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The preventive situation of parasitosis, a global public health burden especially

for developing countries, is not looking that good. Similar to other infections,

vaccines would be the best choice for preventing and controlling parasitic

infection. However, ideal antigenic molecules for vaccine development have

not been identified so far, resulting from the complicated life history and

enormous genomes of the parasites. Furthermore, the suppression or down-

regulation of anti-infectious immunity mediated by the parasites or their derived

molecules can compromise the effect of parasitic vaccines. Comparing the early

immune profiles of several parasites in the permissive and non-permissive hosts,

a robust innate immune response is proposed to be a critical event to eliminate

the parasites. Therefore, enhancing innate immunity may be essential for

designing novel and effective parasitic vaccines. The newly emerging trained

immunity (also termed innate immune memory) has been increasingly

recognized to provide a novel perspective for vaccine development targeting

innate immunity. This article reviews the current status of parasitic vaccines and

anti-infectious immunity, as well as the conception, characteristics, and

mechanisms of trained immunity and its research progress in Parasitology,

highlighting the possible consideration of trained immunity in designing novel

vaccines against parasitic diseases.

KEYWORDS

parasitic diseases, vaccine, trained immunity, innate immune memory, metabolic and
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Introduction

As one of the most entrenched pathogens in the world, parasites have been posing

severe threats to both individual health and the social economy for a long history. In 2018,

malaria accounted for an estimated 228 million cases and 405,000 deaths globally, with

even more people at considerable risk. According to the report of the World Health
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Organization (WHO), 11 parasitic diseases have been listed as

Neglected Tropical Diseases (NTD) that infect over 1 billion

people worldwide (1). Parasitic diseases have been threatening

human health profoundly, causing physical pain and disability of

substantial populations, especially in marginalized areas with poor

sanitation and a backward economy. Therefore, reasonable

solutions to control the global burden of parasitic diseases make

great significance in individual and social welfare by improving

health conditions, promoting productivity, slashing medical

expenses, and alleviating general poverty.

Generally, the prevention and control strategies for parasitic

diseases mainly rely on eliminating infection sources, blocking

transmission routes, and protecting susceptible populations. Drug

treatment has been the fundamental therapeutic avenue for quite

some time. However, accumulating studies have reported drug

resistance in both ecto- and endo-parasites, which undoubtedly

impedes curing parasitic diseases (2–4). Other preventive measures

(e.g., fecal management, water purification, pesticide sprays,

intermediate host elimination) are labor and time-consuming, as

well as financial resources. With the development of modern

technology, a series of new avenues have been employed to

improve efficiency (5–7). However, wide hygiene-based measures

are crucial for the fight against parasitic diseases, and additional

measures are needed to bring them under control.

Featuring simplicity, effectiveness, and long-term preventive

capability, vaccines are undoubtedly a vital tool for controlling

infectious diseases on a large scale and compensate for the

deficiency of drug and surgical treatment to a large extent.

Historically, the success of smallpox and polio vaccines has

enabled us to eliminate these diseases. However, it is frustrating

that no commercialized parasitic vaccine is available for humans,

merely with several vaccines under different stages of clinical trials.

RTS, S/AS01 (Mosquirix, GlaxoSmithKline) is the best example of a

parasitic vaccine, the only malaria vaccine in the phase 3 clinical

trial. It is reported that within 12 months after vaccination, the

vaccine can halve the parasitic incidence in children aged 5 - 17

months and provide protection against severe malaria for children

in Africa (8). However, the protective efficacy is only 28.3% among

infants who received three doses and 36.3% for those given a fourth

dose (9). Notably, a follow-up study over 7 years shows the vaccine

efficacy wanes significantly over time, with 3.6% at year 7 in the low-

exposure cohort and a negative rate at year 5 in the high-exposure

cohort (10). Based on recent findings, a new generation of vaccine

candidates has been developed, which contains antigenic domains

similar to the RTS, S vaccine and can be expressed on mRNA or

nanoparticles. According to the latest human trials in Burkina Faso

with children injected with the nanoparticle R21 vaccine, the initial

results showed 77% protection against severe malaria 1 year after 3

doses of the vaccine in children (11). Another example is the

current status of the schistosomiasis vaccine. S. haematobium 28-

kD glutathione S-transferase (rSh28GST), the first vaccine to enter a

clinical trial for urinary schistosomiasis, has failed due to its lower

safety and immunogenicity (12). Moreover, another three

candidates (S. mansoni 14-kDa cytoplasmic fatty acid-binding

protein, Sm14; S. mansoni 9-kDa tetraspanin surface protein, Sm-

TSP-2; S. mansoni surface calpain, Sm-p80) are now under varying
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stages of clinical trials, of which the protective efficacy is unavailable

and still needs further estimation (13–15).

With the development of research, several novel vaccines have

emerged as a hot spot in parasitic vaccine development.

Intriguingly, DNA vaccines effectively induce cell-mediated Th1

immune responses with increased proliferation of CD4+ T cells and

CD8+ T cells in animals, and have a higher safety profile than vector

vaccines (16–23). Additionally, DNA vaccines have a superior

performance in terms of stability at ambient temperatures, rapid

adaptation to new targets, and cost-effectiveness (18, 24). For

example, the DNA vaccine pVIVO2-Sj23.EGFP against S.

japonicum has a systemic and long-lasting protective effect and is

safe for gut microbiota in mice (25). In the preclinical context, DNA

vaccines have been developed against Schistosoma spp (26–29).,

hookworms (30), and Fasciola hepatica (31). Unfortunately, many

of these vaccines exhibit little reduction in parasite loads. Recently,

the recombinant protein enhancing Sm-p80 DNA vaccine with

CpG dinucleotides as an adjuvant, shows the most significant

protective effect, reducing the parasite burden of S. mansoni by

47.34% (32). Moreover, viral vectored vaccines use infectious agents

to deliver the vaccine target, leading to a potent cellular immune

response, particularly CD8+ cytotoxic T cells (16). What’s more,

viral vectored vaccines can mimic natural infections and are highly

immunogenic (33). It is encouraging to note that viral vectored

vaccines have been developed against malaria (34), Echinococcus

granulosus (35) and taeniasis (36).

Despite the inability of the human host to develop a naturally

acquired immune response to hookworms, it is feasible to develop a

hookworm vaccine based on the success of immunizing

experimental animals with an attenuated larval vaccine or with

antigens extracted from the alimentary canal of adult blood-feeding

stages (37). However, only recombinant proteins produced in

eukaryotic expression systems (e.g., insect cells, baculoviruses, and

yeast) are immunologically similar to the corresponding natural

antigens (37). A challenge for vaccinologists is to formulate selected

eukaryotic antigens with suitable adjuvants to induce the

production of high litres of antibodies. Furthermore, veterinary

vaccines can reduce disease prevalence in humans and animals. For

example, Listeria monocytogenes vaccines expressing the tachyzoite

surface antigen NcSAG1 (Lm3Dx_SAG1) plus kinase inhibitor

BKI-1748, apical membrane antigen 1 (AMA-1) vaccine

candidate, Trichobovis vaccine and Toxoplasma. gondii

bradyzoite-formation deficient 1 (TgBFD1) vaccine candidate

have all made significant progress in animals (38).

Insufficient efficacy is the major obstacle to the success of

human parasite vaccines. For the unique biological characteristics

of parasites, parasitic genomes, antigenic components, and life

cycles are of more complexity and diversity in contrast with

bacteria and viruses. Parasites express specific antigens and elicit

differential host responses at different life stages. As a result, most

parasitic antigens only induce partial protective immunity, which

undoubtedly aggravates the difficulty in finding a qualified vaccine

candidate to induce long-term, specific, and effective immune

responses (39). On the other hand, many parasites utilize

advanced strategies to regulate the host’s metabolism and

immunity (40), compromising parasitic vaccines’ effect (41).
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Considering the status of the current parasitic vaccine, it is,

therefore, essential to boost vaccines’ protective effect by other

pathways. Trained Immunity (TI), also termed Innate Immune

Memory, has attracted our interest because the novel discipline has

been increasingly recognized to provide a particular perspective for

vaccine development targeting innate immunity (42). Herein, we

reviewed the anti-innate immunity of parasitic infection in hosts, as

well as the conception, characteristics, and mechanisms of trained

immunity and its advance in the field of Parasitology, highlighting

the possible consideration of trained immunity in designing novel

vaccines against parasitic diseases.
A compromised innate immunity
response hampers parasite
elimination in hosts

Adaptive immunity presents a significant “memory” trait,

which induces stronger and faster immune responses upon

second exposure to pathogens, thus providing long-term

protection against infection. Evidence suggests that robust

memory responses develop after reinfection of viruses and

bacteria, whereas the host’s immune system appears to have only

partial resistance to parasitic infection (43–45). The complete

protective effect mediated by immunity (referred to as sterilizing

immunity) is only observed in cutaneous leishmaniasis caused by

tropical Leishmania (46). In contrast, most hosts establish non-

sterilizing immunity, which maintains a lower parasite burden in

hosts and fails to provide adequate protection against the

reinfection of parasites. This results from the well-known fact that

parasites are equipped with superior immunoregulatory skills,

thereby suppressing and converting the host immune response

away from lethality and creating surroundings favorable

for survival.

Due to differential parasite size, antigen composition, and life

cycles, host immune responses triggered by different types of

parasites present specificity to some extent yet share many

similarities. In general, the protozoan and the early stage of

helminth infection tend to trigger Type 1 immunity (47).

However, with the progress of helminth infection, the immune

response is biased toward Type 2 immunity (48). Inflammatory

monocytes (Mo) and macrophages (Mj) are important in killing

invasive parasites via two mechanisms. Upon infection, Mo triggers

the production of reactive oxygen species (ROS), provoked by

respiratory burst during phagocytosis, and contributes to early

parasite control.

In contrast, Mj synthesizes nitric oxide (NO) through inducible

nitric oxide synthase (iNOS) after activation by IFN-g (47).

Following initial interaction between parasites and pattern

recognition receptors (PRRs) (e.g., Toll-like receptors, TLRs; C-

type lectin receptors), antigen-presenting cells (APCs), including

Mo and DCs initiate and maintain Th1 immune responses through

antigen presentation and production of inflammatory cytokines

such as IL-12, TNF-a, IL-6. CD4+ T and CD8+ T cells and NK cells

respond to IL-12 by secreting IFN-g, which further instructs Mj to
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activate the killing mechanism and enhance inflammatory

cytokines production.

However, to resist hosts’ immune systems, parasites have evolved

a series of immunomodulatory strategies to precisely suppress or

downregulate immune responses, thereby escaping the elimination of

immunity. The immunoregulatory events are initiated from the

beginning post-infection. The outcome is an optimized

environment featuring less aggressive immune cells, decreased pro-

inflammatory cytokines (e.g., IFN-g, IL-1, IL-12, TNF-a), and
increased inhibitory cytokines (e.g., IL-10 and TGF-b). It is

reported that Leishmania and Toxoplasma gondii can suppress the

production of inflammatory cytokines, chemokines, and the

expression of costimulatory molecules in Mj via interference with

MAPK, NF⁃kB, STAT3, or activation of STAT6-PPARg/d pathways,

thus promoting Mj to differentiate towards anti-inflammatory M2

phenotype. The activation of M2 Mj is synchronized with the tilt of

immune response to Th2, which is detrimental to the elimination of

protozoa (49–59). Mj and DCs are pivotal first responders of the

innate immune system against early stage of malaria infection. Mj
controls the parasite burden in early infection stages primarily

through phagocytic clearance. DCs are highly efficient in producing

chemokines and cytokines in response to malaria infection, and

interplay with other cells in the innate and adaptive immune

systems. IL-12 produced by DCs activates NK cells, inducing

secretion of IFN-g, which facilitates Th1 and effector T cell

responses (60). Massive production of IFN-g contributes to the

control of parasitemia by activating Mj and neutrophils for

enhanced phagocytic activity and consequently, parasite clearance

(61, 62). However, Mj becomes immunosuppressive following

internalization of infected erythrocytes, hemozoin or merozoites

(63–67), resulting in the inability to produce chemokines and

cytokines, which is detrimental to the control of Plasmodium

burden (68).

For helminths, the immunomodulatory strategies share many

similarities with protozoa yet present quite diversities (69, 70). As

the infection progresses, helminths induce the proliferation of Tregs

and immunoregulatory Mo along with high levels of

immunosuppressive cytokines TGF-b and IL-10 (48). Numerous

studies have shown that helminths facilitate the activation and

proliferation of Th2 cells and M2 Mj. These cell types are involved
in the anti-inflammatory responses to infection or tissue damage

(71). Heligmosomoides polygyrus bakeri (Hpb) and its products are

found to affect the metabolism and effector functions of eosinophils,

group 2 innate lymphoid cells (ILC2), Mjs and neutrophils, which

play important roles in the early type 2 immune response against

helminth infection (72–74). Mice infected with Strongyloides

venezuelensis (Sv) are protected from Nippostrongylus brasiliensis

(Nb) infection for at least 3 months, and this protective effect may

be related to the induction of long-term trained immunity programs

in eosinophils and ILC2 (75, 76). House dust mite (HDM)-induced

trained eosinophils provide protection against subsequent Ascaris

infections in mice, and this protective effect against helminth

infections is mainly dependent on Th2 cells (77–79). Thus,

helminths and their products play key roles in the induction of

trained type 2 immunity. It is found that Mj trained with Fasciola

hepatica total extract (FHTE) exhibit enhanced anti-inflammatory
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trained immunity that is mediated by histone methylation,

suppressing effector Th1 and Th17 responses (80). In addition,

Mj from mice treated with FHTE express alternative activated

macrophage (AAM) markers and produce large amounts of IL-10

and IL-1RA in response to FHTE or TLR ligands and inhibit the

production of TNF and IL-12p40. Thus, by exposure to helminth

products, innate immune cells can be trained in vivo or in vitro to be

more anti-inflammatory, thereby protecting mice from the

induction of T cell-mediated autoimmune diseases (80).

Taken together, parasites apply several tactics to subvert the

early fatal Th1 response, inducing an environment characterized by

a state of immunosuppression or a moderate Th2-biased immune

response in hosts. Despite Th2-type immune response matters in

protective immunity against helminth infection, it rarely kills

parasites, only limiting their infection and weakening their

survival and fertility. As a result, parasitic infection tends to cause

long-term and asymptomatic infection in hosts, while the failure of

elimination brings about chronic damage to hosts’ health and finally

accumulates horrible consequences. Moreover, as the immune

system cannot successfully control the parasitic infection in the

early stage, parasites stand a chance to multiply rapidly in hosts, and

the afterward inappropriate-activated systemic inflammation

ultimately leads to immunopathological changes. In addition,

suppression of the immune system also impairs vaccine efficacy

to some extent, which undoubtedly intensifies the difficulty

of preventing and controlling parasitic diseases (81–83).

Consequently, a universal way to combat most types of parasites

may be to reverse the suppressed state of the immune system and

increase early Th1 or innate immunity to kill newly invading larvae,

minimize the parasitic burden or even achieve complete prevention.

Interestingly, an analysis of the non-permissive host of

Schistosoma japonicum-Microtus fortis is obtained from the

comprehensive data of a cytokine chip assay, transcriptome, and

metabolome (84), which may dramatically support our opinion. M.

fortis presents natural resistance against S. japonicum, and the

invading cercaria ultimately dies in the livers of M. fortis. After 12
Frontiers in Immunology 04
days of infection, several white nodules composed of dead cercaria

and a large number of surrounding inflammatory cells are observed

on the surface of M. fortis liver and disappear for the next two

weeks. In addition, no eggs, adult worms, or schistosomula are

found in M. fortis. Furthermore, cytokines such as IL-1b, IL-2, IL-
12, IFN-g, GM-CSF, and MCP-1 are significantly higher than those

in C57BL/6J mice (permissive host for S. japonicum) (Figure 1).

Further analysis uncovers that differentially expressed metabolites,

including unsaturated fatty acids, quasi-vitamins, and amino acids,

are detected in the metabolomic pathway analyses, which relates to

the strengthened function and activity of innate immune cells.

These results indicate that early initiation of a solid anti-

infectious immune response contributes to the natural resistance

of M. fortis against S. japonicum infection. Further studies revealed

that iNOS is highly expressed in Norway rats (85) (Figure 1), and

iNOS interferes with mitochondrial respiration and energy

production by producing NO (86, 87), thereby inhibiting S.

japonicum growth (88), formation, and development of female

and male reproductive organs, and oviposition (89), leading to

the production of unfertilized eggs (90). The above effects

significantly reduce the viability of S. japonicum (88, 91) and

jointly disrupt the formation of granulomas induced by S.

japonicum eggs (88). Moreover, NO can impair the tegument of

S. japonicum (90), with adverse effects on its nutrient absorption

and cholesterol metabolism (92, 93). Thus, enhancing the initial

innate immune response may be essential to designing novel

parasitic vaccines.
Trained immunity boosts innate
immune response via metabolic
and epigenetic reprogramming

Previous opinions hold that only the adaptive system presents

the “memory” trait when exposed to the reinfection of pathogens.
FIGURE 1

The immune profiles of S. japonicum infection in permissive and non-permissive hosts. In the Norway rats (non-permissive host), immune cells,
mainly M1 polarized Mj, produce nitric oxide (NO) through L-arginine metabolism by iNOS in response to cytokines (e.g., IFN-g, IL-1). NO leads to
impaired nutrient uptake and cholesterol metabolism in the parasite and the disruption of mitochondrial function and inhibition of mitochondrial
respiration. These responses restrain the parasite’s viability in hosts, reducing the number of viable eggs and their produced soluble egg antigen
(SEA), consequently leading to decreased liver fibrosis. In the permissive hosts (e. g C57BL/6J mice), the early stage of S. japonicum infection
induces M1 Mj polarization, leading to the secretion of inflammatory factors. However, In the chronic phase of infection, the SEA can induce M2 Mj
polarization through STAT3/6 pathways, followed by the secretion of anti-inflammatory factors, which promotes the progression of liver fibrosis.
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Instead, trained immunity (TI), also termed innate immune

memory, represents an adaptive form of innate host defense

mechanisms or de facto innate immune memory. Following

exposure to a specific infectious agent or vaccine, innate immune

cells (mainly Mo/Mj, NK cells, and innate lymphoid cells) can

respond more rapidly and more strongly to secondary attacks by

homologous or even heterologous pathogens (42, 94, 95). However,

trained immunity can lead to aberrant inflammatory responses in

cases such as autoimmunity (96). The mechanism of trained

immunity involves long-term metabolic and epigenetic

reprogramming of cells associated with strong immune responses

(42, 97, 98).

In contrast with adaptive memory, which lies on the gene

recombination of antigen receptors and proliferation of specific

lymphocyte clones, TI is triggered by the interplay between

pathogen-associated molecular patterns (PAMPs) or damage-

associated molecular patterns (DAMPs) and pattern recognition

receptors (PRRs) on the innate immune cells, followed by long-term

metabolic and epigenetic changes (99, 100) (Figures 2, 3). TI can be

initiated immediately after infection but usually lasts only weeks to

months after stimulation. The bacterial or fungal ligands such as

BCG and b-glucan have been identified as the inducers of TI

(Figures 2, 3). However, on the opposite of the training event, a

high amount of lipopolysaccharide (LPS) can induce epigenetic

silencing and a weakened innate immune response toward the

second challenge, which is called tolerance (100) (Figure 3).

The phenomenon of TI has been reported in Mo/Mj, NK cells,

and innate lymphoid cells (99, 101–104). Notably, the underlying

mechanisms of TI in Mo/Mj have been extensively investigated.

Mo and Mj belong to the mononuclear phagocyte system. Mo is an
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intermediate developmental stage between bone marrow precursor

cells and tissue Mj (105). Circulating Mo has critical biological

functions, including maintaining homeostasis of the organism

through patrol and repair functions (106) and generating

inflammatory responses during infections in the organism (107).

During infections, mature blood inflammatory Mo migrates to

inflamed tissues and differentiates into Mo-derived Mj, clearing
pathogens and restoring tissue integrity (108). In an in vitro study,

Mo was cultured in a human serum medium to induce their

differentiation into Mj (109). In the process, Mo that underwent

transient priming by b-glucan differentiated into trained Mj (101).

It is reported that b-glucan induces an epigenetic modification

involving many promoters and distal elements and the enhancers

on differentiation-sensitive promoters (102). Thus, trained Mo and

differentiated Mj produce higher inflammatory factors in response

to stimuli such as ligands targeting pattern recognition receptors

(e.g., LPS and Pam3CSK4). This is beneficial for resistance to

reinfection by the same or different pathogens, including parasites

(110). Here, we reviewed how metabolic and epigenetic events

determine TI in Mo/Mj.
Metabolic reprogramming

(i) Glycolysis

In the resting state, the energy supply in Mo/Mj relies on

oxidative phosphorylation (OXPHOS); however, these cells prefer

aerobic glycolysis upon activation (111, 112). The metabolic shift

can provide Mo/Mj with essential precursors for synthesizing
FIGURE 2

Epigenetic modifications in trained monocytes/macrophages. Initial stimulation of monocytes with b-glucan or BCG leads to histone modifications,
which leave epigenetic reprogramming marks on activated genes. Among them, the increased H3K4me3 levels in the trained monocytes were
mainly reflected in the promoter regions of genes associated with the expression of pro-inflammatory cytokines. Because chromatin markers are
partially removed after primary stimulation, these genes are partially repressed during the resting period and cannot be transcribed. After re-
stimulation with PAMPs or DAMPs, trained macrophages can undergo rapid gene transcription machinery and increase the acetylation,
monomethylation, and trimethylation of gene promoter regions.
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nucleotides, amino acids, and lipids and is considered one of the

prerequisites for TI (113). It is reported that the metabolic

phenotype of b-glucan-trained Mo is characterized by increased

glucose consumption, lactate production, the glycolytic pathway,

pyruvate conversion, and decreased OXPHOS (114). b-glucan can

act on Mo via DC-associated C-type lectin-1 (Dectin-1) receptor to

activate the AKT-PI3K pathway, subsequently activating mTOR/

HIF-1a (115). Moreover, several studies have demonstrated that the

metabolic transition from OXPHOS to aerobic glycolysis mediated

by Akt-mTOR-HIF-1a is the metabolic basis of TI (102, 116, 117)

(Figure 3). In addition, BCG-induced TI also involves the genetic

variation of glycolytic rate-limiting enzymes (e.g., hexokinase 2) in

Mo and alteration of AKT/mTOR/HIF-1a pathway (118).
(ii) TCA cycle

Several intermediates produced in the TCA cycle can regulate

the TI in Mo/Mj (Figure 3). Citric acid is mainly converted from

pyruvate and a-ketoglutarate, the metabolite of glutamine (119,

120). The citric acid in the cytosol can be converted to acetyl

coenzyme A (AcCoA), which acts as an acetylation carrier to

promote massive acetylation of histones (e.g., H3K27ac)

(Figure 3) and is closely associated with the intrinsic epigenetics
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of trained immune cells (115, 121). Succinate and fumarate are

significantly increased in trained Mo/Mj (122) (Figure 3). On the

one hand, large amounts of succinate and fumarate inhibit the

degradation of HIF-1a by prolyl hydroxylase (PHD), thus

maintaining the stability of HIF-1a. Then, HIF-1a can induce

lactate production, disrupt TCA cycling, and upregulate IL-1

expression (123, 124). On the other hand, succinate and fumaric

acid can act as antagonists of histone and DNA demethylases to

promote the methylation of histones and DNA (102, 125), which

leads to chromatin de-folding and promotes transcription and

expression of pro-inflammatory factors (110).

Furthermore, the stimulation of LPS to Mo can induce increased

expression of IRG1, which causes massive synthesis of itaconate

(126), inhibiting the expression of SDH (127, 128). Itaconate can

induce immune tolerance by inhibiting cytokine production (129).

Inhibition of SDH expression causes an impeded conversion of

succinate to fumarate, inhibiting the TCA cycle’s activity (127, 128)

and leading to the development of immune tolerance. b-glucan-
induced Mo can inhibit LPS-induced IRG1 expression, thereby

blocking the detrimental effects of itaconate on immune tolerance

(126) and increasing the expression of H3K27ac at the SDH level,

restoring cellular metabolism (130), restoring the production of pro-

inflammatory cytokines (131), and thereby reversing LPS-induced

immune tolerance (Figure 3).
FIGURE 3

Interaction of metabolic and epigenetic events in trained monocytes/macrophages. Trained immunity is induced in Mo/Mj by specific ligands (e.g., b-glucan
and BCG) via binding to PRRs (e.g., Dectin-1 and TLRs), triggering a series of intracellular cascades. In the process, accumulated intermediate metabolites can
regulate the innate immune response via complex mechanisms. For example, fumarate and acetyl-CoA can inhibit KDM5 histone demethylase and activate
histone acetyltransferase, leading to specific changes in histone methylation and acetylation in the trained cells. The metabolite mevalonate can induce
metabolic and epigenetic reprogramming in the monocytes/macrophages via interacting with IGF1R. In addition, b-glucan can regulate the IRG1-itaconate-
SDH axis to enhance the pro-inflammatory response in trained monocytes/macrophages. PRR, pattern recognition receptor; TCA, tricarboxylic acid; IGF1R,
insulin-like growth factor 1 receptor; IRG1, immune-responsive gene 1; SDH, succinate dehydrogenase.
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(iii) Glutamine metabolism

Glutamine (Gln) metabolism of b-glucan-trained or BCG-

trained Mj increases in some research (118) (Figure 3).

Glutamate and a-KG that are catabolic products of Gln, as well

as succinate generated by the gamma-aminobu-tyricacid (GABA)

pathway, complement the intermediates in the TCA cycle (115,

132), which promotes TI. Furthermore, Gln catabolism products

themselves can regulate TI through several pathways. Firstly,

AcCoA produced from glutamate is a substrate for histone

acetyltransferase, which promotes the acetylation of H3K27

(H3K27Ac) in histones in Mo (102, 133), in turn inducing TI.

Secondly, glutamine supplementation of the TCA cycle generates

large amounts of malate, which can be transported to the cytosol for

pyruvate production. The massive synthesis of pyruvate and the

activation of the mTOR-HIF-1a pathway will further promote the

aerobic glycolytic process, facilitating the TI process (134, 135).
(iv) Cholesterol synthesis pathway

In the culture system of b-glucan-trained Mo/Mj, those trained
cells show enhanced glycolysis and disrupted TCA, which allows a

large amount of pyruvate to be converted to AcCoA. Then, AcCoA

can directly synthesize fatty acids or cholesterol via the mevalonate

(MVA) pathway (136–140). In line with this, over half of the trained

cells exhibit upregulation of genes associated with cholesterol

synthesis-related pathways (115). Mevalonate (MVA), a key

intermediate in this pathway, also accumulates in the Mo/Mj.
Notably, MVA is recently reported to activate the mTOR pathway

by interacting with the Insulin-like growth factors-1-receptor

(IGF1R) to induce TI in Mo/Mj (141) (Figure 3).
Epigenetic reprogramming

Mo and Mj express PRRs, which makes them able to accept

and respond to PAMPs and DAMPs stimulation (142, 143). In this

process, these cells undergo epigenomic programmed changes,

referred to as epigenetic reprogramming, representing one

important TI induction mechanism (Figure 2). For example, Mj
trained with b-glucan or BCG is often accompanied by changes in

H3K4me3 at the promoters of genes encoding inflammatory

cytokines and extensive changes in other chromatin markers

(H3K4me1, H2K27ac, and H3K9me2, among others) (102, 114).

These changes persist for weeks to months and determine the extent

or type of immune response of the cells upon reinfection (144, 145).

It is reported that Histone acetylation marks (e.g., H3K27ac) are

short-lived and disappear upon removal of the stimulant, while

methylation marks are long-lasting (146–149). H3K4me1, as an

epigenetic marker, is actively present in enhancers, which maintains

the long-term immune memory characteristics and enables Mo/Mj
cells to produce faster and more robust responses upon re-

stimulation (148–150).

Furthermore, the immune tolerance process is accompanied by

altered histone modification levels. In tolerance experiments with
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high doses of LPS-induced sepsis, changes in histone H3K4me3,

H3K27me2, and histone methyltransferase complexes (102, 151,

152) can downregulate the genes encoding inflammatory factors

while upregulating the anti-inflammatory factor genes (153, 154).

On the contrary, the ultra-low doses of LPS induce a trained

response and enhance the inflammatory response upon LPS re-

stimulation (155, 156). In a few pretreatment experiments, low

doses of LPS can protect against pathogen infections via epigenetic

modifications to increase the expression of inflammatory factor

genes, thereby enhancing the phagocytic and killing activity of

Mj (157).
The interaction between metabolic
and epigenetic reprogramming

Mo and Mj stimulated with microorganisms, or endogenous

ligands, produce numerous metabolites, which can regulate the

function of enzymes responsible for modifying histones and DNA,

thereby altering the intrinsic epigenetic landscape. For example, a-
KG acts as a cofactor for the activation of the histone demethylase

JMJ family (Jumonji) to promote histone demethylation (102, 125);

AcCoA provides acetyl substrate for histone acetyltransferases

(158); succinate inhibits histone demethylation and inhibition of

succinate dehydrogenase (SDH) which inhibits histone methylation

(159). Moreover, histone lysine-specific demethylase 1 (LSD1) of

the JmjC and JmjD families require a-KG as a cofactor for the

demethylation process (156), whereas succinate and fumarate

inhibit its demethylation process (160). It is reported that high

concentrations of fumarate and succinate can enhance the 3-

methylation of histones H3K4 and H3K27 by inhibiting KDM5

histone demethylase (responsible for H3K4 demethylation) and

JMJD3 histone demethylase, respectively, which in turn promotes

the expression of pro-inflammatory cytokine genes (99, 115, 125,

161, 162). Thus, metabolic and epigenetic reprogramming are

tightly integrated and sequentially regulated to train the

immune process.
Trained immunity provides a novel
perspective for designing anti-
parasitic vaccines

When it comes to advancing trained immunity in parasitic

vaccines’ development, investigations are still in their infancy, yet

with a steady-climbing trend. It is reported that stimulation of

human adherent PBMCs with Plasmodium falciparum-infected red

blood cells or the malaria crystal hemozoin followed by stimulation

with TLR2 ligands can induce increased production of pro-

inflammatory cytokines (163). This finding proposes the

induction of trained immunity as a cutting edge in parasitic

infection. Bacillus-Calmette Gueŕin (BCG) is a well-known

inducer of trained immunity, which can induce long-lasting

metabolic and epigenetic changes in Mo/Mj or NK cells and,

consequently, the non-specific memory features (102, 114). The
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demographic epidemiological survey has indicated that BCG

vaccination reduces malaria-specific mortality in malaria-endemic

areas (164). To support this hypothesis, BCG-mediated trained

immunity boosts the pro-inflammatory cytokine responses (99,

165), thereby resisting the infection towards other pathogens

(99, 165).

Moreover, BCG training can lead to early expression of CD69 in

NK cells and HLA-DR expression in Mo, which can help reduce

parasitemia (166). Furthermore, a recent study has shown that

BCG-trained humanMo can enhance the killing of L. braziliensis, L.

infantum, and L. amazonensis by increasing the production of

reactive oxygen species (167). Moreover, BCG vaccination can

reduce parasite load and lesion size in organisms infected with L.

braziliensis and reduce the risk of transmission of L. amazonensis to

other organs in infected mice (167). Furthermore, b-glucan can also

induce trained immunity to increase resistance to Leishmania spp.

It is reported that b-glucan-trained Mo, by interacting with dectin-1

and the complement receptor 3 (CR3) receptors (101), can increase

cytokine production, especially IL-6, thereby improving the host’s

ability of phagocytosis and killing of L. braziliensis (168). b-glucan
training affects gene regulatory mechanisms, causing altered histone

methylation (namely H3K4me1 enrichment), which leads to

transcriptional induction of IL-32 by Mj to produce higher levels

of antimicrobial peptides such as cathelicidin and b-defensin 2

(168). These antimicrobial peptides can help Mj kill and eliminate

Leishmania spp (169, 170). In addition, b-glucan can stimulate a

long-term pro-inflammatory Mj phenotype (168), thereby

enhancing the response to parasite infection, which is beneficial

for controlling the parasite burden.

Given the potential role and promise of trained immunity in the

control of parasitic infections, integration of the innate immune

response in the form of trained immunity into the design of future

vaccines could improve vaccine efficacy. It could be thus

hypothesized that a vaccine targeting at the same time innate and

adaptive immune memory would be more successful than existing

vaccines against infections, including parasitic infections, that only

aim to boost adaptive immune responses (155). It was found that

rBCG strains first induced TI against Babesia in the early stages of

parasitic infection and then specific antigens, thereby inducing

acquired immune memory in the later stages of parasitic

infection. The ability of BCG to deliver rhoptry-associated antigen

1 (RAP-1) of Babesia bovis was further confirmed in mice, which

supported the hypothesis that rBCG could be used as a component

of an anti-Babesia vaccine (171). Therefore, BCG-induced TI and

rBCG may be novel strategies to induce protection against acute

babesiosis in humans and cattle. This approach can be used either

alone to control acute babesiosis infection and prevent deaths or

with specific anti-babesiosis vaccines to prevent persistent

babesiosis infection. The strategies described above have great

potential to reduce the parasite load in the vertebrate host and

reduce the risk of parasite transmission, thus favoring the control of

disease progression. In addition, BCG-induced TI can play a

considerable role in eradication protocols for babesiosis (172).

These studies demonstrate the powerful effect of trained

immunity in defending against parasitic infections. It is most

likely that boosting innate immunity via trained immunity may
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also contribute to eliminating a broader spectrum of parasites,

although the main findings are only observed in Plasmodium,

Leishmania, and Babesia-infected models.
Rewiring of metabolism and
epigenetics of innate immune cells:
a cutting edge approach for the
development of novel
parasitic vaccines

Considering the problems of parasitic vaccine development, it is

very urgent to design more effective parasitic vaccines in view of

novel insights. Epidemiological studies have indicated that, in

addition to specific disease-protective effects, vaccines against

infectious diseases have beneficial or detrimental non-specific

effects on other pathogens (173–175). Intriguingly, the emerging

trained immunity may provide a possible explanation for non-

specific effects. The concept of “trained immunity-based vaccines

(TIbV),” proposed by Sánchez-Ramón et al. in 2018, contributes to

the exploitation of parasitic vaccines to expand their therapeutic

efficacy (176). TIbV challenges traditional vaccines in several ways

(176), although its clinical utility and immunological implications

warrant further study. For example, TIbV may not be limited to the

formulation of its antigen and is based on trained innate immune

cells to provide non-specific protection against different pathogens.

Furthermore, TIbV has self-adjuvant characteristics that enhance

adaptive immune responses to autoantigens and bystander

antigens. TIbV may open a new way to develop broad-spectrum

parasitic vaccines in this context.

To develop effective vaccines by enhancing the anti-parasite

immunity of the host, it is crucial to gain a deeper understanding of

parasitic infection-driven immunomodulatory mechanisms. TI has

been reported in a variety of cell populations, including Mo/Mj,
NK cells, innate lymphoid cells (ILCs) and polymorphonuclear

leukocytes (77, 101, 116, 157, 177–182). This review focuses on the

design of novel parasite vaccines based on Mo/Mj, as the two types
of cells are currently more comprehensively investigated in the field

of parasitic infections and TI induction. Mj can be polarized into

classical activated Mj (M1 Mj) and alternative activated Mj (M2

Mj) under the stimulation of different environments (183)

(Figure 4). In general, M1 Mj is related to the initiation and

maintenance of the inflammatory process and eliminates parasites

by producing TNF⁃a, IL⁃12, and iNOS (184). However, M2 Mj can

metabolize L⁃arginine into proline and polyamine through Arg1 to

promote the survival of parasites in the host, which is related to the

regression of the inflammatory process and tissue repair (185).

Thus, M1 Mj is conducive to controlling parasite infection (184),

and M2 Mj is beneficial for parasite survival in the host (185).

However, how to reverse Mj M2 to M1 is a shortcoming in the

field. Interestingly, the emerging discipline of TI may enhance the

anti-infectious immunity of Mo/Mj via epigenetic and metabolic

events (186, 187) (Figure 3). Thus, rewiring metabolism and

epigenetics in these innate cells may be the principle for

designing novel parasitic vaccines.
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Induction of M1 Mj
Mj is an essential component of the innate immune system and

the first line of defense against parasitic infections. Metabolic

reprogramming is the critical event in the phenotypic

differentiation of Mj. The M1 type Mj is associated with an

inflammatory response with a predominantly glycolytic response

and a disruption of TCA following citric and succinic acid that

leads OXPHOS to be impaired. Glycolysis can supply M1 cells with

energy to produce more pro-inflammatory factors to rapidly kill

microorganisms and adapt to the hypoxic microenvironment of

tissues (108, 188, 189). Activation of the pentose phosphate

pathway (PPP) is beneficial to M1 cells to maintain inflammatory

response (190) (Figure 4). However, M2 Mj predominates in the

chronic or advanced stages of helminth infection (Figure 4). It is

reported that helminth infection promotes IL-4 production and

maintains the OXPHOS of Mj to differentiate into M2 Mj (191–

193). OXPHOS continuously provides a large amount of energy

required for tissue remodeling and repair (108, 194, 195).

Furthermore, both adults and eggs of Schistosoma mansoni can

induce M2-type polarization of Mj by peroxisome proliferator-

activated receptor g (PPARg) activation, which is beneficial to
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parasite survival (70) (Figure 4). Thus, M1 Mj plays a crucial role

in anti-infectious immunity through metabolic reprogramming.

Over the past few years, discoveries in immunology have modified

the current paradigm. It turns out that the innate immunity associated

with hyper-responsiveness often leads to enhanced host defense against

secondary infections, which is termed trained immunity (TI) (196).

Immunomodulatory compounds, including b-glucan and BCG, are

good inducers of TI via reprogramming the metabolic and epigenetic

landscape in Mo and Mj to augment the host response to parasitic

infection (102, 114, 168, 197, 198). Mo trained by b-glucan can induce

TI, causing increased H3K27ac modification and deposition of

H3K4me1 and H3K4me3 gene promoters , leading to

transcriptionally active chromatin (102, 197); it also can cause the

increased expression of enhancer proximal genes, favoring the

generation of a more robust transcriptional response (197).

Moreover, b-glucan is reported to induce metabolic changes via the

mTOR/HIF-1a pathway (114), resulting in a metabolic shift from

OXPHOS to aerobic glycolysis (197), which facilitates the induction of

Mo polarization into M1 Mj. Trained Mj will have elevated succinate

levels in the TCA cycle, which can cause enhanced H3K27me3 in the

M2 Mj gene by inhibiting JMJD3 activity, leading to suppression of

M2 Mj expression (102, 199).
FIGURE 4

Proposed mechanisms of trained immunity in elevating anti-parasitic innate immunity. Helminth infection can induce the M2 polarization of
macrophages in the chronic stage, producing a series of anti-inflammatory cytokines and weakening anti-infectious immunity. Stimulants such as
b-glucan, BCG, and mevalonate may train the monocytes and alter the metabolic flux, which induces the M1 polarization of macrophages and
enhance the anti-parasitic immunity. FFA, free fatty acid; PKB, protein kinase B; PPAR-g, peroxisome proliferator–activated receptor-g; AMPK,
adenosine monophosphate (AMP)-activated protein kinase; FAO, fatty acid oxidation; PPP, pentose phosphate pathway; FAS, fatty acid synthesis;
IRG1, immune-responsive gene 1; SDH, succinate dehydrogenase; OXPHOS, oxidative phosphorylation.
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Furthermore, BCG recognizes different Mycobacterium

tuberculosis molecular patterns through primed intracellular Toll-

like receptors (TLRs) 7 and 9 in Mj, activating intrinsic immune

transcription and gene expression profiles through the NF⁃kB
pathway to TLR signaling (200). BCG-trained Mj cause increased

expression of H3K4me3 and H3K27ac at the promoter sites of

genes essential for glycolysis (114), as well as decreased expression

of H3K9me3 (161), resulting in changes in cellular metabolism

(118). Moreover, it is reported that the increased glycolysis and

oxygen consumption (118) is induced through the Akt/mTOR

pathway (114). Upregulation of glutamine metabolism and

accumulation of succinate are involved in IL-1b production via

upregulation of HIF-1a (124). Similarly, metabolites such as

ferredoxic acid and 2-hydroxyglutaric acid can affect DNA

demethylation enzymes (201), thus favoring chromatin

condensation and preventing transcription factor binding and

gene silencing (202, 203). The TI triggered by BCG leads to a

sustained enrichment of H3K4me3, favoring the production of pro-

inflammatory cytokines and enhancement of gene promoter

regions associated with the expression of intracellular signaling

molecules in Mj (190). All these pathways induce Mj polarization

toward M1 Mj. Thus, b-glucan and BCG can induce Mj
polarization toward M1 Mj through the interplay and interaction

between epigenetic reprogramming and cellular metabolic

reprogramming to enhance anti-infectious immunity.

In addition, Mo and Mj remove pathogens as part of innate

immunity and contribute to adaptive immunity as antigen

presentation cells. Upon pathogen invasion, PRRs (e.g., TLRs)

expressed on the inflammatory Mj initiate the innate immune

signaling pathways and trigger a variety of pro-inflammatory

cytokines production, which in turn instructs a pro-inflammatory

adaptive immune response involving primarily Th1 cells (204, 205).

During a Th1 response, T cells, specifically CD4+ Th1 cells, could

play an integral role in suppressing parasite growth by producing

IFN-g and IL-2 (206–208). Therefore, inducing M1 Mj may aid in

optimizing vaccine strategy to elicit broadly protective innate

immunity and parasite-specific adaptive immunity. In conclusion,

future work on developing parasitic vaccines should further explore

the pathways associated with the induction of Mj polarization by

parasite infection and focus on applying immune adjuvants such as

BCG and b-glucan to alter the associated cellular metabolic and

epigenetic reprogramming. Moreover, Mj that undergoes

metabolic reprogramming causes the accumulation of

intermediate metabolites (124, 209–213). There is accumulating

evidence showing that several metabolites are conducive to anti-

infectious immunity due to their immunomodulatory properties

(114, 115, 141), which may provide the development of vaccines

with potent adjuvants.
Reversal of immune tolerance

Parasitic infections in chronic stages often compromise the

host’s anti-parasite immunity, termed immune tolerance. For

example, high levels of iNOS and NF⁃kB expression were shown

in the peripheral blood of primary patients with Echinococcus
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granulosus, while their low expression occurred in the relapsed

patients (214). Thus, reversing the immune tolerance can boost

anti-infectious immunity. Interestingly, b-glucan binding to dectin-

1 is reported to initiate the phagocytosis, produce the superoxide via

NADPH oxidase (215–217), and convert Mj to the M1 phenotype

via NF–kB–autophagy-dependent pathway (218). Moreover, in a

model of immune tolerance induced by LPS in volunteers, b-glucan
can partially reverse LPS-induced immune tolerance by modulating

the cellular epigenome, which allows elevated expression of

H3K27ac, thereby restoring the ability of Mj to produce pro-

inflammatory cytokines (197). In addition, it is reported that in a

human sepsis model, b-glucan inhibits the expression of immune

response gene 1 (IRG1), thereby downregulating the synthesis of

itaconate and increasing the expression of succinate dehydrogenase

(SDH) (Figure 3). This metabolic alteration can recover the ability

of Mo/Mj to produce high levels of pro-inflammatory cytokines

responsible for secondary stimulation (110, 126, 197), thereby

enhancing the killing of pathogenic organisms. Taken together, b-
glucan can prevent or reverse immune tolerance by altering the

relevant metabolic and epigenetic pathways and TI induction. It is

speculative that such an effect of b-glucan may be a breakthrough

point to ameliorate the parasite-induced immune tolerance in

the host.
Development of novel adjuvants

As a key vaccine component, the adjuvants can enhance the

immune response through various activities (219, 220). They can

bind to antigens and facilitate more accessible and efficient

recognition of “non-self substances” by the body, thus triggering

both innate and adaptive immune responses (221). Moreover, the

adjuvants transport antigens to lymph nodes, thus facilitating T-cell

antigen recognition. In addition, the adjuvants prolong the

retention time of antigens, induce the release of pro-inflammatory

factors, and increase the intensity of the local response at the

injected site (222). Therefore, supplementation of adjuvants is

necessary to develop a vaccine with high efficiency.

In the studies of parasitic vaccines, different types of adjuvants

can significantly enhance the effectiveness of the vaccine.

Monophosphoryl lipid A (MPL) is the component with adjuvant

activity obtained after removing the toxic effects of bacterial

lipopolysaccharides (223, 224). MPL® is formulated in a variety of

adjuvant platforms, including AS01 (MPL® and QS-21 in

phosphatidylcholine liposomes), AS02 (MPL® and saponin QS-21

in an oil-in-water emulsion containing squalene and a-tocopherol)
and AS04 (MPL® adsorbed to aluminum oxyhydroxide). Numerous

clinical studies have shown that TLR4 agonists such as AS01, AS04,

and oil-in-water emulsion (GLA-SE) show excellent performance in

the development of various vaccines against parasites (13, 225–233).

In fact, the TLR4 ligand lipopolysaccharide is reported to induce

epigenetic reprogramming of haematopoietic stem cells, leading to

persistent changes in the accessibility of their myeloid lineage

enhancers (234). Moreover, the TLR9 agonist CpG confers broad

resistance to infection by inducing TI in Mj through MyD88-

dependent cascade conduction (235). These protective effects are
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partly mediated by metabolic reprogramming, characterized by

sustained enhanced glycolysis, mitochondrial oxygen depletion

(236, 237), and mTOR activation (235).

Interestingly, a recent study has demonstrated that mevalonate

(MVA), a metabolite in the cholesterol synthesis pathway, can

induce TI via activating the IGF1-R and mTOR pathways and

subsequent histone modifications in Mo and Mj (167) (Figure 3).

In MVA-trained Mo, cellular metabolism switches from OXPHOS

to aerobic glycolysis, and the enhanced glycolytic pathway also

promotes the MVA metabolic pathway (140). Mevalonate can

induce the enrichment of H3K4me3 on the IL-6 and TNF-a
promoters (141), thereby enhancing the production of

inflammatory factors. It is well-known that the enhanced

glycolytic pathways favor the induction of Mj polarization

toward M1-type Mj (238), as well as the production of various

inflammatory cytokines, including IFN-g and TNF-a. These

cytokines eliminate the cellular internalized parasites by triggering

the oxidative burst pathway (239). Moreover, there is accumulating

evidence showing that TI can enhance innate immunity and reduce

parasitemia in rodent models of B. microti and malaria (240–243).

With the advance of TI research, it is believed that more and more

metabolites with immunoregulatory activity will be identified in TI

induction, which may be utilized to boost innate immunity in

developing TIbV against parasitic diseases.
Stimulation of hematopoietic stem
and multipotent progenitor cells

Hematopoietic stem cells (HSCs) in the bone marrow (BM) are

pluripotent and self-renewing (244). A large body of recent

evidence suggests that inflammation or infection elicits an

immune response in the BM (245–247). Similar to TI in Mo and

Mj, several infectious stimuli can train HSCs and progenitor cells,

thereby enhancing the strength of the response to secondary

infections (244). In the model of severe infection or sepsis,

hematopoietic stem and multipotent progenitor cells (HSPCs) in

the BM are also activated to proliferate and prompt BM

hematopoiesis, facilitating infection control (246, 247). Moreover,

Plasmodium sporozoites lead to the sustained proliferation of Sca-1

HSPCs to deal with life-threatening infections (248). Studies have

demonstrated that mice treated with Fasciola hepatica-excretory/

secretory (Fh-ES) can imprint a lasting memory on HSCs in the BM

through metabolic and transcriptional rewiring (249). Treating

mice with Fh-ES has enhanced the expansion and proliferation of

myeloid-committed precursors, which leads to the expansion of

anti-inflammatory Mo. This helminth-induced anti-inflammatory

trained immunity reduces the susceptibility of mice to experimental

autoimmune encephalomyelitis (250). Recent studies have reported

that HSPCs develop trained immunity after stimulation with b-
glucan or BCG. In detail, BM stimulated by b-glucan induces

expansion of CD41-biased HSCs and BM subpopulations,

followed by enhanced metabolic pathways such as glycolysis,

cholesterol synthesis, and mevalonate in HSPCs (251). The first

exposure of BM to b-glucan increased the intensity of the response
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of HSPCs to secondary LPS infection by expanding lineage Sca-1c-

Kit (LSK) and multipotent progenitors (MPPs) and by enhancing

the DNA damage response (251). BCG trains HSCs and MPPs in

the BM through an IFN-g-mediated pathway, causing cell

expansion and enhancing BM hematopoiesis (187). These trained

HSCs gave rise to epigenetically modified Mj, more resistant to

Mycobacterium tuberculosis infection (187). Thus, trained HSPCs

enhance the body’s resistance to infection, and the mature immune

cells generated by their differentiation have a more robust response

strength to secondary infections, ultimately improving the body’s

defense against pathogenic microorganisms. Therefore, the better

utilization of myeloid cells in future parasite vaccine development

would have the potential to dramatically improve vaccine efficacy,

which would help break the cycle of parasite transmission.

Myeloid-derived suppressor cells (MDSCs) arise from myeloid

progenitor cells (252), which are a population of myeloid cells that

arise in a range of pathological conditions such as cancer (253).

These cells are divided into two main cell types: granulocytic (G-

MDSC) and monocytic (M-MDSC) (253). MDSCs are powerful

immunosuppressive cells (254), capable of suppressing the function

of T cells and becoming regulators of the body’s immune function

in many pathological situations (253). In S. japonicum-infected

mice, G-MDSC was found to inhibit Tfh cell proliferation, possibly

through the programmed cell death protein 1 (PD-1)/programmed

cell death ligand 1 (PD-L1) pathway (255). In controlled human

malaria infection (CHMI) experiments, a sustained increase in

circulating G-MDSC was found in volunteers who developed

Plasmodium falciparum parasitemia, which suppressed the

proliferation of CD4+ and CD8+ T cells and led to a decrease of

lymphocytes, interfering with the production of immune memory

against the parasite and suppressing the body’s immune response

(256). In T. cruzi-infected mice, expansion of iNOS-expressing

MDSCs had an immunosuppressive effect. Expansion of MDSCs

associated with the depletion of L-arg by Arg1 impeded nitric oxide

production, further exacerbating immunosuppression in mice

(257). Overall, MDSCs proliferate abnormally and exert

immunosuppressive effects through the mechanisms described

above during chronic parasite infections (255–257), which can

significantly limit the effectiveness of parasite vaccines.

Interestingly, foreign agents like b-glucan can modulate this

suppressive cell population in tumor models (258). In vivo oral

administration of particulate b-glucan significantly reduced tumor

weight and splenomegaly in tumor-bearing mice (259).

Differentiated M-MDSC by b-glucan in vitro can induce antigen-

specific Th1 and CD8+ T cell responses via interacting with dectin-

1. Moreover, the M-MDSC stimulated by particulate b-glucan can

differentiate into CD11c cells with high MHC class II expression in

vivo, thereby reducing tumor growth (259). Another study reported

that treatment with particulate b-glucan substantially reduces

MDSCs in tumor-bearing mice but increases the infiltrated Mj
and DCs, thus inducing Th1 and CTL responses and suppressing

the immunosuppressive effects of regulatory T cells (260). Overall,

the discoveries in tumor models may offer the possibility of

enhancing host defense against parasitic infection by b-glucan
inhibiting the immunosuppressive functions of MDSCs.
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Summary and perspectives

Because of the complex life history and large genome of

parasites, it is difficult to find suitable parasite antigen molecules

for effective vaccine development. Moreover, the parasite and some

of its components can suppress the body’s immunity against

infection, thus reducing the effectiveness of parasite vaccines.

Interestingly, the description of TI has attracted extensive

attention, representing a more effective innate immune response

against the same or unrelated stimuli after a primary stimulation

(94, 95). Therefore, enhancing the innate immune responses based

on TI provides a unique perspective for parasite vaccine

development. Enhanced innate immunity facilitates the killing of

newly invading larvae at an early stage and substantially reduces the

parasite burden on the organism to avoid parasite-induced type 2

immunity at a later stage (48, 69, 70). Therefore, there are promising

directions for using TI to enhance the intrinsic immune response to

improve the protection rate of parasite vaccines.

However, it should be pointed out that the progress of TI

research is still in its infancy and faces important challenges.

Research on the function and mechanism of TI in parasitic

infections is just beginning, which will limit the rapid progress

and practical application of TIbV. Due to the differences in immune

evasion modalities of protozoan parasites and helminths (48–80),

controlling parasitic infections through a strategy of TI against the

same or unrelated stimuli after the initial stimulation (94, 95), is not

a foolproof way. This results from the fact that parasites parasitizing

different biological sites in hosts may trigger various immune

responses (261). Moreover, helminth-mediated type 2 response is

not always bad for hosts. For example, a short initial Th2 response is

beneficial to worm expulsion, while a prolonged activation of the

type 2 immune response may lead to a shift in the T-cell pool,

thereby increasing the number of Treg cells (262). This hinders the

over-activation of the immune system and consequently, limits the

excessive collateral organismal tissue damage in chronic

inflammation. Thus, how to keep the balance of type 1/type 2

response in the development of TIbV against parasitic infection, is

still a big problem.

Furthermore, the future applicability of TIbV needs to be

carefully considered due to the diverse disease spectrum in

different regions. TIbV utilization may be more appropriate in the

areas popular with parasitic and infectious diseases; however, it may

not be suited in developed countries where non-communicable

diseases are predominantly prevalent (263). Trained immunity can

also have deleterious systemic consequences, as it may trigger

enhanced tissue damage in chronic inflammatory states (95), such

as increased susceptibility to atherosclerosis in patients with

autoimmune or chronic inflammatory diseases (e.g., rheumatoid
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arthritis) (264). Moreover, western diets are reported to trigger

maladaptive TI, an immune state that may be responsible for

common inflammatory diseases (e.g., type 2 diabetes or

Alzheimer’s disease) in developed countries (95). In addition,

prolonged or excessive inflammatory responses can promote

tumor progression (42). Overall, there are numerous challenges

that need to be addressed before the clinical application of

parasitic TIbV.
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