in the human body and are classified into M1 and M2 phenotypes.

Lipopolysaccharide (LPS) and IFNg activate M1 macrophages, while

IL-4 or IL-13 stimulate M2 macrophages (69). TAMs are common in

the TME and associated with the formation and progression of

malignancies (70). Seventy percent of TAMs exhibit the M2

phenotype, which suppresses the immune system and promotes

tumor development and metastasis (71). Studies have shown that

M1 macrophages undergo metabolic reprogramming during aerobic

glycolysis to produce lactate during polarization. In contrast,

polarization of M2 macrophages enhances aerobic phosphorylation

and fatty acid metabolism (72). Zhao et al. (32) found that activation

of M1macrophages leads to the activation of glycolysis, accompanied

by the production of a large amount of lactate and upregulation of

H3K18la. Histone Kla can cause an increase in M2 phenotype-related

proteins, indicating that it promotes the transformation of TAMs

from the proinflammatory, anticancer M1 phenotype to the

antiinflammatory, procancer M2 phenotype. In a study concerning
Frontiers in Immunology 06
prostate cancer, Patnaik et al. (73) discovered that reducing

phosphatidylinositol-3 kinase (PI3K) resulted in a decrease in the

synthesis of lactate in tumor cells, thereby inhibiting the histone Kla

of TAM and enhancing immune efficacy. In conclusion, histone Kla

is closely related to M2 polarization of TAMs, and increased levels of

Kla tend to cause immunosuppression and reduce the efficacy

of immunotherapy.

TGF-b is a multifunctional cytokine belonging to the

transforming growth factor superfamily. It plays a crucial role in

stem cell differentiation and T cell regulation (74). When activated,

T cells effectively attack and kill tumor cells. However, when the

immune response is complete, TGF-b delivers a signal to naïve T

cells to become Treg cells to regulate and destroy activated

proinflammatory T cells, ensuring that they do not create too

many immune factors and cause damage to their own cells and

tissues (75). In tumor tissues, Treg cells suppress immune responses

and protect cancer cells from killer T cells. Moesin reduces the

expression of TGF-b receptors and inhibits the production of Treg

cells to restore antitumor immunity (76). Studies have found that

lactate can inhibit the function of moesin by promoting Kla at the

Lys72 site to mediate the generation of Treg cells and promote the

immune escape of tumor cells. Therefore, it is feasible to improve

the efficacy of immunotherapy by inhibiting moesin Kla (10). In

summary, the discovery of Kla provides a new direction for

tumor immunotherapy.
FIGURE 3

Lactylation regulates the function of immune cells to mediate immunosuppression. In TAM, histone lactylation will lead to the up-regulation of M2
phenotypically related genes, thereby mediating the M2 polarization. In TIMs, histone lactylation promote the expression of METTL3, and METTL3
mediates the m6A modification of JAK1 mRNA. At the same time, there are also lactylation sites in METTL3 that allow it to bind to the target RNA.
Moesin can reduce the expression of TGF-b receptor and inhibit the production of Treg cells to restore anti-tumor immunity. Lactate can inhibit the
function of moesin by promoting Lys72 site lactylation to mediate the generation of Treg cells and promote the immune escape of tumor cells. In
conclusion, lactylation is closely related to the immunosuppression of tumors. LPS, Lipopolysaccharide; IFN g, Interferon-gamma; IL-4, interleukin-4;
IL-13, interleukin-13; TAM, tumor-associated macrophages; TIM, tumor -infiltrating myeloid cells; Arg1, arginase 1; METTL3, methyltransferase-like 3;
JAK1, Janus Kinase 1; M6A, N6-methyladenosine; TGF-b, transforming growth factor beta.
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4.3 Lactylation affecting the growth and
distribution of intestinal flora

Kla provides a new perspective on the regulatory function of

lactate, which plays an important role in eukaryotic cell metabolism

and gene transcription (32). Lactate is a key carbon source for

bacteria and is linked to stress tolerance, cell wall remodeling, and

virulence (77, 78). However, if Kla occurs in prokaryotes, the

biological functions it may be involved in need further investigation.

YiaC and CobB are common lysine acetyltransferases and

deacetylases found in prokaryotes, respectively (79). Dong et al.

found that YiaC catalyzes Kla in Escherichia coli, whereas CobB

scavenges PTM. CobB enhances glycolysis and bacterial growth

through eliminating the Kla of pyruvate kinase I (PykF) (80), which

provides a strong basis for controlling the growth and distribution

of certain bacteria through regulating specific Kla sites.

Intestinal flora refers to a group of bacteria that live in the

intestinal tract of humans and animals. They play important roles in

regulating digestion, immunity, and nutrient absorption. In recent

years, an increasing number of investigations have shown that certain

bacteria can cause malignancies in gastrointestinal tissues (Figure 4).

For example, Helicobacter pylori (HP) is closely related to atypical

hyperplasia, intestinal metaplasia, and gastric cancer progression

(81). Moreover, Fusobacterium nucleatum is closely related to the

transformation of colorectal adenomas into adenocarcinomas (82).

The carcinogenic mechanism of the intestinal flora is not yet fully

understood. Several studies have shown that some members of

Enterobacteriaceae produce colibactin, which results in DNA

damage and promotes malignancies (83). In addition, they can

affect cytokine synthesis and secretion, thereby activating various

carcinogenic pathways (84). Furthermore, several Toll-like receptors
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(TLR), such as TLR4 and TLR5, have been linked to the interaction

between malignancies and microorganisms. Kong et al. (85) found

that F. nucleatum promotes colorectal cancer by activating TLR4/

Keap1/NRF2 signaling. Moreover, studies have shown that lactate

regulates the proliferation of intestinal flora and has a carcinogenic

effect (86).

Panagiotou et al. (87) found that the excessive growth of

intestinal Candida in patients with lung cancer was related to an

increase in lactic-producing bacteria and a decrease in short-chain

fatty acid production. Candida species use lactate as a nutrient

source to compete with other fungi in the intestine. In addition, gut

microbes can participate in disease pathogenesis via their

interaction with the host genome through epigenetic mechanisms,

such as long non-coding RNA. Liu et al. (88) quantitatively

analyzed transcriptomic changes in a human colon cell line after

infection with the common intestinal pathogen Salmonella

typhimurium SL1344. They found that LINC00152 expression

was significantly increased and associated with intestinal

microbiome-derived LPS. LPS induces histone Kla at the

LINC00152 promoter and decreases its binding efficiency to the

transcription factor yin-yang 1 (YY1), leading to increased

LINC00152 expression, thereby promoting the migration and

invasion of colon cancer cells.

Bacteria promote carcinogenesis by causing DNA damage and

activating oncogenic pathways. Additionally, bacteria can affect

tumors through controlling the body’s immune system and

metabolism (89). It has been shown that the level of Kla affects

the growth and dissemination of bacteria. However, whether

specific Kla sites exist in different bacteria and whether tumor

progression can be controlled by modulating the Kla level in the

intestinal flora needs to be further explored.
FIGURE 4

The mechanism of intestinal flora regulating the occurrence and development of tumors. Intestinal bacteria can directly cause intracellular DNA
damage by producing genotoxins, or activate the NF-kB and STAT3 pathway by promoting cytokines secretion to promote tumorigenesis. Intestinal
bacteria can also activate a range of oncogenic pathways. Increased release and translocation of b-catenin into the nucleus through degradation of
the E-cadherin/b-catenin complex leads to aberrant activation of WNT signaling associated with various cancers. Besides, they can lead to the
invasion and metastasis of cancer by activating TLR4/Keap1/NRF2 signaling. Furthermore, LPS produced by bacteria has been shown to promote the
Kla of histones, which in turn promotes tumor progression. LPS, Lipopolysaccharide; TLR4, Toll-like receptor 4; Nrf2, Nuclear factor E2-related
factor 2; NF-kB, Noncanonical nuclear factor-kappaB; STAT3, ignal transducer and activator of transcription 3.
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5 Lactylation providing a new
direction for targeted therapy and
immunotherapy

Kla is involved in a variety of processes such as tumor

metabolism, angiogenesis, and immunosuppression, and is closely

related to the poor prognosis of tumors (32, 47). Therefore,

targeting specific sites that inhibit the occurrence of Kla may be

an effective cancer treatment strategy (Table 1).
5.1 The role of lactylation in tumor
targeted therapy

In tumor cells, glucose undergoes glycolysis to produce

pyruvate, which then reacts with LDH to form lactate. Lactate

can inhibit glycolysis and promote the TCA cycle by regulating key

enzymes and producing a negative feedback loop (95). Studies have

shown that Kla levels are positively correlated with intracellular

lactate content (32). Therefore, key enzymes involved in lactate

metabolism may be potential targets for tumor treatment. LDH is a

key enzyme in the conversion of pyruvate to lactate during

glycolysis. It maintains glycolysis and ATP production by
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regenerating NAD to form NADH (96). Baumann et al. (97)

showed that the carcinogenicity of LDH-deficient tumor cells was

significantly reduced and, after LDH knockdown, the metabolic

phenotype of the cells was disturbed and their proliferation ability

was significantly decreased. Furthermore, the enzyme ULK1, as an

upstream regulator, could mediate the phosphorylation of LDH and

enhance its enzymatic activity to promote lactate production,

thereby promoting tumor progression (98). In addition to being

produced within cells, lactate can be secreted between cells through

MCTs to participate in the regulation of cellular physiological and

pathological processes (99). Several studies have shown that

targeting MCT1 or MCT4 can effectively inhibit the growth of

multiple types of tumors, such as breast (100), liver (101), and

bladder cancers (102).

p300 and SIRT3 are present as “writer” and “eraser” for Kla.

Studies have shown that p300 is involved in tumor proliferation,

migration, and invasion (103). SIRT3 can eliminate lysine Kla, and

cyclin E2 (CCNE2) acts as a substrate. SIRT3 induces apoptosis in

HCC cells through regulating the Kla level of CCNE2 and prevents

HCC growth in vivo (91). Therefore, further exploration of the

mechanism of action of Kla and identification of Kla-related

catalytic enzymes may provide more targets for tumor treatment.

In addition to the enzymes related to lactate metabolism and

Kla, the identification of an increasing number of Kla and their
TABLE 1 The regulation of lactylation in cancer cells.

Cancers Lactylated protein(s)/site(s) Function References

Prostate cancer HIF-1a Promote angiogenesis (66)

H3K18 Neuroendocrine differentiation (90)

T-cell acute
lymphoblastic leukemia

ALDOA Metabolic Reprogramming (47)

Colorectal cancer ALDOA Metabolic Reprogramming (47)

Liver cancer AK2 Regulate p53 pathway and lead to poor prognosis (48)

CCNE2 Promote tumor proliferation (91)

H3K9la, H3K56la Promote tumorigenesis (92)

Non-small cell lung cancer H3 Inhibit glycolysis (11)

H3K18 Neuroendocrine differentiation (90)

Ocular melanoma H3K18 Upregulate the oncogene YTHDF2 and
promote tumorigenesis

(12)

Anaplastic thyroid cancer H4K12 Cause cell cycle dysregulation and promote
tumor proliferation

(93)

Clear Cell Renal
Cell Carcinoma

H3K18 Activate the transcription of PDGFRb
and promote tumor proliferation

(94)

Breast cancer H3K9,18,23,27,56,122
H4K5,8,12,31,77,91

N/A (9)

Cervical cancer H3K9,18,23,27,56,122
H4K5,8,12,31,77,91
H2AK11,13,115
H2BK5,11,15,16,20,23,43,85,
108,116,120

N/A (9)
HIF-1a, Hypoxia-inducible factor-1alpha; ALDOA, aldolase A; AK2, adenylate kinase 2; CCNE2, cyclin E2; YTHDF2, Human YTH domain family 2; PDGFRb, platelet-derived growth factor
receptor b.
N/A means "not applicable". It means that the function of these Kla sites has not been reported.
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regulatory sites opens up new directions for tumor therapy. The

BRAFV600E oncogene has been shown to increase the level of the

intracellular protein Kla through enhancing glycolytic flux. It can

promote the proliferation of anaplastic thyroid cancer through

inducing H4K12 Kla, mediating driver gene transcription, and

cell cycle dysregulation (93). The ninth member of the proprotein

convertase family, subtilisin-kexin type 9 (PCSK9), maintains

lipoprotein homeostasis. Alterations in PCSK9 expression have

been linked to carcinogenesis and progression (104). The levels of

lactate, protein Kla, and macrophage migration inhibitory factor

(MIF) in colon cancer cells were found to have significantly

increased after PCSK9 overexpression, which inhibited the

polarization of M1 macrophages and promoted the occurrence

and development of colon cancer, providing a potential

therapeutic method for the clinical control of colon cancer (33).

Pan et al. (92) identified a triterpene antitumor drug that inhibited

the carcinogenesis of liver cancer stem cells through interfering with

H3K9la and H3K56la Kla. Inactive von Hippel-Lindau (VHL)

protein is associated with metabolic reprogramming and is

important in the development of clear cell renal cell carcinoma

(ccRCC) (105). VHL inactivation promotes the progression of

ccRCC through triggering histone Kla to activate the transcription

of platelet-derived growth factor receptor b (PDGFRb). Meanwhile,

PDGFRb signaling in turn stimulates histone Kla, thereby forming a

positive feedback loop for carcinogenesis in ccRCC. The combined

reduction in histone Kla and PDGFRb signaling was shown to

substantially increase the therapeutic efficacy. This suggests that

addressing the positive feedback loop between histone Kla and

PDGFRb signaling could be a viable treatment for patients with

ccRCC (94). Additionally, histone Kla could stimulate the

production of YT521-B homology domain family member 2

(YTHDF2), which leads to the degradation of m6A-modified

period1 and TP53 and accelerates the development of ocular

melanoma (12).

It has also been reported that Kla has a role in the neuroendocrine

transition of adenocarcinoma (90). Neuroendocrine differentiation in

adenocarcinoma is an important cause of resistance to tumor

treatment (106). Most neuroendocrine cancer cells are glycolytic in

nature and contain fragmented mitochondria with low membrane

potential (107). Numb plays a crucial role in mitochondrial quality

control by attaching to Parkin and facilitating Parkin-mediated

mitophagy (90). In prostate and lung adenocarcinomas, loss of the

Numb/Parkin pathway results in metabolic reprogramming marked

by a significant increase in lactate generation, which in turn causes an

increase in histone Kla and the activation of the transcription of genes

linked to neuroendocrine function. Collectively, Numb/Parkin is a

promising therapeutic target for modulating cancer cell plasticity by

regulating histone Kla.

At present, some drugs targeting lactate metabolism have

entered clinical trials. Lonidamine (LND), a dechlorinated

derivative of indolazole-3-carboxylic acid, can destroy tumor cells

by decreasing lactate production and pyruvate uptake in

mitochondria and interrupting the mitochondrial transmission

chain. LND does not have good anticancer activity when used

alone, but it has been widely researched in combination with

standard chemotherapy for the treatment of solid tumors (108).
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Madrid et al. (109) revealed that the combination of LND and

cisplatin was more effective than cisplatin alone in reducing tumor

growth in MX-1 breast cancer and A2780 ovarian cancer.

Dichloroacetate (DCA) is an oral small-molecule medication that

reduces tumor growth by inhibiting pyruvate dehydrogenase kinase

and encouraging glucose oxidation rather than glycolysis (110).

DCA has shown promising efficacy in both recurrent glioblastoma

and locally advanced head and neck squamous cell carcinoma (111,

112). AZD3965, a dual MCT1 and MCT2 inhibitor, has previously

been shown to be effective in the treatment of breast cancer (113). A

recently completed phase 1 clinical trial validated the safety and

efficacy of AZD3965 in patients with advanced solid malignancies

and lymphoma (114). As a result, we anticipate that investigating

Kla will provide more possibilities for tumor treatment.
5.2 Lactylation affecting immunotherapy

Kla is crucial in immunotherapy. The therapeutic efficacy of

programmed cell death protein 1 (PD-1) blocking therapy is

determined by the competition for the reactivation of PD-1-

expressing CD8+ T cells and Treg cells in TME (115). Nishikawa

et al. (4) showed that Treg cells express more PD-1 than effector T

cells in highly glycolytic malignancies. Under low-glucose

conditions, Treg cells rapidly absorb lactate through MCT1,

stimulating the translocation of the nuclear factor of activated T

cell 1 (NFAT1) into the nucleus and consequently increasing PD-1

expression, whereas effector T cells suppress PD-1 expression.

Treatment failure has been reported to occur because PD-1

inhibition stimulated PD-1-expressing Treg cells. Furthermore,

studies have shown that lactate can also promote the expression

of PD-L1 on macrophages and neutrophils to mediate immune

resistance (116, 117). Preclinical studies have indicated that

combining the MCT1 inhibitor AZD3965 with anti-PD-1 therapy

lowers lactate release into the TME and boosts anti-tumor

immunity (118). Lu et al. (10) found that Kla levels in the Treg

cells of patients with HCC who responded to anti-PD-1 therapy

were lower. Moreover, the combination of anti-PD-1 drugs and

lactate dehydrogenase inhibitors has a stronger antitumor effect

than anti-PD-1 drugs alone. This indicates that combining Kla

inhibition with immunotherapy may be effective in treating tumors.

Kla has been found to be abundant on histone and nonhistone

proteins in tumor cells, and it is linked to a poor prognosis.

Therefore, exploration of Kla and its regulatory sites could help

identify additional safe and effective therapeutic targets for cancer

treatment and provide new directions for combination therapies.
6 Conclusions and future perspectives

Kla plays an important ro le in tumor metabol ic

reprogramming, angiogenesis, immune escape, and regulation of

intestinal flora. It has also been linked to the occurrence and

progression of malignancies. However, Kla-targeting techniques

and clinical translation remain in their infancy. Numerous issues

have yet to be addressed, such as, the need to investigate the
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synergistic or antagonistic effects of lactate and other epigenetic

modifications to better understand the mechanism of tumor

metabolic reprogramming, the need to investigate more

nonhistone Kla sites to identify potential “writers” and “erasers,”

and the need to investigate the effect of Kla on immune cells for

improving the safety and effectiveness of immunotherapy. Targeted

suppression of Kla coupled with standard chemotherapy,

radiotherapy, and immunotherapy can be expected to provide

additional cancer treatment options in the future.
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PTMs post-translational modifications

Kla Lactylation

GPR81 Gi-protein-coupled receptor 81

TME tumor microenvironment

HDAC histone deacetylase

CBP CREB-binding protein

HDAC histone deacetylase

SIRT sirtuins

La lactyl;’

NSCLC non-small cell lung cancer

ATP adenosine triphosphate

NADH nicotinamide adenine dinucleotide

TCA tricarboxylic acid

LDH lactate dehydrogenase

AMPK AMP-activated protein kinase

AKT activating protein kinase B

KLF4 kruppel-like factor 4

NF-kB nuclear factor-kappa B

MCT1 moncarboxylate transporter 1

TAM tumor-associated macrophages

VEGF vascular endothelial-derived growth factor

Arg1 arginase 1

CTLs cytotoxic T lymphocytes

NK Natural killer

NKT Natural killer T

IFNg interferon-g

IL interleukin

PDK pyruvate dehydrogenase kinase

DCA dichloroacetic acid

MGO methylglyoxal

LGSH lactoylglutathione

GLO1 glyoxalase 1

ALDOA aldolase A

AK2 adenylate kinase 2

HCC hepatocellular carcinoma

HIF-1a hypoxia-inducible factor alpha

PHD proline hydroxylase

ENO1 enolase
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HK-1 hemokinin-1

PKM pyruvate kinase M

SDHA succinate dehydrogenase

IDH3G isocitrate dehydrogenase 3 gamma

TGF transforming growth factor

LPS lipopolysaccharide

PI3K phosphatidylinositol-3 kinase

TIMs tumor-infiltrating myeloid cells

METTL3 methyltransferase-like 3

JAK1 janus kinase

PykF pyruvate kinase I

HP helicobacter pylori

TLR toll-like receptors

YY1 yin-yang 1

SDH succinate dehydrogenase

IDH lactate dehydrogenase

CCNE2 cyclin E2

PCSK9 proprotein convertase subtilisin-kexin type 9

MIF macrophage migration inhibitory factor

VHL von Hippel-Lindau

ccRCC clear cell renal cell carcinoma

PDGFRb platelet-derived growth factor receptor b

YTHDF2 YT521-B homology domain family member 2

PD-1 programmed cell death protein 1

NFAT1 nuclear factor of activated T cells 1

MDSCs myeloid-derived suppressor cells

STAT3 signal transducer and activator of transcription
3

FoxP3 Forkhead/winged helix transcriptional factor P3

MHC major histocompatibility complex

LND lonidamine
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