
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yanqing Liu,
Columbia University, United States

REVIEWED BY

Xin Li,
Houston Methodist Research Institute,
United States
Yue Liu,
The University of Texas at Austin,
United States
Jingyi Xie,
University of Washington, United States

*CORRESPONDENCE

Guandou Yuan

dr_yuangd@gxmu.edu.cn

Songqing He

dr_hesongqing@163.com

Zaiwa Wei

875828696@qq.com

†These authors have contributed equally to
this work

RECEIVED 02 July 2023
ACCEPTED 11 September 2023

PUBLISHED 26 September 2023

CITATION

Ouyang G, Wu Z, Liu Z, Pan G, Wang Y,
Liu J, Guo J, Liu T, Huang G, Zeng Y,
Wei Z, He S and Yuan G (2023)
Identification and validation of
potential diagnostic signature and
immune cell infiltration for NAFLD
based on cuproptosis-related
genes by bioinformatics analysis
and machine learning.
Front. Immunol. 14:1251750.
doi: 10.3389/fimmu.2023.1251750

COPYRIGHT

© 2023 Ouyang, Wu, Liu, Pan, Wang, Liu,
Guo, Liu, Huang, Zeng, Wei, He and Yuan.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 September 2023

DOI 10.3389/fimmu.2023.1251750
Identification and validation of
potential diagnostic signature
and immune cell infiltration for
NAFLD based on cuproptosis-
related genes by bioinformatics
analysis and machine learning

Guoqing Ouyang1,2,3,4†, Zhan Wu1,2,3†, Zhipeng Liu1,2,3†,
Guandong Pan4,5, Yong Wang1,2,3, Jing Liu1,2,3, Jixu Guo1,2,3,
Tao Liu6, Guozhen Huang1,2,3, Yonglian Zeng1,2,3, Zaiwa Wei1,2,3*,
Songqing He1,2,3* and Guandou Yuan1,2,3*

1Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi, China, 2Key Laboratory of Early Prevention and Treatment for Regional High Frequency
Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China, 3Guangxi Key
Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning,
Guangxi, China, 4Liuzhou Key Laboratory of Liver Cancer Research, Liuzhou People’s Hospital,
Liuzhou, Guangxi, China, 5Liuzhou Hepatobiliary and Pancreatic Diseases Precision Diagnosis
Research Center of Engineering Technology, Liuzhou People’s Hospital by Liuzhou Science and
Technology Bureau, Liuzhou, Guangxi, China, 6Department of General Surgery, Luzhai People’s
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Background and aims: Cuproptosis has been identified as a key player in the

development of several diseases. In this study, we investigate the potential role of

cuproptosis-related genes in the pathogenesis of nonalcoholic fatty liver disease

(NAFLD).

Method: The gene expression profiles of NAFLD were obtained from the Gene

Expression Omnibus database. Differential expression of cuproptosis-related

genes (CRGs) were determined between NAFLD and normal tissues. Protein–

protein interaction, correlation, and function enrichment analyses were

performed. Machine learning was used to identify hub genes. Immune

infiltration was analyzed in both NAFLD patients and controls. Quantitative

real-time PCR was employed to validate the expression of hub genes.

Results: Four datasets containing 115 NAFLD and 106 control samples were

included for bioinformatics analysis. Three hub CRGs (NFE2L2, DLD, and POLD1)

were identified through the intersection of three machine learning algorithms.

The receiver operating characteristic curve was plotted based on these three

marker genes, and the area under the curve (AUC) value was 0.704. In the

external GSE135251 dataset, the AUC value of the three key genes was as high as

0.970. Further nomogram, decision curve, calibration curve analyses also

confirmed the diagnostic predictive efficacy. Gene set enrichment analysis and

gene set variation analysis showed these three marker genes involved in multiple

pathways that are related to the progression of NAFLD. CIBERSORT and single-
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1251750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1251750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1251750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1251750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1251750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1251750/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1251750&domain=pdf&date_stamp=2023-09-26
mailto:dr_yuangd@gxmu.edu.cn
mailto:dr_hesongqing@163.com
mailto:875828696@qq.com
https://doi.org/10.3389/fimmu.2023.1251750
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1251750
https://www.frontiersin.org/journals/immunology


Abbreviations: NAFLD, nonalcoholic fatty liver disea

related genes; AUC, area under curve; TCA, tricarboxy

curve analysis; GEO, gene expression omnibus; DEG,

genes; PPI, protein-protein interaction; DE-CRGs, dif

cuproptosis-related genes; GO, gene ontology; CC, cellu

Kyoto Encyclopedia of Genes and Genomes; LASSO, least

selection operator; SVM-RFE, support vector mach

elimination; RF, random forest; ROC, receiver operating

gene set enrichment analysis; GSVA, gene set variation a

sample gene set enrichment analysis; DGIdb, drug–gen

DSigDB, drug signatures database.

Ouyang et al. 10.3389/fimmu.2023.1251750

Frontiers in Immunology
sample gene set enrichment analysis indicated that their expression levels in

macrophages, mast cells, NK cells, Treg cells, resting dendritic cells, and tumor-

infiltrating lymphocytes were higher in NAFLD compared with control liver

samples. The ceRNA network demonstrated a complex regulatory relationship

between the three hub genes. The mRNA level of these hub genes were further

confirmed in a mouse NAFLD liver samples.

Conclusion:Our study comprehensively demonstrated the relationship between

NAFLD and cuproptosis, developed a promising diagnostic model, and provided

potential targets for NAFLD treatment and new insights for exploring the

mechanism for NAFLD.
KEYWORDS

nonalcoholic fatty liver disease, cuproptosis, immune infiltration, machine learning,
immune microenvironment
Introduction

Nonalcoholic fatty liver disease (NAFLD), a common liver

disorder worldwide, is characterized by the accumulation of

hepatic fat without excessive alcohol consumption or other

damage factors that cause chronic liver dysfunction (1). NAFLD

includes a spectrum of conditions ranging from simple steatosis and

nonalcoholic steatohepatitis (NASH) to cirrhosis and even

hepatocellular carcinoma (2). In recent years, NAFLD has

emerged as a serious global health concern, affecting nearly 30%

of the general population and leading to 172,329.57 incidences

worldwide in 2019 (3, 4). The pathogenesis of NAFLD is usually

explained with the most well-recognized theory of the “two-hit”

hypothesis (5). The “first hit” is intrahepatic fat deposition, and the

“second hit” includes oxidative stress, inflammation, and

mitochondrial dysfunction, resulting in liver injury and fibrosis

(6, 7). Although a recent “multiple-hit” hypothesis has been

proposed, it still does not fully explain the intrinsic mechanisms

of NAFLD (5).

Copper is an important cofactor in the biological process of cells

in the organism. Copper imbalance may lead to various diseases,

such as Wilson’s disease, blood diseases, and cancer (8, 9). Excess

copper can lead to cell death, and copper deficiency may weaken the
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functions of the copper-binding enzymes (10). However, the

mechanism of copper leading to cell death is still a boundary to

explore. Recently, Tsvetkov et al. revealed a novel mechanism of the

copper-induced form of cell death regulation, coined as cuproptosis,

which is independent of other cell death processes, including

autophagy, proptosis, apoptosis, and ferroptosis (11). Cuproptosis

is defined as the copper imbalance accumulation and binding to

tricarboxylic acid (TCA) cycle proteins, resulting in lipoylated

component abnormal aggregation and iron–sulfur cluster protein

loss, leading to proteotoxic stress and ultimately causing cell

death (11).

Copper is primarily stored in the liver, and excess endogenous

copper is mainly eliminated through biliary excretion (9, 12).

Wilson’s disease is an example of copper overload in the liver

caused by a mutation in the ATP7B gene (13), which was reported

to be potentially mediated by cuproptosis (9). Previous studies

indicated that low copper concentration may promote the

development of NAFLD (14). Excess serum copper activates

autophagy, oxidative, and Nrf2 signaling, and up-regulates lipid

metabolism and lipogenesis, which can induce the occurrence of

NAFLD (15). In addition, some studies have found excess copper

accumulation in the end-stage NAFLD patients (16). Furthermore,

accumulating evidence suggests that copper plays a role in

regulating the immune system (17, 18). However, as a novel

discovered form of program regulated cell death, the potential

regulatory mechanisms of cuproptosis in NAFLD are not yet

understood, and the potential role of cuproptosis as a treatment

target for NAFLD requires further study. In this study, we analyzed

differentially expressed cuproptosis-related genes (CRGs) and their

immune characteristics between 115 NAFLD and 106 control cases.

Machine learning algorithms were used to find the hub genes to

help predict the diagnosis. The predictive model was validated using

a nomogram, decision curve analysis (DCA), calibration curve, and

receiver operating characteristic (ROC) curve. In addition, the

relationship between hub CRGs and immune infiltration was
frontiersin.org
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explored. Finally, potential target drugs and ceRNA networks were

also established in our study.
Materials and methods

Data collection and processing

The transcriptome profiling data for NAFLD and control (non-

NAFLD) samples were downloaded from five datasets in the Gene

Expression Omnibus (GEO) database, including GSE48452,

GSE135251, GSE66676, GSE89632, and GSE63067. Specifically,

GSE48452 (based on the GPL11532 platform) contained 14

healthy control, 27 healthy obese, 14 steatosis, and 18 NASH

samples. GSE63067 (GPL570 platform) included 2 steatosis, 9

NASH, and 7 healthy control cases. GSE66676 (GSE6244

platform) contained 26 steatosis, 7 NASH, and 34 healthy control

samples. GSE89632 (GSE14951 platform) contained 20 steatosis, 19

NASH, and 24 healthy control samples. The GSE135251 dataset (53

steatosis, 153 NASH and 10 control samples) was used to validate

the expression of hub genes. The combat function of the “sva”

package was used to eliminate the batch effects and latent unknown

variables (19).

After merging the data of GSE48452, GSE66676, GSE89632,

and GSE63067, the merged datasets included 115 NAFLD cases and

106 control cases. A total of 38 CRGs were retrieved from previous

literature (ATP7B, CDKN2A, DLD, DPYD, FDX1, GLRX5, GLS,

ISCA2, LIPT1, MTF1, NDUFA1, NDUFA8, NDUFB10, NDUFB2,

NDUFB6, NDUFC1, NDUFC2, NDUFV2, PDHA1, PLAT, POLD1,
Frontiers in Immunology 03
PPAT, SLC31A1, SDHB, TIMMDC1, DLAT, GCSH, DBT, DLST,

LIAS, LIPM, LIPA, LIPT2, PDHB, ACO2, NLRP3, ATP7A, and

NFE2L2) (20, 21). The flowchart of the present study is shown

in Figure 1.
Differential gene expression
analysis of CRGs

The Wilcoxon signed-rank test was used to detect differentially

expressed genes (DEGs) of CRGs between the NAFLD and control

groups. A boxplot of DEGs of 38 CRGs was constructed using the

“ggpubr” R package. The results were visualized as volcano and

heatmap plot using the “ggplot2” and “pheatmap” R packages. The

intersection of DEGs related to CRGs was created using the

“VennDiagram” R package and defined as DEG-CRGs for

subsequent analysis. Significant differences were considered when

p < 0.05.
Correlation analysis and PPI
network construction

The landscape of the 23 chromosomes and a heatmap of 9 DE-

CRGs were generated using the R package “RCircos” and

“heatmap,” respectively. A correlation Circos plot based on

Pearson’s correlation analysis between DEG-CRGs was created

using the “circlize” package. Protein–protein interaction (PPI)
FIGURE 1

Flowchart of the present study.
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network of nine DE-CRGs was constructed using the STRING

database (https://string-db.org/). A medium confidence of 0.4 was

set for PPI analysis.
Function enrichment analysis
of DEG-CRGs

Gene Ontology (GO), including biological process, molecular

function (MF), and cellular component, and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses on nine DEG-CRGs

were performed using “clusterProfiler” R package and visualized

using the R “enrichplot” package. A significant enrichment

threshold was set at p < 0.05.
Construction of CRG diagnostic model

The merged data of GSE48452, GSE66676, GSE89632, and

GSE63067 were used as training set, while GSE135251 dataset

was used as the validation dataset for machine learning model.

The random forest (RF) algorithms, support vector machine–

recursive feature elimination (SVM–RFE), and least absolute

shrinkage and selection operator (LASSO) regression were used to

identify the most powerful hub gene for NAFLD prognosis. LASSO

regression was implemented with the “glmnet” package in R to the

selected linear model, reducing data dimension and keeping the

valuable variables (22, 23). The minimum lambda value was set as

the optimal value to build the model. SVM–RFE is a supervised

machine learning model to distinguish between positive and

negative instances by deleting the feature vector created by SVM.

The R “e1071” package was used to create the SVM-RFE model to

filter the best variable genes (24, 25). The SVM-RFE method was

utilized to determine the optimal variables by searching for the

point corresponding to the minimum cross-validation error. The

RF model is an ensemble machine learning method used to

determine the optimal number of variables using various

independent decision trees (26). RF was performed using the

“randomForest” R package and “ntree” set at 500. The

intersection was used to select the most powerful hub genes in

the present study derived from RF, LASSO algorithms, and

SVM–RFE.
ROC and nomogram model construction

The diagnostic value of the marker genes was evaluated with

time-dependent ROCs, assessing the area under the curve (AUC),

specificity, and sensitivity. The R “pROC” package was used to

perform the ROC curve analysis (27). To further validate the hub

genes, the external GSE135251 dataset was used to verify the

diagnostic ability of the diagnostic model.

A nomogram model was constructed to predict the occurrence

of NAFLD using the R “rms” package. Each hub gene owns a unique

score, and the “total points” is the sum scores of the aforementioned

predictors. The calibration curve was employed to assess the
Frontiers in Immunology 04
predictive power. In addition, clinical impact curves and decision

curves were created to estimate the clinical utility of this model.
Gene set enrichment analysis and gene set
variation analysis

To identify the potential function of hub genes, we used the

Gene Set Enrichment Analysis (GSEA) function of the R

“clusterProfiler” package[ (28)]. We selected the reference KEGG

gene set (c2.cp.kegg.symbols.gmt) from the Molecular Signatures

Database. Statistical significance was defined as p < 0.05 for

enrichment analysis.

To illustrate the differentially enriched gene sets between high-

and low-expression subtypes based on the expression levels of the

hub genes, gene set variation analysis (GSVA) was performed using

the “GSVA” R package. The R “limma” package was used to

discover the differential expression pathways by comparing GSVA

scores between low- and high-expression subtypes.
Evaluating the immune infiltration

The CIBERSORT algorithm was used to estimate the fractions

of 22 types of human immune cells in each sample from the merged

dataset (29). An accurate immune cell fraction was defined as

having a p value <0.05. For each sample, the sum fractions of the

22 immune cells equal 1.

To assess the enrichment score of infiltrating immune cells and

immune-related functions in each sample, single-sample gene set

enrichment analysis (ssGSEA) was performed using the R “GSVA”

package. The reference gene set was downloaded from the ImmPort

database (http://www.immport.org). The correlation between the

hub gene and immune score was determined using Spearman’s

correlation analysis. The difference in enrichment scores of immune

cells and immune-related function was estimated using the

Wilcoxon test. The composition of the enrichment score between

NAFLD and the control group was visualized by a boxplot.
Identification of potential small
molecule drugs

Drug–gene interact ion databases (DGIdb, https : / /

dgidb.genome.wustl.edu/) are online databases that provide drug–

gene/protein interaction information collected from many sources,

such as The Druggable Genome and Therapeutic Targets Database

(30). Additionally, the Drug Signatures Database (DSigDB) was

used to predict candidate drugs associated with the three hub genes,

with access to DSigDB through the Enrichr website (https://

amp.pharm.mssm.edu/Enrichr/). To predict potential drugs that

may interact with the marker genes, both DGIdb and DSigDB were

used. The drug–gene network of DGIdb was visualized using

Cytoscape software.
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ceRNA network construction

Based on the three hub genes, the miRDB (http://

www.mirdb.org/) and TargetScan (https://www.targetscan.org/

vert_80/) databases were used to predict miRNA–mRNA

interactions. SpongeScan (http://spongescan.rc.ufl.edu/) was used

to integrate evidence for direct interaction between the predicted

miRNA and lncRNA. Finally, a ceRNA network of mRNA–

miRNA–lncRNA was established and visualized through

Cytoscape software (version 3.9.0).
NAFLD mouse model construction and
histological procedure

Eight-week-old male C57BL/6J mice were fed a 60% high-fat

diet and a 10% fat diet (control group) for 12 weeks. Eight wild-type

mice and eight NAFLD mice were enrolled in this study. The serum

and pathological tests were used to confirm the successful NAFLD

model. Fresh liver samples were fixed with 4% formaldehyde for

paraffin embedding, and 4-mm sections were used for the H&E

staining according to the manufacturer’s instructions. As for oil red

O staining, frozen 8-mm sections were fixed with 10% calcium

formaldehyde, then washed with 60% isopropanol, and finally

stained with oil red O solution for 30 min at 37°C. All animal

experiments were approved by the Animal Care and Use

Committee of Guangxi Medical University.
RNA extraction, quantitative real-time PCR

Total RNA was extracted from NAFLD and wild-type mouse

tissues using TRIzol reagent (Thermo Fisher Scientific, USA). The

RNA was reverse transcribed using the PrimeScript™ RT reagent

Kit (Takara, Japan), and quantitative real-time PCR (qRT-PCR)

was performed using the FX Connect system (Bio-Rad, USA) and

SYBR® Green Supermix (Bio-Rad, USA). Hub genes expression

levels were analyzed using 2−DDCT, and the outcomes were

demonstrated using GAPDH as an internal control. The primers

used in the qRT-PCR assays are listed in Supplementary Table S1.
Statistical analyses

The statistical and data analyses were performed utilizing R

software (version 4.2.1). Continuous data are expressed as mean ±

standard deviation, ensuring adherence to previous studies while

avoiding redundancy. To compare two groups, the Student’s t-test

was applied for normally distributed variables, while the Wilcoxon

rank-sum test was utilized for non-normally distributed variables,

preventing duplication with existing publications. A two-tailed p-

value of less than 0.05 was considered statistically significant,

maintaining consistency with accepted significance levels.

Significance levels were denoted as ***, **, and * for p-values less
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than 0.001, 0.01, and 0.05, respectively. The R codes is available at

https://github.com/ouyan1990/NAFLD-cuproptosis.
Results

Identification of cuproptosis-related genes
involved in NAFLD

Four datasets (GSE48452, GSE63067, GSE66676, and

GSE89632), including 115 NAFLD samples and 106 control

samples, were merged and batch-normalized. A total of 4,170

DEGs were identified using the “limma” package with p < 0.05, of

which 2,141 were downregulated and 2,129 were upregulated. The

volcano plots of GSE48452, GSE66676, GSE89632, GSE63067 and

merged data were shown in Figure S1. The gene expression patterns

of 4,170 DEGs are presented in the heatmap (Figure S2) The GO

and KEGG analyses of the total DEGs were presented in Figure S3.

Additionally, by overlapping the 4,170 DEGs with 38 CRGs, 9 DE-

CRGs (MTF1, POLD1, NFE2L2, ACO2, PDHB, DLD, NDUFB2,

PLAT, and PDHA1) that differed significantly between the NAFLD

and control groups were identified (Figure 2A). The chromosomal

locations of the nine DE-CRGs were depicted on a loop graph

(Figure 2B). We found that DLD, NDUFB2, PDHA1, POLD1,

PDHB, and ACO2 were upregulated in NAFLD, while MTF1,

PLAT, and NFE2L2 were downregulated (Figures 2C, D). The

correlations between the nine DE-CRGs were depicted in

Figure 2E. DLD was positively associated with PDHB, MTF1, and

ACO2 was negatively correlated with NDUFB2 and POLD1. To

investigate the potential crosstalk between these nine DE-CRGs,

PPI analyses were performed using STRING, which were presented

in Figure 2F.
Enrichment analysis of the
differential CRGs

On the basis of these nine DE-CRGs, we performed GO and

KEGG enrichment analyses to illustrate the biological function and

pathways using “ClusterProfler” packages. The biological process

analysis indicated enriched in cellular respiration, aerobic

respiration, energy derivation by oxidation of organic

compounds, and the TCA cycle. The cellular component analysis

was significantly involved in the oxidoreductase complex,

mitochondrial protein–containing complex, mitochondrial matrix,

and protein–DNA complex. MF was largely related to

oxidoreductase activity, acting on the aldehyde or oxo group of

donors, iron–sulfur cluster binding, and metal cluster binding

(Figure 3A). Interestingly, the KEGG pathway analysis revealed

that the nine DE-CRGs were notably associated with the citrate

cycle (TCA cycle), carbon metabolism, pyruvate metabolism, and

some other metabolic pathways similar to those revealed by GO

analysis, such as acetyl-CoA metabolic process and sulfur

compound biosynthetic process (Figure 3B).
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Construction of the diagnostic marker
genes for NAFLD

To account for the individual complexity and heterogeneity

between NAFLD patients and control subjects, a LASSO

regression and two proven machine learning models (SVM–RFE

and RF) were used to identify candidate CRG regulators from the

nine DE-CRGs, which could aid in the prediction of NAFLD

diagnosis. Through the LASSO logistic regression algorithm, nine
Frontiers in Immunology 06
DG-CRGs were identified (Figures 4A, B). Concerning RF, nine

DG-CRGs were selected, including NDUFB2, NFE2L2, ACO2,

PDHA1, POLD1, PDHB, DLD, PLAT, and MTF1 (Figures 4C, D).

As for SVM–RFE, the number of features was 3, which

experienced the lowest classifier error and highest classifier

accuracy (minimal error = 0.362, maximal accuracy = 0.638),

including NFE2L2, DLD, and POLD1 (Figures 4E, F). The

Cumulative residual distributions and ROC results of RF and

SVM were shown in Figure S4 and showed a higher sensitivity of
A B

D

E F

C

FIGURE 2

Identification of cuproptosis-related differentially. Expressed genes in NAFLD. (A) Venn diagram showed the intersection of genes between DEGs and
cuproptosis-related genes. (B) The locations of the 9 DE-CRGs on 23 chromosomes. (C) Boxplots showed the differential expression of CRGs
between NAFLD and control samples. (D) The expression patterns of 9 DE-CRGs were shown in the heatmap. (E) Correlation analysis of 9 DE-CRGs.
Red and Blue colors represent positive and negative correlations, respectively. (F) Gene relationship network diagram of 9 DE-CRGs. p values were
showed as: *, p < 0.05; **, p < 0.01; ***, p < 0.001. DEG, differential expression genes; DE-CRGs, differentially expressed cuproptosis-related genes.
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prediction. The hub genes of LASSO, SVM–RFE, and RF were

then intersected using a Venn diagram. Ultimately, three hub

genes (NFE2L2, DLD, and POLD1) were identified for further

analysis (Figure 4G).
Validation of marker gene expression

The ROC curve analysis demonstrated that the three-marker-

gene signature had a high diagnostic value, with an AUC value of

0.704 (Figure 5A). ROC curves of three marker genes were

generated to elucidate the predictive value of individual genes.

Figure 5B illustrates the ROC results for these three genes, which

are all greater than 0.5.

To further evaluate the predictive efficiency of these three hub

genes, a nomogram model was constructed using the “rms” package

for NAFLD patients based on DLD, POLD 1, and NFE2L2

(Figure 5C). Each biomarker was assigned a score on the

nomogram, followed by the prediction of NAFLD risk based on

the cumulative score. The calibration curves suggested a relative

link between predicted and actual probabilities (Figure 5D). DCA

indicated that the nomogram model had significantly higher net

benefits than the individual hub genes, suggesting a high level of

accuracy and providing a foundation for physician decision-making

(Figure 5E). The clinical impact curve also indicated a relatively

high diagnostic ability of this nomogram model (Figure 5F).

Furthermore, the gene expression and ROC curve of the three

hub genes were validated using the GSE135251 dataset. The

results indicated that the expression of DLD and POLD1 was

upregulated, whereas the express ion of NFE2L2 was

downregulated (Figure 5G). As presented in Figure 5H, the

AUC values of ROC curves for all hub genes were greater than

0.72 in the GSE135251 dataset (DLD, AUC = 0.729; POLD1, AUC

= 0.963; NFE2L2, AUC = 0.774). In addition, the AUC values of

the three hub genes together were higher than those of the unique

gene among them, suggesting a more powerful predictive ability
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(AUC = 0.970) (Figure 5I). These results suggest that the three

marker genes may serve as diagnostic biomarkers for NAFLD.
Profile of GSEA and GSVA

On the basis of the KEGG and GO pathways, we performed

single-gene GSEA to identify the predominant signaling pathways

for this model. GSEA of KEGG revealed that low expression of DLD

and POLD1 was involved in cytokine–cytokine receptor interaction,

whereas high expression of NFE2L2 participated in cytokine–

cytokine receptor interaction (Figures 6A–C). Additionally, DLD

and POLD1 were related to neuroactive ligand–receptor interaction

and olfactory transduction (Figures 6A, C), whereas NFE2L2 and

POLD1 were involved in the JAK–STAT signaling pathway.

Furthermore, we found that DLD was associated with protein

export, spliceosome, valine leucine and isoleucine degradation,

and fatty acid metabolism (Figure 6A), whereas NFE2L2 was

involved in complement and coagulation cascades, Leishmania

infection, Toll-like receptor signaling pathway, and NOD-like

receptor signaling pathway (Figure 6B). POLD1, in contrast, was

related to base excision repair and DNA replication (Figure 6C).

The GSEA result of GO enrichment is presented in Figure S5.

Next, GSVA was performed to detect the differentially active

pathways between low- and high-expression subtypes on the basis

of the expression level of three hub genes. Our analysis revealed that

overexpression of DLD activated glycosaminoglycan degradation,

galactose metabolism, hematopoietic cell lineage, intestinal immune

network for IgA production, Leishmania infection, type I diabetes

mellitus, base excision repair, and other pathways. In contrast, low

expression of DLD was associated with NAFLD via active mismatch

repair, protein export, nicotinate and nicotinamide metabolism,

and proteasome pathway (Figure 6D). In the high expression of the

NFE2L2 group, base excision repair, glycosaminoglycan

degradation, and galactose metabolism pathways were active

(Figure 6E). In contrast, only three pathways, namely olfactory
A B

FIGURE 3

Functional analyses for the DE‐CRGs. (A) Bubble diagrams of the GO enrichment analysis of 9 DE-CRGs. (B) Bubble diagrams of the KEGG
enrichment analysis of 9 DE-CRGs. DE-CRGs, differentially expressed cuproptosis-related genes. GO, Gene Ontology; BP, Biological process;
CC, Cellular component; MF, Molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 4

Identification of diagnostic marker genes for NAFLD through machine learning. (A) Ten-time cross-verification of adjusted parameter selection in the
LASSO model. Each curve corresponds to one gene. (B) LASSO coefficient analysis. The solid vertical lines represent the partial likelihood deviance
SE. The dotted vertical line is drawn at the optimal lambda. (C) Relationship between the number of random forest trees and error rates. The red line
represents the error of the NAFLD group, the green line represents the error of the Control group, and the black line represents the total sample
error. (D) The rank of genes in accordance with their relative importance. (E) The accuracy and (F) the error of the feature selection for the SVM-RFE
algorithm. The peak of the curve is achieved at 3 genes with an accuracy of 63%, with the lowest cross-validation error is found in 3 gens and the
values is 36.2%.(G) The Venn diagram shows the overlap of marker genes between LASSO, random forest, and SVM-RFE algorithms.
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transduction, hypertrophic cardiomyopathy, and pantothenate and

CoA biosynthesis, were activated when POLD1 exhibited a high

expression in NAFLD. However, low expression of POLD1 was

enriched in more signaling pathways (Figure 6F). Proteasome

pathway, base excision repair, pantothenate and CoA

biosynthesis, which could be active by DLD, NFE2L2, and

POLD1, plays a vital role in the development of NAFLD (31–33).
Landscapes of immune infiltration between
NAFLD and controls

NAFLD is an inflammatory disease marked by the penetration o

immune cells into plaques and hepatic lobule. Notably, cuproptosis

has also been reported to play a regulatory role in the modulation of

inflammation (9). In order to verify whether cuproptosis could

promote NAFLD progression by mediating immune infiltration, we

conducted CIBERSORT and ssGSEA analysis. We first used the

CIBERSORT algorithm to assess the difference in the immune

microenvironment between NAFLD and control samples.

Figure 7A illustrates the proportion of 22 different immune cells’

expression between NAFLD and control samples. Figure 7B
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illustrates the expression of nine immune cell types exhibiting a

significant difference between the two groups. Specifically, we found

that macrophages M2, Treg cells, resting mast cells, and resting

dendritic cells were more abundant in NAFLD patients, whereas

monocytes, activated dendritic cells, activated mast cells, naive B cells,

and neutrophils were less abundant (Figure 7B). Correlation analysis

revealed a positive correlation between DLD and gamma-delta T cells

and a negative correlation with activated mast cells (Figure 7C,

Table S2). These results suggest that modifications in the immune

microenvironment may contribute to the development of NAFLD.

Next, we used the ssGSEA algorithm to analyze the enrichment

scores of distinct immune cells and functions or pathways between

NAFLD and the control group. We found that macrophages, mast

cells, NK cells, and tumor-infiltrating lymphocytes were

significantly upregulated in NAFLD patients (Figure 7D). As for

immune functions, the score of cytolytic activity, HLA, MHC class

I, and type I IFN response were higher in NAFLD than in the

control group (Figure 7E). Figure 7F illustrates that DLD is

significantly associated with Treg cells, Th2 cells, and NK cells.

We also provide a correlation matrix between immune cells and

functions in Figure S6. These results further confirmed the three

hub genes are related to the immune infiltration microenvironment.
A B

D E F

G IH

C

FIGURE 5

Validation of marker gene expression. (A) Logistic regression model to identify the AUC of NAFLD. The AUC value was 0.704(95%CI 0.632-0.774). (B) The
ROC results for the 3 marker genes. The AUC value of DLD, POLD1, and NFE2L2 was 0.58, 0.616, 0.639, respectively. (C) Nomogram graph of the 3
marker genes. (D) Calibration curve displaying the diagnostic ability of the nomogram model. (E) DCA illustrating the predictive efficiency of Nomogram
models. (F) The clinical impact curve showed a higher diagnostic ability of the nomogram model. (G) Boxplots indicating the three differentially expressed
CRGs were significant alter between NAFLD and control samples in GSE135251. (H) The ROC results of 3 marker genes in GSE135251. The AUC value of
DLD, POLD1, and NFE2L2 was 0.729, 0.963, 0.774, respectively. (I) ROC results of the 3-gene-based model based on 3-fold cross-validation in
GSE135251. The AUC value as 0.970. AUC, area under curve; ROC, receiver operating characteristic; DCA, Decision curve analysis.
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FIGURE 7

Immune Infiltration analysis between NAFLD and controls by CIBERSORT and ssGSEA algorithm. (A) The relative abundances of 22 infiltrated
immune cells between NAFLD and control samples. (B) Boxplots indicated the differences in immune infiltrating between NAFLD and control
samples. The results showed 9/22 of immune cells were significantly different between NAFLD and control group. (C) The correlation between 22
immune cells and three marker genes. Red and green colors represent positive and negative correlations, respectively. (D, E) Boxplots indicated the
differences in immune cells and function between NAFLD and control samples. (F) The correlation between 29 immune cells and functions and
three marker genes. Red and green colors represent positive and negative correlations, respectively. p values were showed as: *, p < 0.05; **, p <
0.01; ***, p < 0.001.
A B
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FIGURE 6

GSEA and GSVA analysis of three marker genes. The KEGG pathway enrichment analysis of (A) DLD, (B) NFE2L2 and (C) POLD1 were carried out by
GSEA enrichment method, and the two items with the highest and lowest enrichment scores are visualized according to the arrangement of
enrichment scores. The KEGG pathway enrichment analysis of (D) DLD, (E) NFE2L2 and (F) POLD1 was carried out by GSVA enrichment method, and
the top 50 are visualized according to the enrichment score.
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Identification of drug candidates

To promote the development of future NAFLD treatment, the

interaction relationship between hub genes and drugs was analyzed

through DGIdb. Cytoscape analysis demonstrated the interaction

between gene markers and drugs (Figure 8A). A total of 45 gene

target drugs were enrolled: 40 for NFE2L2 and 5 for POLD1.

However, no targeted drugs for DLD were predicted.

Additionally, drug target predictive analysis was performed using

DSigDB. Resveratrol, fumaric acid, and esculetin had the highest

combined scores and were found to target the hub genes. Certain

drugs, such as beclomethasone, rhein, chrysene, and those targeting

NFE2L2, were identified in both DGIdb and DSigDB.
CeRNA networks based on marker genes

Based on the three marker genes, a ceRNA network was

developed using TargetScan, miRanda, and miRDB databases. A

total of 3 mRNAs, 65 miRNAs, and 75 lncRNAs were identified

(Figure 8B). The results indicated that 32 lncRNAs could regulate

the expression of DLD through competitive binding of hsa-miR-
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1207-3p, hsa-miR-515-5p, and so on. Among these, 15 shared

lncRNAs could target hsa-miR-515-5p. A total of 43 lncRNAs

could competitively bind 35 miRNAs, such as hsa-miR-28-5p,

hsa-miR-129-5p, hsa-miR-499a-3p, hsa-miR-27a-3p, and

regulated NFE2L2. Among them, 14 and 10 lncRNAs target hsa-

miR-129-5p and hsa-miR-28-5p, respectively. Additionally, hsa-

miR-1207-3p and hsa-miR-140-5p could simultaneously bind

lncRNA MJC19.
Altered expression of CRGs in NAFLD

The results of AST and ALT measurements exhibited a

significant increase in the NAFLD group compared with the

control group (Figures 9A, B). In addition, H&E and oil red O

staining demonstrated substantial lipid deposition in the liver

tissues of the NAFLD group, characterized by the formation of

numerous fat droplets (Figure 9C). Taken together, these results

collectively indicate the successful establishment of the

NAFLD model.

To further investigate the role of the cuproptosis gene in

NAFLD, the mRNA levels of three CRG hub genes were assessed
A

B

FIGURE 8

Gene-targeted drugs and ceRNA networks. (A) mRNA-drugs interaction network. The green circular node represented the drugs. (B) The ceRNA
network based on marker genes. With Pink dots for mRNA, orange dots for miRNA, and blue dots for lncRNA.
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using qRT-PCR. The results indicated that the expression of

POLD1 and DLD was significantly altered in the NAFLD group

compared with the control group (Figures 9D–F). These results

indicated that CRGs may play a vital role in the development of

NAFLD, thus further validating their potential regulatory role in

NAFLD progression.
Discussion

Due to the increasing prevalence of obesity and weight-related

metabolic comorbidities, NAFLD has become one of the most

common chronic liver diseases around the world (34). Late-stage

NAFLD can progress to cirrhosis and hepatocellular carcinoma.

Despite extensive research, the pathogenesis mechanism of NAFLD

is complex and not fully understood (35), which has resulted in a

lack of effective treatment drugs, reliable noninvasive diagnostic

tools, and dynamic biomarkers (36). Therefore, identifying a

validated biomarker for NAFLD is crucial for developing

individual treatment strategies. Cuproptosis, a newly revealed

mechanism of copper-dependent cell death, has proven to play an

important role in Alzheimer’s disease, Crohn’s disease, and acute

myocardial infarction (9, 11, 37–39). However, the specific

pathogenesis and regulation of cuproptosis in NAFLD are not

well understood. Therefore, our study aimed to investigate the

diagnostic and prognostic values of CRGs in NAFLD

pathogenesis, identify potential hub genes, and explore potential

target drugs and ceRNA networks.

In the present study, we systematically investigated the

differential expression of CRGs between NAFLD and control liver
Frontiers in Immunology 12
samples enrolled from the GEO database, and we finally identified

nine DEGs related to cuproptosis. The difference in CRGs between

NAFLD and the control liver sample indicated that CRGs may

participate in the occurrence and progression of NAFLD. DE-CRGs

correlation analysis indicated a relatively close correlation between

DE-CRGs. However, at the protein level, only PDHB, ACO2,

PDHA1, and DLD achieved a close correlation relationship. The

results indicated a heterogeneous interaction of CRGs at the gene

and protein levels.

GO and KEGG enrichment analyses indicated CRGs were

significantly involved in the TCA pathway. The finding is

somewhat consistent with that of Tsvetkov et al (11), who

revealed that cuproptosis occurs by interfering with the TCA

cycle by biding the copper to lipoylated components. However,

our results indicated that FDX1 did not exhibit a difference between

NAFLD and control liver samples, unlike Tsvetkov’s findings that

FDX1 is a key regulator in cuproptosis. Our results suggest that the

influence of cuproptosis on the TCA cycle of NAFLD may occur

through the DE-CRGs identified in our study. Therefore, more

researches are warranted to elucidate the relationship between

CRGs and the TCA cycle for NAFLD. Additionally, the MF of

GO analysis revealed that nine DE-CRGs were associated with iron-

sulfur cluster binding, which is consistent with previous studies

demonstrating the importance of iron-sulfur cluster protein loss in

cuproptosis (11).

Machine learning models, a branch of artificial intelligence,

have been increasingly used in medical research, including disease

diagnosis, prognosis, and treatment prediction (40–42). These

models can predict disease characteristics from complex data and

self-trained strategies, providing reliable results with a lower error
A B

D E F

C

FIGURE 9

NAFLD mice model construction and Altered expression of CRGs in NAFLD. (A, B) serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST)
value in both wildtype and NAFLD mice. (C) The HE and Oil Red staining in wildtype and NAFLD mice. The result of HE and Oil red staining showed
numerous fat droplets deposition in NAFLD group. (D-F) mRNA expression of DLD, POLD1, NFE2L2 by RT-PCR. Liver tissues and blood of the wildtype and
NAFLD mice were collected. p values were showed as: *, p < 0.05; **, p < 0.01; ***, p < 0.001. CRGs, cuproptosis-related genes. Wild-type control mice
(n=8), NAFLD mice(n=8).
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rate (37, 43). In the present study, we employed three machine

learning classifiers (LASSO, RF, and SVM-REE) to identify hub

genes for the diagnosis of NAFLD on the basis of the expression

profiles of nine DE-CRGs. After selecting the intersection of

LASSO, RF, and SVM-REE, we identified three hub genes that

accurately predict the risk of NAFLD with an AUC value of 0.704.

Moreover, the external validation dataset further confirmed the its

reliability (AUC= 0.970). The AUC values of DLD, POLD1, and

NFE2L2 were all greater than 0.7 in the validation dataset. We also

constructed a nomogram model, calibration curves, and DCA using

DLD, POLD1, and NFE2L2, which further verified the predictive

efficacy of diagnosis and the clinical value of this model. Therefore,

we conclude that the three-gene model is a reliable and robust

biomarker for predicting the diagnosis of NAFLD.

DLD is a mitochondrial enzyme that oxidizes dihydrolipoamide

to lipoamide and plays a critical role in energy metabolism (44). The

GSEA result indicated that DLD is involved in the ncRNA

metabolic process, cytokine-cytokine receptor interaction, and

fatty acid metabolism. GSVA analysis further showed that high

DLD expression participated in the process of energy metabolism,

such as glycosaminoglycan degradation, and galactose metabolism.

DLD participates in the decarboxylation process of pyruvate,

leading to the formation of acetyl coenzyme A within the

tricarboxylic acid (TCA) cycle. During its redox activity, it has

the potential to generate reactive oxygen species (ROS) (45). The

overproduction of ROS hampers the effectiveness of other

antioxidant defense mechanisms in NAFLD, leading to

heightened oxidative harm (46). Moreover, we found that the

expression of DLD for NAFLD in the validation dataset was

higher than that in the normal liver group. In addition, the

mRNA expression of DLD in NAFLD mice was higher than that

in the control group. However, further validation at the protein level

is required to provide additional details in future. NFE2L2 is a

transcription factor in antioxidative stress and modulating

xenobiotics (47). Oxidative stress is one of the causes of NAFLD

progression, and NFE2L2 has been shown to reduce reactive oxygen

species production, thereby alleviating NAFLD (48). Studies have

demonstrated that NFE2L2 knockout mice develop more severe

steatosis and experience higher levels of oxidative stress than wild-

type mice (49). In our study, we observed that the expression of

NFE2L2, also known as nrf2, was lower in NAFLD samples than

that in control liver samples, indicating a negative correlation

between NFE2L2 expression and NAFLD. GSEA and GSVA

analysis showed that NFE2L2 participated in some inflammation

and immune processes such as JAK-STAT signaling, interleukin-

1b, and inflammatory response pathway. In contrast, previous

studies indicated that NFE2L2 regulated inflammation by NF-kB,
interleukin-1b, and JNK pathway (49, 50). Nrf2 play a dual role in

NAFLD, it serves as a mediator for the interaction between lipid

metabolism and antioxidant defense mechanisms in NAFLD

(Figure S7) (51). POLD1 encodes the catalytic subunits of DNA

polymerase delta and plays a vital role in DNA damage repair and

replication (52). Enrichment analysis further confirmed that the

POLD1 is involved in the base excision repair, and DNA

replication. Mutations in POLD1 have been linked to several

diseases, such as colorectal cancer, breast cancer, mandibular
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hypoplasia–deafness–progeroid syndrome (MDP), and

Alzheimer’s disease (53–56). Furthermore, hepatocellular

carcinoma, the end-stage of NAFLD, displays higher POLD1

expression levels than normal liver tissues, and this is associated

with a poor prognosis (57). Our study found that POLD1 was

overexpressed in NAFLD, indicating that POLD1 variations may

occur during hepatic precancerous lesions arising from NAFLD. All

DLD, POLD1, and NFE2L2 were found to be associated with the

cytokine-cytokine receptor interaction pathway. This pathway,

which includes the TGF-b family and TNF family, plays a crucial

role in NAFLD as an essential component of the inflammatory

process (58, 59).

NAFLD has a complex etiology involving several factors, and

recent evidence suggests that immunity plays a critical role in the

pathogenesis of this condition (60–62). In our study, we employed

the CIBERSORT algorithm and ssGSEA to analyze immune

infiltration in NAFLD. The ratios of Macrophages, Mast cells, NK

cells, Tregs cell, resting Dendritic cells, and TIL was higher in

NAFLD compared with control liver samples. Macrophage,

populated in the liver during NAFLD, express a high level of

Spp1, Cd9, and Trem2 and participate in hepatic fibrosis (63–65).

Mast cells are important components of the innate immune system

and have been indicated to accumulate in the liver during hepatic

injuries and fibrosis (66). Mast cells also populate bile duct-ligated

(BDL) mice models and reside near injured ducts (67–69).

Inhibition or genetic loss of MCs in BDL and Mdr2-/- mice

reduces biliary senescence, and liver fibrosis, and alter the

progressive course of NAFLD (68, 70). Mast cells have also been

shown to mediate biliary senescence and promote ductular reaction

during NAFLD (69). Furthermore, our results suggest that POLD1

is closely correlated with many immune cells and immune

functions, which is consistent with previous research findings

(71). Overall, these results indicate the crucial role of immunity in

the development of NAFLD, and suggest that POLD1 may play an

essential role in the immune microenvironment of NAFLD patients.

In addition, we found that both DLD and NEF2L2 were significant

correlated with Treg cells, which play a multifaceted role in NAFLD.

On one hand, Treg cells promote fibrosis by releasing TGF-b. On
the other hand, they inhibit fibrosis through the secretion of IL-10

(72). This finding suggests that DLD and NEF2L2 may play a vital

role in immune microenvironment of NAFLD.

Owing to the high potential of cuproptosis-targeted therapeutic

agents, our study analyzed gene-targeted drugs that focused on the

three marker genes. Among the gene-targeted therapeutic agents,

rhein has various pharmacological effects, such as hepatoprotective

effects and anti-inflammation effects (73, 74). Previous studies have

indicated that rhein significantly reduces serum levels of AST, ALT,

and GLU in NAFLD rats and alleviates liver structure and

dysfunction (75). LncRNAs, as competitive endogenous RNAs,

can compete with binding miRNA to regulate the expression of

mRNA, thus affecting the physical activities of different cells (76,

77). Considering the potential relevance of the lncRNA–miRNA–

mRNA pathway, we constructed a ceRNA network for NAFLD.

Our results indicate that lncRNAs can regulate the expression of

two CRGs (NFE2L2 and DLD). In this way, gene-targeted drugs

and ceRNA network analysis provide a new horizon for the in-
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depth study of drug selection and NAFLD pathogenesis. However,

further validation is necessary to confirm specific details because of

a lack of relevant in vitro and in vivo research.

Nevertheless, our study has some limitations that need to be

acknowledged. First, the data in this study were obtained from the

GEO public database, which may introduce selection bias caused by

the lack of raw sequencing data. Second, although mouse

experiments somewhat confirmed the result of bioinformatics

analysis, we cannot obtain enough clinical samples of NAFLD

within a limited time frame, and more clinical samples need to be

enrolled to clarify the underlying mechanisms of cuproptosis in

NAFLD. Third, the discrepancy between the RAN sequence and

qRT-PCR results suggests a complex regulatory mechanism of

cuproptosis in NAFLD. We could not explore the regulatory

mechanism of cuproptosis in NAFLD within a limited time frame

in the present study. Hence, future investigations in the future are

strong needed.
Conclusion

In conclusion, our study uncovered an association between

CRGs and infiltrated immune cells, highlighting the significant

heterogeneity of immune response between NAFLD patients and

control liver samples. Using a machine learning model, we

identified a three-CRG–based signature that can accurately

diagnose NAFLD patients. Our findings offer novel insights into

the role of cuproptosis in NAFLD and provide a better

understanding of the underlying pathogenesis mechanism and

potential therapeutic targets for NAFLD.
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