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Simultaneous detection of DNA
variation and methylation at HLA
class II locus and immune gene
promoters using targeted
SureSelect Methyl-Sequencing
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Kai Hauschulz3, Ewoud Ewing1, Klementy Shchetynsky1,
Lara Kular1, Maria Needhamsen1 and Maja Jagodic1*

1Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet,
Stockholm, Sweden, 2Diagnostics and Genomics Group, Agilent Technologies Sweden AB,
Sundbyberg, Sweden, 3Diagnostics and Genomics Group, Agilent Technologies Deutschland GmbH,
Waldbronn, Germany
The Human Leukocyte Antigen (HLA) locus associates with a variety of complex

diseases, particularly autoimmune and inflammatory conditions. The HLA-DR15

haplotype, for example, confers themajor risk for developingMultiple Sclerosis in

Caucasians, pinpointing an important role in the etiology of this chronic

inflammatory disease of the central nervous system. In addition to the protein-

coding variants that shape the functional HLA-antigen-T cell interaction, recent

studies suggest that the levels of HLA molecule expression, that are

epigenetically controlled, also play a role in disease development. However,

deciphering the exact molecular mechanisms of the HLA association has been

hampered by the tremendous genetic complexity of the locus and a lack of

robust approaches to investigate it. Here, we developed a method to specifically

enrich the genomic DNA from the HLA class II locus (chr6:32,426,802-

34,167,129) and proximal promoters of 2,157 immune-relevant genes, utilizing

the Agilent RNA-based SureSelect Methyl-Seq Capture related method, followed

by sequencing to detect genetic and epigenetic variation. We demonstrated

successful simultaneous detection of the genetic variation and quantification of

DNA methylation levels in HLA locus. Moreover, by the detection of differentially

methylated positions in promoters of immune-related genes, we identified

relevant pathways following stimulation of cells. Taken together, we present a

method that can be utilized to study the interplay between genetic variance and

epigenetic regulation in the HLA class II region, potentially, in a wide

disease context.
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Introduction

The Major Histocompatibility Complex (MHC) known as the

Human Leukocyte Antigen (HLA) locus in humans encodes genes

involved in antigen presentation and activation of the adaptive

immune system, and stands as one of the most polymorphic loci in

the human genome (1). For example, the HLA-DRB1 gene alone

encodes nearly 2,500 known alleles (2). The rate of polymorphisms

is particularly high in the sequence encoding the peptide-binding

groove of the HLA complexes shaping the specificity and response

of the T cell repertoire. In addition, the locus is characterized by

strong linkage disequilibrium (LD), non-random associations of

specific alleles at different loci within a haplotype block, and specific

haplotypes have emerged in different ethnic groups (3). The

heterozygote advantage and the frequency selection theories have

been proposed to explain the maintenance of this high rate of

polymorphisms (3, 4).

Variations in the HLA locus predispose for a myriad of diseases

(5, 6) including ankylosing spondylitis (AS), rheumatoid arthritis

(RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE),

but also schizophrenia, Parkinson and Alzheimer’s disease that are

not considered to be typical immune-related diseases. More

specifically, distinct haplotypes and genes in the HLA class II are

among the strongest risk factors for developing different immune-

mediated diseases. For example, RA has been associated with the

DR4 haplotype, specifically with HLA-DRB1*04:01, *04:04 and

*04:08 alleles in Caucasians (7–9). The HLA-DRB1*01, *04 and

*07 alleles have been shown to contribute, in addition to the major

B27 class I risk, to the risk of developing AS (10, 11). Increased

susceptibility to SLE has been linked with the DR3 and DR15

haplotypes, with the predisposing alleles being the HLA-

DRB1*03:01 and *15:01 in Caucasians (12). The DR15 haplotype

is also associated with the development of MS and narcolepsy (13–

16). More precisely, the DRB5*01:01-DRB1*15:01 allele confers 3-

fold higher risk for the development of MS in individuals of north

European origin (13–15). Additional alleles such as HLA-

DRB1*03:01, *13:01 and *08:01 also associate with the risk of

developing MS, although with a lower magnitude compared to

*15:01, and protective alleles exist in class I locus (14). Importantly,

the disease risk conferred by the HLA locus variants is further

drastically increased in interaction with lifestyle factors, such as

smoking, infection and vitamin D deficiency (17, 18).

In addition to changes in the amino acid composition of the

HLA molecules, expression levels of the HLA class II genes have

also been suggested to be of importance for the risk of developing

disease (19–22). In MS, this effect was attributed to epigenetic

changes in DNA methylation (23), i.e., the addition of a methyl-

group in the 5-carbon of cytosines in CpG dinucleotides (24).

Mediation of the HLA and lifestyle factors via DNA methylation

in the HLA locus has also been demonstrated in RA (25, 26) and

suggested in other immune-mediated diseases (27–31).

The role of HLA in immunity, susceptibility to disease and solid

organ transplantation has rendered sequencing of the locus of the

utmost importance both in clinical practice, and the identification

of risk variants that predispose for the different diseases. Over the

past decades, several genotyping strategies ranging from serological
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test (32), Sanger sequencing to more recent sequence-specific

oligonucleotide-based typing (33) have contributed to unraveling

the sequence polymorphism in the HLA locus. Yet, these targeted

approaches often focus on the polymorphic exon 2 of genes and do

not enable wide coverage of the HLA class II region. On the other

hand, conventional sequencing strategies of the HLA locus showed

limited read length or sequencing errors for the imputation of

ambiguous genotypes (34–36). Overall, the genetic analysis of HLA

remains challenging due to similarity across the genes and alleles,

homopolymeric stretches in intragenic regions and the existence of

many and haplotype-specific pseudogenes (37). These caveats have

led to limited knowledge regarding the molecular contribution of

each allele in the susceptibility of diseases (2), despite robust

associations with the locus being known for decades. To address

these limitations and enable investigation of the class II locus, we

developed a targeted-capture approach based on the Agilent

SureSelect Methyl-Seq platform for simultaneous investigation of

genetic and epigenetic variations of the HLA class II locus.
Materials and methods

Probe design

RNA probes were designed against the entire HLA class II locus

sequence (GRCh38 coordinates: chr6:32,426,802-34,167,129:1)

retrieved from the UCSC (GENCODE version 38lift37) genome

browser (Figure 1A) with a density of 3X probe tiling, i.e., each base

of a target region was on average covered by three overlapping

probes (Supplementary Figure 1A). The size of each probe is 120

nucleotides and tolerate mismatches and even smaller insertions/

deletions. Probes were also designed against proximal promoters of

2,157 immune-related genes (Supplementary Table 1) selected

based on six publicly available transcriptomic data (38–42) from

the monocytic/macrophage THP-1 cell line. We also utilized Hi-C

data to include the interactions of the HLA with other genes using

public database for THP-1 cells (43) (Supplementary Table 2).

Genes included in the final selection displayed transcriptional

changes after inflammatory stimulation in at least three

independent studies, complemented by additional genes from

commercial myeloid panel genes (Nanostring) (Supplementary

Table 2). These non-HLA probes were designed based on

promoter IDs obtained from the Eukaryotic Promoter Database

(EPDnew released 2019, assembly GRCh38/hg38, https://

epd.epfl.ch//index.php) with a 1-3X density. To improve the

capture of regions with high GC%, we applied a so-called probe

boosting (Supplementary Figure 1), i.e., a dynamic process where

each designed probe is replicated up to 16 times based on the GC%

of a region. For the HLA sub-design masking strategy, we selected

the Least Stringent option, (https://earray.chem.agilent.com/

suredesign/help/Impact_of_parameters_on_probe_selection.htm).

This approach allowed for the identification of repetitive elements

(such as DNA transposons, LTR, non LTR-retrotransposons, LINE

and SINE elements) by all three masking tools (RepeatMasker,

WindowMasker, and the Duke Uniqueness 35 track) and the

subsequent masking from the probe design. Of note, the
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pseudogenes of the HLA locus were not masked and the probe

design enables their capture. The final panel design (Design ID:

S3381502) comprised 120,990 probes covering 2,223 kilobase (kb),

of which 65,384 probes cover 1,621 kb of the HLA class II locus,

while 55,606 probes cover 602 kb of promoter sequences

(Figure 1A; Table 1).
Library preparation

A total of 3.3 mg of genomic DNA was diluted in Low TE Buffer

(10 mM Tris-HCl pH 8.0, 0.1 mM EDTA) in microTUBE-50 AFA

Fiber Screw-Cap (Covaris) for fragmentation on Covaris M220. The

DNA was sheared at 20°C for 160 seconds and 200 cycles per burst

(Covaris M220) to achieve 250 bp-long fragmentation (Figure 1B).

The quality of DNA was assessed using the Agilent 1000 DNA kit

(Agilent Technologies) in a 2100 Bioanalyzer (Agilent Technologies).
Frontiers in Immunology 03
The libraries were prepared using the SureSelectXT Methyl-Seq

kit (Agilent, part# G9651B) and beads from the Agencourt AMPure

XP kit (Beckman Coulter) were used for purification of the DNA

fragments, followed by end-repairing and A-tailing (Figure 1B).

After ligation of the methylated adapters the samples were split into
TABLE 1 Characteristics of the probe-based DNA capture design.

HLA class II locus Immune gene
promoters Total

Number of probes 65,384 55,606 120,990

Size of capture (kb) 1,621 602 2,223

Probe density
(tiling)

3X < 3X < 3X

Number of genes 81 2157 2238
front
kb, kilobase.
B C

D

A

FIGURE 1

Design and workflow for simultaneous interrogation of genetic variation and DNA methylation at HLA class II locus and immune gene promoters. (A)
Chromosome representation of the targeted HLA class II locus. Genes are depicted in blue, while pseudogenes and non-coding RNAs are represented in
green. (B) Illustration of DNA fragment capture using biotin-labelled RNA probes based on the Agilent SureSelect Methyl-Seq Capture method. (C) Workflow
for the parallel preparation of variant and methylation libraries adapted from SureSelect Methyl-Seq. (D) Bioinformatic pipeline used for the analysis of the
variant and methylation libraries.
iersin.org
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two reactions in a 2:1 volume ratio in order to accomodate paralelle

Bisulfite (BS) and Enzymatic (EM) conversion. Two different library

preparations followed: (i) BS-Seq & Variant Library and (ii) EM-Seq

Library (Figure 1C). For the Bisulfite Conversion & Variant Library

the hybridization of the samples was performed using the Custom

Probe Design (Design ID: S3381502) for 16 hours at 65°C. After the

hybridization, capture of the DNA-RNA formed complexes was

performed using Dynabeads MyOne Streptavidin T1 beads

(Thermo Fischer Scientific) under 30 min shaking at 1800 rpm

on a mixer. In the last washing step, the 200 ml sample was split into

two equal aliquots for variant genomic detection and BS

methylation analysis methylation analysis.

For the construction of the BS Converted library, the DNA was

eluted in 20 ml of 0.1 M NaOH and processed immediately using the

EZ-DNA Methylation kit (Zymo Research). BS conversion lasted

150 minutes at 64°C and the BS converted DNA was eluted in a 20

ml final volume. Subsequently, the library was amplified using the

SureSelectXT Methyl reagent kit for 8 cycles. For the construction of

the Variant Library, 30 ml of nuclease-free water was added to the

beads, the DNA was amplified using the Herculase II Fusion DNA

Polymerase (Agilent Technologies) for 8 PCR cycles and the

libraries were cleaned using Agencourt AMPure XP beads.

For the construction of the EM Converted library, the DNA was

oxidized using the NEB Next Enzymatic Methyl-seq Conversion

Module (New England BioLabs). More specifically, the DNA was

diluted in a 28 mL volume and incubated with the oxidation enzymes

for 1h at 37°C in a thermocycler. Enzymes were inactivated using the

Stop Reagent according to the manufacturer’s instructions and the

converted DNA was purified using the Agencourt AMPure XP beads.

The DNA was hybridized with the custom-made probes (Design ID:

S3381502) for 16 hours at 65°C. The same hybridization and capture

steps were followed as mentioned previously and the DNAwas eluted

in 20 ml of 0.1MNaOH. Deamination of the cytosines was performed

for 3 hours at 37°C and then the samples were cleaned with AMPure

XP beads. The library was amplified for 8 cycles and indexed.

The quality and quantity of the libraries were assessed using the

BioAnalyzer High Sensitivity DNA Kit (Agilent Technologies)

before and after pooling in equal amounts (Supplementary

Figure 2) prior to sequencing with an Illumina NovaSeq

sequencer and a 2x150bp protocol.
Cell stimulation and DNA extraction

The THP-1 acute monocytic leukemic cell line (ATCC: The

Global Bioresource Center) was expanded in complete RPMI

medium composed of 10% Fetal Bovine Serum, supplemented

with 1% Penicillin-Streptomycin (all from Merck KGaA) with the

addition of L-glutamine, sodium pyruvate and 2-mercaptoethanol

(1.7 mM, 0.87 mM and 0.02 mM, respectively). Cells were plated

in a 6-well plate in complete RPMI medium and stimulated with

20 ng/ml of interferon-gamma (IFNg) and/or 5 ng/ml

lipopolysaccharide (LPS) for 24 hours. Following stimulation,

cells were centrifuged at 350 g for 5 min, lysed in the RLT plus
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buffer (Qiagen) and kept at -80C until further use. Genomic DNA

was extracted using the DNA/RNA Mini Kit (Qiagen) according to

manufacturer’s instructions. The DNA was eluted in Elution Buffer

(10 mM Tris-Cl, pH 8.5) and the DNA concentration was measured

using the Qubit dsDNA Broad Range kit (Thermo Fischer

Scientific). The purity of the extracted DNA was verified using

the QIAexpert spectrophotometer (Qiagen), considering the

OD260/280 absorbance ratio.
Bioinformatic analysis

All analysis in R was conducted in version 4.0.3 (44). The

sequencing data were deposited in the Gene Expression Omnibus

(GEO) with accession number GSE238121.

Variant libraries
Reads from the variant libraries were filtered for adapter and

quality using Agilent Genomics NextGen Toolkit (AGeNT) software

and subsequently mapped to GRCh38 using Burrows-Wheeler

Aligner (BWA), version 0.7.15 (45). BAM files were deduplicated

using the markdup function of Samtools, version 1.9 (46) and overlap

with the designed probes were assessed using the intersection

function of BEDTools, version 2.27.1 (47). Variant calling was

conducted using the mpileup, call, filter and query functions of

bcftools, version 1.14 (46). HLA haplotypes were called from

filtered fastq files using HLA-HD version 1.7.0 (Figure 1D) (48).
DNA methylation libraries
Reads from the DNA methylation libraries were processed

and mapped to GRCh38 using the nf-core/methylseq version

1.5 pipeline with Trim Galore version 0.6.4 (github.com/

FelixKrueger/TrimGalore), Bismark version 0.22.3 (49), BWA-

meth version 0.2.2 (arxiv.org/abs/1401.1129) and Picard

MarkDuplicates version 1.5 (broadinstitute.github.io/picard).

Deduplicated coverage files were subsequently CpG merged using

the coverage2cytosine function of Bismark version 0.23.1 (49),

filtered for 10X coverage and combined using the bsseq

bioconductor package version 1.26.0 (50). Methylation differences

between S3 and S4 (BS libraries) and S5 and S6 (EM-seq libraries)

were estimated by subtracting methylation values between the

samples of interest. CpGs were consider as differentially

methylated positions (DMPs) if the |methylation difference| > 0.1

and as differentially methylated regions (DMRs) if at least two

consecutive CpGs were classified as DMPs (Figure 1D).

Plotting
Manhattan plots were generated with the qqman R package

version 0.1.8 (51). Genetic variance was visualized using the

Gviz Bioconductor package version 1.34.1 (52) and the

VariantAnnotation package version 1.36.0 (53) was used for

reading and processing of vcf files generated by bcftools, version

1.14 (46) as described above (Figure 1D).
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Gene ontology analysis

The genes closest to CpGs that displayed methylation change > 5%

between the investigated conditions with the same direction of the

effect in BS-seq and EM-seq analysis, were selected for downstream

analysis. Different networks with the different genes were created using

STRING and community clustering with 10 different clusters was

performed (54). The pathways were imported to Cytoscape and were

graphically segregated depicting the differentially methylated positions

in each network, applying Gene Ontology analysis through BiNGO

(55, 56). GO overrepresentation analysis (https://www.webgestalt.org/)

was performed using default parameters and the genes targeted with

custom designed probes as a background. Representative GO terms

with significant FDR and adj.p-value < 0.05 were graphically depicted

in the pathway analysis.
Results

Targeted design of the HLA class II region
and immune gene promoters capture and
experimental strategy

We developed a probe-based DNA capture approach to

investigate the genetic variation and DNA methylation in the

HLA class II locus and proximal promoters of 2,157 immune

genes (Supplementary Table 1). The HLA class II genes and the

extended class II region (Figure 1A, hg38, chr6:32,426,802-

34,167,129:1) were covered using the density of 3X probe tiling,

which provided the largest in-silico coverage (96.66%) of the target

locus in comparison to higher probe tiling, i.e.4X (96.62%) and 5X

(96.56). The selection of the additional 2,157 immune genes

relevant for myeloid and antigen presenting cell function was

based on the myeloid panel genes from Nanostring as well as

genes found to be affected by inflammatory stimulation of THP-1

myeloid cell line (Supplementary Table 2). The genes that displayed

differential expression following stimulation in several independent

RNA-sequencing studies were prioritized (38–42). Each proximal

promoter (average size between 100-200 bp) was covered according

to regional specific parameters yielding the density of 1-3X probe

tiling. The final design of the capture probes (Design ID: S3381502)

comprised 120,990 probes covering 2,223 kb, of which 65,384 (54%)

cover 1,621 kb of the HLA class II locus, while 55,606 (46%) probes

cover 602 kb of promoter sequences (Table 1).

We adapted the Agilent SureSelect Methyl-Seq platform

(G7530-90002, Version E0, April 2018) (Figure 1B) (57, 58) for

simultaneous DNA and methylome analysis producing a Variant

Library (DNA-seq) and Bisulfite Conversion Library (BS-seq),

respectively. Additionally, we tested the compatibility of the

protocol for methylome analysis using enzymatic reaction by

generating an Enzymatic Methylation Library (EM-seq) (59),

which is becoming increasingly popular due to less degradation of

the DNA compared to BS (Figure 1C).

We addressed the performance of the capture probe design

using the human THP-1 immortalized monocytic cell line
Frontiers in Immunology 05
commonly used to study monocyte/macrophage differentiation

and function. Following stimulation with LPS and IFNg, THP-1

cells upregulate expression of HLA class II genes, co-stimulatory

molecules and proinflammatory cytokines (60, 61), thus providing a

suitable model for the study of APC cell functions. In addition,

THP-1 cells are heterozygous for the HLA class II locus, carrying

the HLA-DR1 and HLA-DR15 haplotypes (62), allowing us to test

the effect of haplotype sequence variation on the efficiency of the

DNA capture. The cells were stimulated with IFNg/LPS or IFNg
only for 24 hours. Three libraries for each sample (six libraries in

total, hereafter referred to as: DNA-IFNg/LPS, BS-IFNg/LPS and

EM-IFNg/LPS and DNA-IFNg, BS-IFNg, EM-IFNg) were prepared,
amplified, indexed and pooled for sequencing with an average of 4.1

Gb reads per sample and 1000X coverage.
The designed array enriches for genomic
regions of interest and is highly
reproducible between replicates

DNA sequencing reads from IFNg/LPS- and IFNg-derived
samples, which have identical genomes and thus represent

technical replicates, were quality and adapter trimmed and

subsequently mapped to the human reference genome hg38

(Figure 1D). Noticeably, approximately 42% (15,771/37,336 and

15,622/37,0700) of the reads were filtered in the deduplication step

for both samples. After deduplication, 99.2% and 99.4% of the reads

mapped with an average insert size of 275.7 and 287.3, respectively,

and an average read quality for both samples of 33.1, indicating

good reliability of the sequencing data.

Next, we assessed coverage across the 4,805 captured regions in

DNA-IFNg/LPS and DNA-IFNg samples after applying a coverage

filter of 10X (Figure 2A). Overall, 98.7% (4,744 of 4,805) and 98.5%

(4,734 of 4,805) of the designed regions were successfully captured

for each sample. We estimated a median coverage of 122X (range

11X - 4759X) across the genomic regions with little variation

between the samples (Table 2). A locus on chromosome 1 (hg38,

chr1: 40,691,614-40,692,158) displayed surprisingly high coverage

in both samples (Figure 2A). As expected, the extended HLA class II

region (h38, chr6:32,426,802-34,167,129:1) had a larger median

coverage of 202X (range 12X-789X) (Table 2; Figure 2B).

On average, 99.2% of all the sites were covered with at least 10X,

96.55% with > 30X and 83.2% with > 100X, with little variation

among the replicates (Figure 2C; Supplementary Table 3). Noticeably,

sites located upstream and downstream of the target regions were also

captured (Figure 2C), with for example ~69% and 52% of the sites

within ± 100 bp and 200 bp windows proximal to the targeted region,

respectively, being covered with > 30X. Again, the coverage at the

extended HLA class II region was higher, as more 99.7%, 98.7% and

93.3% of the sites) were covered with than 10X, 30X and 100X,

respectively (Figure 2D; Supplementary Table 3).

Taken together, the data shows that the designed probes

successfully capture the genomic regions of interest, and that the

data are reproducible between technical replicates and provide

sufficient coverage for downstream analysis such as variant calling.
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The DNA capture array allows for variant
calling and high-resolution HLA typing

We next called genotypes and inferred HLA haplotypes from the

captured regions using bcftools (46) and HLA-HD (48), the latter
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method has previously been benchmarked for its high accuracy of

HLA class II typing (63, 64). Genotypes could be called for 96.8%

(2,154,496/2,221,666) and 96.6% (2,151,062/2,221,666) of the sites,

respectively in each sample, at a minimum coverage of 30X. Variance,

called as alternative alleles compared to the hg38 reference, was

detected at 10,025 and 10,030 individual sites, respectively, the vast

majority (98%, 9,822) of the variants overlapping between replicates.

As previously mentioned, the THP-1 cell line is heterozygous for

the HLA class II locus, carrying both the HLA-DR1 and the HLA-

DR15 haplotypes. Consistent with this, we called heterozygous

genotypes within HLA-DRB1 as well as -DRB6, -DQA1, -DQB1 loci,

whereas HLA-DQA2, -DQB2 and HLA-DRA were homozygous based

on the bcftools-derived variants (Figure 2E). HLA-specific typing based

on the HLA-HD algorithm and dictionary, which allows for up to 6-

digit calling, confirmed heterozygosity at HLA-DRB1 (*01:01:01/

*15:01:01), HLA-DQA1 (*01:01:01/*01:02:01), HLA-DQB1 (*05:01:01/

*06:02:01) and HLA-DRB6 (*01:01/*01:02) haplotypes (alleles).

Furthermore, HLA-DMB (*01:01:01/01:03:01) and HLA-DOA

(*01:01:02/*01:01:01), HLA-DPA1 (*01:03:01/02:02:02), HLA-DPB1
TABLE 2 Coverage of the regions captured using DNA-sequencing.

IFNg/LPS IFNg

All regions (n = 4,805)

n regions (%) 4,744 (98.7) 4,734 (98.5)

Median coverage (range) 125 (11-4759) 119 (11-4384)

HLA class II locus (n = 917)

n regions (%) 910 (99.2) 911 (99.3)

Median coverage (range) 203 (12-789) 201 (12-767)
n, number; %, percentage.
B

C

D

E

A

FIGURE 2

Capture efficiency and variant calling of the Variant libraries. (A) Manhattan plots of the median coverage in the variant libraries from DNA from THP-
1 cells treated with IFNg/LPS (top) and IFNg (bottom). The probe density is depicted across different chromosomes in blue. (B) Mean read coverage
across the HLA class II locus on chromosome 6 (GRCh38:6: 32,426,802-34,167,129:1). (C) Number of sites captured with different coverages (10X,
20X, 30X, 50X, 100X) across all the targeted and adjacent sequences. (D) Number of sites that were captured in the HLA class II region in the IFNg/
LPS- and IFNg-treated samples. (E) Estimation of the allele frequency for the variant calling of the HLA genes in the HLA class II region. The
homozygous alleles are depicted with dark red and the heterozygous alleles with light pink. Regions that were of low coverage are illustrated by
gaps. Mean coverage at the HLA class II locus for both samples is depicted in blue. The RefSeq genes are depicted in blue.
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(*04:02:01/02:01:02) were typed as heterozygous, whereas HLA-

DMA*01:01:01, HLA-DOB*01:01:01, HLA-DRA*01:01:01, HLA-

DRB5*01:01:01 and HLA-DRB9*01:01 were homozygous, as expected

(Table 3).HLA-DRB2, -3, -4, -7 and -8 pseudogenes were not typed. Of

note, the HLA-HD-based typing conducted on quality-processed and

adapter-trimmed fastq files yielded consistent results before and

after deduplication.

In conclusion, the designed array efficiently captured, amongst

others, the HLA-DR1 and HLA-DR15 haplotypes characterizing

THP-1 cells and combined with the HLA-HD tool, allows for up to

6-digit resolution of HLA haplotypes.
Efficient and reproducible capture of
designed regions with BS- and EM-seq

Genomic DNA samples derived from cells stimulated with

either IFNg or IFNg/LPS were simultaneously assessed for DNA

methylation after BS or EM conversion (Figure 1C), both methods

resulting in the conversion of unmethylated cytosines to thymines,

with methylated cytosines left unchanged.

Quality and adapter filtered reads were mapped against an in

silico converted human reference genome (hg38), which accounts for

C>T conversion at non-methylated sites. The total number of reads

differed slightly between conversion methods but not between

conditions (Supplementary Table 4). Accordingly, after

deduplication, ~85% of the BS-derived and ~77% of the EM-

derived reads mapped uniquely to hg38 reference (Supplementary

Table 4), suggesting that the SureSelect protocol performs slightly

better with downstream analysis using BS compared to EM-based

conversion. The difference was less pronounced in the extended HLA

class II region (GRCh38, chr6:32,426,802-34,167,129:1), where 90.0%

(825) and 87.7% (804) of the 917 designed regions were captured by

each method, respectively. The median coverage across BS-derived

libraries was on average 91.5X (range 11X - 3263X) and reached 51X

(range 11X - 1851X) across EM-derived libraries (Table 4). A higher

coverage was generally estimated in the extended HLA class II region

with an averaged median coverage for BS-seq of 151X (range 11X -

742X) and of 110X (range 11X - 446X) for EM-seq. Of note, all

coverage estimations were conducted based on strand-merged CpGs

and after applying a filter of 10X. The difference in sequencing depth

and fraction of uniquely mapped reads between BS- and EM-derived

libraries is further reflected in the number of designed regions that

were captured for the DNA methylation libraries with an average of

89.8% (4,313/4,805) for BS-seq and 82.0% (3,941/4,805) for EM-seq,

respectively (Table 4). The median coverage was also visually assessed

with Manhattan plots across chromosomes, which showed an

expected peak at chromosome 6 and consistency across libraries

(Figure 3A). The peak on chromosome 6 was specific to the targeted

class II region (GRCh38, chr6:32426802-34167129:1) and drastically

decreased in up- and downstream regions (Figure 3B).

We next asked whether DNA sequences from the BS- and EM-

seq methylation data could be used for genotype calling

using bcftools. The analysis yielded identical results compared to

DNA-sequencing data, withHLA-DRB1,-DRB6, -DQA1 and -DQB1

loci being heterozygous, while homozygosity characterized HLA-
Frontiers in Immunology 07
DQA2, -DQB2 and HLA-DRA loci, based on the bcftools-derived

variants (Figure 3C).

In conclusion, the designed regions are also enriched with BS

and EM conversion, this enrichment is reproducible between

technical replicates, and ensures sufficient coverage for estimation

of DNA methylation levels.
Comparison of the detected CpG
methylation between the BS- and EM-seq

As a first step to accurately estimate DNA methylation, we

assessed the coverage at individual CpG sites within the captured

regions. The higher the coverage, the more reliable the estimation. An
TABLE 3 Genotype calling at the HLA locus from DNA-sequencing.

HLA gene name Allele 1 Allele 2

A HLA-A*02:01:01 -

B HLA-B*15:11:01 -

C HLA-C*03:03:01 -

DRB1 HLA-DRB1*01:01:01 HLA-DRB1*15:01:01

DQA1 HLA-DQA1*01:01:01 HLA-DQA1*01:02:01

DQB1 HLA-DQB1*05:01:01 HLA-DQB1*06:02:01

DPA1 HLA-DPA1*01:03:01 HLA-DPA1*02:02:02

DPB1 HLA-DPB1*04:02:01 HLA-DPB1*02:01:02

DMA HLA-DMA*01:01:01 -

DMB HLA-DMB*01:01:01 HLA-DMB*01:03:01

DOA HLA-DOA*01:01:02 HLA-DOA*01:01:01

DOB HLA-DOB*01:01:01 -

DRA HLA-DRA*01:01:01 -

DRB2 Not typed Not typed

DRB3 Not typed Not typed

DRB4 Not typed Not typed

DRB5 HLA-DRB5*01:01:01 -

DRB6 HLA-DRB6*01:01 HLA-DRB6*02:01

DRB7 Not typed Not typed

DRB8 Not typed Not typed

DRB9 HLA-DRB9*01:01 -

E HLA-E*01:03:02 -

F HLA-F*01:01:01 HLA-F*01:01:03

G HLA-G*01:01:01 HLA-G*01:01:06

H HLA-H*01:01:01 -

J HLA-J*01:01:01 -

K HLA-K*01:02 -

L HLA-L*01:01:01 -

V HLA-V*01:01:01 -
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average of 65,908 and 62,813 CpG sites were covered with > 10X

within the designed regions of BS- and EM-seq libraries, respectively,

with approximately a third of them, i.e. 33.8%, 22,264/65,908 for BS-

seq and 35.3% 22,179/62,813 for EM-seq, mapping to the extended

HLA class II region. The relatively large percentage of CpG sites

located outside of the HLA class II region is likely due to the
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enrichment of promoters within our design, which are generally

enriched in CpG sites compared to other genomic features (65).

Importantly, the majority of the total CpG sites, 98.9% (64,772/

65,501) for BS-seq and 97.8% (60,625/61,996) for EM-seq,

overlapped between conditions at 10X coverage, which allows for

assessing changes in DNA methylation across samples. As expected,
TABLE 4 Coverage of the regions captured using BS- and EM-sequencing.

BS-seq EM-seq

IFNg/LPS IFNg IFNg/LPS IFNg

All regions (n = 4,805)

n regions (%) 4,298 (89.4%) 4,328 (90.0%) 3,970 (82.6%) 3,911 (81.4%)

Median coverage (range) 91 (11-3265) 92 (11-3261) 52 (11-1928) 50 (11-1773)

HLA class II locus (n = 917)

n regions (%) 819 (89.3%) 832 (90.7%) 803 (87.6%) 805 (87.8%)

Median coverage (range) 149 (11-743) 153 (11-741) 110 (11-460) 110 (11–432)
frontiersin.or
n, number; %, percentage.
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FIGURE 3

Capture efficiency and variant calling of the Bisulfite (BS) and Enzymatically (EM) converted libraries. (A) Manhattan plots of the median coverage in the
BS-seq libraries (left panels) and EM-seq libraries (right panels) for the THP-1 cells treated with IFNg/LPS (top panels) and IFNg (bottom panels). The
probe density is depicted across different chromosomes in blue. (B) Mean read coverage across the HLA class II locus on chromosome 6 (GRCh38:6:
32,426,802:34,167,129:1) for the BS-seq and EM-seq libraries. (C) Estimation of the allele frequency from the BS- and EM-seq libraries in the HLA class II
region. The homozygous alleles are depicted with dark red and the heterozygous alleles with light pink. Regions that were of low coverage are illustrated
by gaps. Mean coverage at the HLA class II locus for the BS- and EM-seq is depicted in blue. The RefSeq genes are depicted in blue.
g

https://doi.org/10.3389/fimmu.2023.1251772
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kalomoiri et al. 10.3389/fimmu.2023.1251772
the number of CpG sites dropped with an increasing coverage

threshold, resulting to an average of 76% and 57% (> 50X) and

53% and 36% (> 100X) of initial CpGs found using BS-seq and EM-

seq, respectively (Figure 4A; Supplementary Table 5). This was likely

affecting non-HLA regions since, in contrast, the number of CpGs at

the HLA class II locus remained above 93% for both sequencings at

50X and as high as 88% and 84% for BS-seq and EM-seq, respectively,

at a 100X coverage depth (Figure 4B; Supplementary Table 5).

We then compared the conversion efficiency of the two

methods. DNA methylation levels were estimated as the number

of Cs divided by the total number of sites. Apart from neurons and

stem cells, DNA methylation generally occurs in a CpG context.

Hence, non-CpG sites are commonly used for estimating

conversion rates. The analysis of conversion efficiency showed

that EM-seq seemed to perform better as only 0.6% of total non-

CpGs were methylated, compared to an average of 1.5% for BS-

derived samples (Supplementary Table 4).

In the next step, we compared the methylation levels detected

by each method in the same samples, i.e. cells treated with either

IFNgLPS or IFNg at 10X coverage. We observed a linear correlation

between methylation levels at all CpGs between EM-seq and BS-seq

at all CpGs (Spearman r = 0.79, for IFNg/LPS, r = 0.79 for IFNg) as
well as CpG sites located in the HLA class II locus (Spearman r =

0.93 for IFNg/LPS, r = 0.94 for IFNg) (Figure 4C).
Functional annotation using differentially
methylated CpGs

We next functionally explored the differentially methylated

positions (DMPs) identified in the samples exposed to IFNg alone

or in combination with LPS. We focused on the DMPs that displayed

> 10% difference in one method and at least 5% in another with the
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same directionality in both methods for methylation analysis (BS-

and EM-seq). We performed STRING pathway analysis followed by

community clustering to subdivide the number of pathways and

graphically illustrate the differential methylation observed in core

genes of each network (Figure 5A). In total, 329 DMPs mapping

either promoters or enhancers in close proximity of promoter/

enhancers of 150 genes (Supplementary Table 6) were selected for

the analysis and segregated in the different pathways (Figure 5A).

From these genes, some displayed hypomethylated and

hypermethylated DMPs with or without hypomethylated/

hypermethylated DMRs. In a next step we performed GO analysis

of the differentially methylated genes and found significant (FDR <

0.05) enrichment of ‘biological processes’ related to MHC complex

assembly, antigen processing and presentation via the MHC class II

and antigen processing and presentation of exogenous peptide antigen

pathways (Figure 5B). Moreover, we detected significant enrichment

of the altered genes in the interferon-gamma mediated signaling

pathway and response to interferon-gamma. Consistent with this,

terms related to ‘molecular functions’ showed enrichment for the

MHC class II receptor activity, peptide antigen binding and antigen

binding (Figure 5B). GO categories linked to ‘cellular component’

highlighted enrichment in the MHC class II protein complex as well

as pathways involved in ER and Golgi transportation and endosomal

processing (Figure 5B).

These data demonstrate that with the current design we can

simultaneously interrogate both the HLA regulation as well as the

functional state of the myeloid immune lineage.
Discussion

We developed a custom-made probe-based approach to

simultaneously decipher the genetic and epigenetic variation in
B

C D

A

FIGURE 4

Methylation analysis of the Bisulfite (BS) and Enzymatically (EM) converted libraries. (A) Total number of CpGs captured with different coverage (10X,
20X, 30X, 50X and 100X) in the BS- and EM-seq libraries from THP-1 cells treated with IFNg/LPS and IFNg. (B) Total number of CpGs detected in the
HLA class II locus with different coverage (10X, 20X, 30X, 50X and 100X) in the BS- and EM-seq libraries from THP-1 cells treated with IFNg/LPS and
IFNg. (C) Correlation of CpG methylation (b-value) of the BS- vs EM-seq libraries for all the detected CpGs in THP-1 cells treated with IFNg/LPS and
IFNg. (D) Correlation of CpG methylation (b-value) of the BS- vs EM-seq libraries for the detected CpGs in the HLA class II locus in THP-1 cells
treated with IFNg/LPS and IFNg.
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the HLA class II locus and more than 2,000 immune-related

promoters. DNA-, BS- and EM-sequencing in stimulated

monocytic THP-1 cells confirmed the robustness and efficiency of

the capture of the targeted regions with high coverage. Moreover,

we could successfully impute the HLA alleles with 6-digit

resolution. Both BS- and EM-sequencing enabled quantification

of CpG methylation across the HLA locus and the targeted

promoters with high confidence, while promoter methylation

status across immune genes additionally aided in the assessment

of the cellular functional state. Thus, this methodology has the

potential to unravel the intricate interplay between genetic and

epigenetic regulation, particularly at the notoriously complex HLA

locus, and to potentially provide novel insight into the pathogenic

mechanisms underlying immune diseases.

The methodology developed in our study allows for deep

sequencing of the HLA class II locus and HLA typing at a 6-digit

resolution. This further provides a reliable avenue to deconvolute the

complex genomic architecture of the locus, displaying highly

polymorphic, multiallelic and haplotypic structure. Indeed, despite a

massive success in sequencing the human genome across populations

(66, 67) and annotating genetic elements and variation with regulation

of gene expression in a tissue-specific manner (43, 68, 69), the

characterization of the HLA locus remains unresolved. Throughout

the years, several approaches have been used for the typing of the HLA
Frontiers in Immunology 10
locus, including PCR- and capture-based approaches. PCR-based

methods can often result in allele drop-out due to amplification

errors. On the contrary, capture-based approaches yielding longer

sequences allow thorough paralleled investigation of multiple alleles

in comparison to the PCR-based approaches. Several exome

sequencing and whole genome sequencing kits have been developed

for HLA typing and used in several projects (70). However, phasing of

the haplotypes that involves delineation of the individual sequence

strands is often of critical importance, as this process will delineate not

only the allelic composition of each haplotype, but also important

intergenic regions that exert regulatory roles. This enables dissecting

the full genetic variation and interrogate the potential SNPs that could

have an impact on diseases. Moreover, the phased haplotypes can be

used as good annotation tools for variant calling and comparative

studies (71).

Sequencing of the HLA locus requires high coverage for

accurate variation calling and imputation of the alleles. Although,

whole genome sequencing and whole exome sequencing have been

used for the HLA, they are still relatively costly. Thus, a more

targeted approach can give better coverage with a considerably

reduced sequencing. The first RNA probe-based targeted capture of

the HLA locus, also utilizing Agilent SureSelectXT design, was

developed against all reference alleles from the HLA database, in

total 8,159 alleles for the eight classical genes of the HLA locus (72).
B

A

FIGURE 5

Identification of biological processes and molecular functions using the methylation capture design. (A) Graphical representation of the genes that
associate with differentially methylated positions (DMPs) between THP-1 cells treated with IFNg/LPS and IFNg. Hypermethylated and hypomethylated
positions are depicted in red and blue, respectively, and genes that displayed multiple, often consecutive, DMPs, referred to as differentially methylated
regions (DMRs), are outlined in bold. Network and Gene Ontology (GO) analysis using STRING and Cytoscape were used as a backbone to demonstrate
functions of the genes that were selected for the capture design. (B) Over Representation Analysis of GO terms in WebGestalt shows biological
processes and molecular functions that associate with DMP-associated genes.
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The design included 4-time less probes (16,351 versus 65,384

probes) in comparison to the HLA class II locus alone in our

design, with the same probe size of 120bp in both methods. It is

noteworthy that this method relies on non-overlapping probes, as

opposed to our 3X probe tiling, reducing the confidence of the

calling. While this design, applied to 357 different cell lines, showed

700-fold enrichment of the HLA region, alignment revealed only

5% perfect read mapping to the reference sequences, which is

substantially less compared to 98.6% in our method. Additionally,

this method does not allow for distinguishing novel alleles as the

design was based on the annotated alleles (72). We demonstrated

that both HLA haplotypes were equally well captured using our

protocol, although assessment of additional haplotypes is needed in

the future. Another HLA-targeted approach exploited a probe set

composed of a mixture of 80-bp oligonucleotides designed to

recognize alleles from eight different homozygous cell lines.

Approximately 99.6% of the HLA locus could be mapped with

more than 10X. This number is similar to our mapping coverage

(99.7%) with > 10X coverage for the HLA region. A more recent

technique, based on the CRISPR system combined with long read

sequencing, has been used for the dissection of the whole HLA

region from one cell line (73). The advantage of this methodology

lies on the accuracy of the haplotype calling, with large deletions

being detected. However, this method is computationally

demanding and challenging for large-scale projects as it requires

extensive sample preparation. Whole genome and exome

sequencing approaches used to reconstruct the haplotypes of

individuals, such as in the SweHLA study, suggested that

repetitive elements impair the read quality, with short read

sequencing inducing biases in the imputation among similar

alleles and genes, thereby influencing the reconstruction of the

haplotypes. This was particularly the case at the HLA-DRB1 gene

locus, with repetitive elements displaying up to > 70X coverage in

the exon 1, 3 and 6 of the gene (74). Our approach which was based

on the masking of the repetitive elements provides more favorable

outcomes in terms of read alignment to the reference genome and

elimination of reads. However, we did not mask the pseudogenes in

the target region thereby providing the possibility to examine their

potential biological role. Pseudogenes, including those in the HLA

class II locus, have typically acquired many mutations, insertions

and deletions, which allows them to be distinguished from the

original genes and analyzed using bioinformatics approaches.

Indeed, we could confidently type DRB6*01:01, DRB6*02:01 and

DRB9*01:01 present in the HLA-DR1/DR15 haplotypes.

Nevertheless, we found an enrichment of the reads in a region on

chromosome 1 that encompasses the following genes, PPT1, EXO5,

NFYC and RIMS3. These genes have been found to be present in

higher copy numbers (CNV standardized value 2.3) in the THP-1

cell line, as reported by the COSMIC database (75, 76). The higher

coverage is therefore likely to result from structural variation in this

locus in THP-1 cells specifically, the expression of these genes could

be involved in proliferative ability and the leukemic status of

these cells.

Apart from the HLA class II locus, our probe design included

more than 2,000 immune-related promoters, selected based on their

high relevance for immune functions in myeloid cells. We address
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potential changes in promoter methylation by comparing CpG

methylation levels in THP-1 cells exposed to IFNg alone or in

combination with LPS. We focused on consistent methylation

differences, i.e. with the same directionality in both BS- and EM-

converted libraries in IFNg compared to IFNg/LPS at 323

differentially methylated CpGs mapping to 140 genes, 49 of them

displaying regional changes at additional adjacent CpGs. A

substantial number of differentially methylated positions was

found in HLA class II genes (HLA-DRB1, HLA-DRB5, HLA-

DQA1, HLA-DQB1, HLA-DQB2, HLA-DPB2 and HLA-DRA)

involved in antigen presentation while the non-HLA affected

genes were related to cell cycle and metabolic processes.

Accordingly, overrepresentation analysis for the DMP-associated

genes revealed significant enrichment of categories associated with

HLA complex assembly, IFNg signaling and vesicular endocytic

pathways. These results concord with a previous study

demonstrating the regulation of HLA genes together with

costimulatory molecules upon IFNg stimulation of THP-1

monocytes (77). Thus, the fact that our genetic and epigenetic

targeted capture design combines comprehensive mapping of the

HLA class II locus, including intergenic regulatory regions, with

functionally relevant immune gene promoters, support the

possibility to probe cellular states and dysfunctions. This unique

feature is highly relevant given the significant enrichment of causal

disease variants in such regulatory regions (78).

While the methodology developed in our study allows the

simultaneous investigation of genetic and epigenetic variation in

the HLA class II locus and more than 2,000 immune related

promoters, there are certain limitations of the current protocol.

First, comparison of BS- and EM-based methods to quantify

methylation showed that BS performed better in terms of

sequencing depth and outcome. This is surprising, considering

the advantage of the EM method that preserves larger DNA

fragments throughout the whole process (59). However, the

original SureSelect protocol was optimized for BS-based

conversion and further optimization of EM, such as changing the

elution conditions, is warranted. Moreover, our design does not

include the use of unique molecular identifiers (UMIs) tracing each

molecule, which has been shown to facilitate the deduplication

process and increase the accuracy of the sequencing both for DNA

and RNA (79). As such, by applying this methodology to RNA-

sequencing of peripheral blood cells, a previous study could

decipher changes in the expression of the HLA alleles and

distinguish allele-specific expression in the samples (80). Thus,

future improvements can be implemented with the current

custom-made probe library to further enhance a thorough

characterization of the locus across different haplotypes.

Taken together, our methodology provides a technological

advance for simultaneous characterization of the genetic and

epigenetic variation in HLA class II region and for the

complementary probing of proximal promoters of more than

2,000 immune-relevant genes. This provides the possibility to

comprehensively assess the complex interplay between genetic

and epigenetic regulation of HLA genes and further opens new

horizon for the study of diseases that strongly associate with the

HLA variation such as autoimmune diseases.
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