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Introduction: Complement system has a postulated role in endothelial problems

after hematopoietic stem cell transplantation (HSCT). In this retrospective,

singlecenter study we studied genetic complement system variants in patients

with documented endotheliopathy. In our previous study among pediatric

patients with an allogeneic HSCT (2001-2013) at the Helsinki University

Children´s Hospital, Finland, we identified a total of 19/122 (15.6%) patients

with vascular complications, fulfilling the criteria of capillary leak syndrome

(CLS), venoocclusive disease/sinusoidal obstruction syndrome (VOD/SOS) or

thrombotic microangiopathy (TMA).

Methods:We performed whole exome sequencing (WES) on 109 patients having

an adequate pre-transplantation DNA for the analysis to define possible

variations and mutations potentially predisposing to functional abnormalities of

the complement system. In our data analysis, we focused on 41 genes coding for

complement components.

Results: 50 patients (45.9%) had one or several, nonsynonymous, rare germline

variants in complement genes. 21/66 (31.8%) of the variants were in the terminal

pathway. Patients with endotheliopathy had variants in different complement

genes: in the terminal pathway (C6 and C9), lectin pathway (MASP1) and receptor

ITGAM (CD11b, part of CR3). Four had the same rare missense variant

(rs183125896; Thr279Ala) in the C9 gene. Two of these patients were

diagnosed with endotheliopathy and one with capillary leak syndrome-like

problems. The C9 variant Thr279Ala has no previously known disease

associations and is classified by the ACMG guidelines as a variant of uncertain

significance (VUS). We conducted a gene burden test with gnomAD Finnish (fin)

as the reference population. Complement gene variants seen in our patient

population were investigated and Total Frequency Testing (TFT) was used for
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execution of burden tests. The gene variants seen in our patients with

endotheliopathy were all significantly (FDR < 0.05) enriched compared to

gnomAD. Overall, 14/25 genes coding for components of the complement

system had an increased burden of missense variants among the patients when

compared to the gnomAD Finnish population (N=10 816).

Discussion: Injury to the vascular endothelium is relatively common after HSCT

with different phenotypic appearances suggesting yet unidentified underlying

mechanisms. Variants in complement components may be related to

endotheliopathy and poor prognosis in these patients.
KEYWORDS

hematopoietic stem cell transplantation, hematopoietic stem cell transplantation
adverse effects, acute toxicity, vascular complications, complement system,
endothelial damage
1 Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)

is a well-established therapy for hematologic and lymphoid

malignancies, but also for disorders of the immune or hematopoietic

systems and metabolism incurable by other treatments. Despite the

improvement in prognosis, toxicity and treatment-related mortality

(TRM) still remain challenges (1, 2). In our recent study (3) nearly half

(56/122, 45.9%) of the pediatric patients, who underwent allo-HSCT,

had at least one severe adverse event (grade 3 or 4 by the Common

TerminologyCriteria for Adverse Events, CTCAE, 4.03 classification).

Endothelial cell activation and dysfunction have recently been

indicated in many severe complications of allo-HSCT (4).

Thrombotic microangiopathy (TMA) is one of the best known

endotheliopathy syndromes and a relatively common complication

after HSCT affecting 10-20% of the patients (5–8). Previously, we

identified a total of 19/122 (15.6%) patients with vascular

complications, fulfilling the criteria of capillary leak syndrome (CLS),

veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS)

orTMA.Thepatientswithendotheliopathyhadapoorer 5-yearoverall

survival than those without it (77% versus 26%, p<0.001) (3).

Endothelial cells can be damaged and activated during the

HSCT process by several mechanisms, including previous

chemotherapy, conditioning (e.g. irradiation), drugs used in the

transplantation process (such as G-CSF or calcineurin inhibitors),

cytokines produced by activated immune cells or the injured tissues,

infections, engraftment and alloreactivity (9–11). Injury and

inflammation involve neutrophil activation leading to formation

of neutrophil extracellular traps (NETs). NETs and other released

intracellular materials are thought to activate the complement

system (12, 13). On the other hand, overactive or activated

complement system has been shown to disturb the normal

function of the endothelium in many disease states (14–18).

Previously, endotheliopathy in HSCT was considered to follow

the “two-hit” –hypothesis. First, many risk factors in the

conventional chemo or conditioning phase make the endothelium
02
more vulnerable and procoagulant (Hit 1). This is followed by one

or more factors (medications, infections, possible antibodies, or

alloreactivity) in the post-HSCT recovery phase (Hit 2) promoting

endothelial injury and related problems (19). Although not

emphasized earlier, the second hit could, in addition to

procoagulant activity, also involve “procomplement” activity with

changes in the ability of endothelial cells to protect themselves

against complement attack (5). Currently a “three hit” –hypothesis,

where the first hit is the patients´ genetic predisposition to

endothelial complications, is considered most relevant to the

disease pathogenesis (5, 11, 20, 21).

Problems characterized by endothelial dysfunction vary in their

clinical phenotype. Still, all of these share a common denominator:

endothelial injury accompanied by proinflammatory, prothrombotic

and proapoptotic processes likely related to complement activation (4,

8, 10). Here we focused on the following three entities: capillary leak

syndrome (CLS),HSCT-related thromboticmicroangiopathy (HSCT-

TMA) and veno-occlusive disease/sinusoidal obstruction syndrome

(VOD/SOS). Other endotheliopathy syndromes, such as engraftment

syndrome (ES), idiopathic pneumonia syndrome (IPS), posterior

reversible encephalopathy syndrome (PRES), peri-engraftment

respiratory distress syndrome (PERDS) and refractory acute GVHD

will not be addressed here.

In this retrospective study, because of the postulated role of

complement, we studied genetic complement system variants in

patients with documented endotheliopathy. Thereby, our aim was

to lay basis for understanding potential mechanisms behind the

acute complications seen post-HSCT.
2 Materials and methods

2.1 Patients

Patient selection was accomplished as previously described (3).

We studied a cohort of 109 pediatric patients, who underwent allo-
frontiersin.org
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HSCT between 1/2001 and 12/2013 at the Helsinki University

Children´s Hospital, Finland, and had an adequate pre-

transplantation DNA available for whole exome sequencing

(WES) and further bioinformatics and statistical analysis. The key

demographic and clinical data of the endotheliopathy patients

versus others are given in Table 1. All patients were of

Finnish ancestry.

The study was approved by the Research Ethics Committee of

the Helsinki University Hospital (79/13/03/03/2016, update 3082/

2018). All samples and data were obtained following authorization

by the ethics committee and the national supervisory authority

Valvira. Written, informed consents were not attainable due to the

retrospective nature of the study also including deceased patients.
2.2 Outcome measures

DNA analysis aimed to define possible variations and mutations

in classical, lectin or terminal pathway factors or in the membrane-
Frontiers in Immunology 03
b o u n d c omp o n e n t s o f t h e c omp l em e n t s y s t em ,

potentially predisposing to activation or dysfunction of the

complement cascade.
2.3 Data collection

Genomic DNA was isolated by the Finnish Red Cross Blood

Service (HLA-lab), Helsinki, Finland, from pre-transplant

peripheral blood samples. DNA-samples were collected from both

the recipient and donor for HLA-matching. Clinical data was

collected retrospectively from the medical records focusing on the

first 100 days post-transplant as described previously (3).
2.4 Whole exome sequencing

WES was performed at Blueprint Genetics, Helsinki, Finland.

The sample preparation and exome sequencing have been
TABLE 1 The demographics of the patients with endotheliopathy and those without having received allo-HSCT at the Helsinki University Children´s
Hospital during 2001-2013.

Characteristics Endotheliopathy Others p-value

Number of patients, n 19 103

Malignant/non-malignant, n (%) 16 (84.2)/3 (15.8) 82 (79.6)/21 (20.4) 0.763

Male/female, n (%) 8 (42.1)/11 (57.9) 68 (66.0)/35 (34.0) 0.070

Diagnosis, n (%) 0.282

ALL/NHL 15 (78.9) 58 (56.3)

AML/CML 1 (5.3) 21 (20.4)

SAA/FA/MDS/JMML/other hematopoietic1 2 (10.5) 16 (15.5)

Immunological and metabolic disorders 1 (5.3) 8 (7.8)

Donor type, n (%) 0.053

Sibling 3 (15.8) 48 (46.6)

MUD 15 (78.9) 47 (45.6)

Cord blood 1 (5.3) 5 (4.9)

Family/haplo 0 (0.0) 3 (2.9)

fTBI, yes/no, n (%) 14 (73.3)/5 (26.3) 84 (81.6)/19 (18.4) 0.529

Relapse after HSCT, yes/no, n (%) 3 (15.8)/16 (84.2) 21 (20.4)/82 (79.6) 0.763

Overall survival, n (%) 5 (26.3%) 79 (76.7) <0.001

Cause of death, relapse/toxicity, n (%) 2 (10.5)/12 (63.2) 19 (18.4)/5 (4.9) <0.001

Number of DNA-samples, n (%) 17 (89.5) 92 (89.3)

Number of patients with observed complement gene variants, n (%) 0.408

No variant 12 (70.5) 47 (51.1)

One variant 4 (23.5) 26 (28.3)

Two different variants 1 (5.9) 16 (17.4)

More than two different variants 0 (0.0) 3 (3.3)
fro
1 No sickle cell disease patients included.
HSCT, hematopoietic stem cell transplantation; MUD, matched unrelated donor; fTBI, fractioned total body irradiation.
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previously described (22). In data analysis, we focused on 41 genes

coding for components of the classical, lectin and terminal

pathways as well as for complement receptors and membrane-

bound complement regulators. The list of studied genes is presented

in the Supplementary Table S1.
2.5 Bioinformatics analysis

The germline variant analysis was performed using BasePlayer

(v.1.0.2) (23). Raw variant calls were filtered to include only good

quality variants in the set (1000 genomes mapability track) (24) and

quality measures GQ>=20, QUAL>=20, coverage>6 reads, and

AF>=30%). Only non-synonymous and splice variants in protein-

coding transcripts with a minor allele frequency (MAF) of < 0.01 in

population-specific controls gnomAD (v.2.1) non-cancer whole

database and gnomAD non-cancer Finns (n=10 816) (25) were

considered in the study. Variants were classified as pathogenic (P),

likely pathogenic(LP), benign (B), likely benign (LB) or variants of

uncertain significance (VUS) according to the American College of

Medical Genetics and Genomics (ACMG) (26) guidelines using

InterVar (27). Also ClinVar (version 23.01.2021) was used for the

variant pathogenicity estimation (28).

Findings were validated visually with BasePlayer. Locations of

amino acid variants in protein structure and potential effects on

protein function were analyzed by UniProt (https ://

www.uniprot.org) with RCSB PDB (RCSB.org) (29) data models

5FMW (30) and 7AKK (31) and drawn with Biorender (https://

www.biorender.com/).
2.6 Statistical analysis

To study the enrichment of rare variants in the genes studied,

the frequency of variants in the patient set and among gnomAD

non-cancer Finns were compared. The significances of differences

were evaluated using 2-sided Fisher’s exact test. Burden test of

variants was done using the Total Frequency Test (TFT) (32) by

collapsing rare germline variants to the gene and pathway level.

These were compared to the total allele counts of variants in

gnomAD non-cancer Finns with the same filtering as in the

patient set. Benjamini-Hochberg procedure was used to adjust the

p-values for multiple testing. The analyses were performed in R

(version 4.1.2, https://www.r-project.org/).
3 Results

The patient data and clinical findings of our patient cohort have

been published before (3). In brief, the original patient cohort

consisted of 122 patients with an allogeneic HSCT between 2001

and 2013 at the Helsinki University Children´s Hospital, Finland.

We evaluated the acute adverse events emerging ≤ 100 days post-

transplant and prevalence of key vascular complications. We

identified a total of 19/122 (15.6%) patients with vascular

complications, fulfilling the criteria of capillary leak syndrome
Frontiers in Immunology 04
(CLS), veno-occlusive disease/sinusoidal obstruction syndrome

(VOD/SOS) or thrombotic microangiopathy (TMA). These

patients had a poorer 5-year overall survival than those without

vascular complications (26% versus 77%, p<0.001). These

endotheliopathy-related adverse events appeared early on post-

HSCT, varied in their clinical phenotype and predicted a

poor outcome.
3.1 Gene analysis

Samples for genetic analyses were available from 109 patients, of

whom 17 had endotheliopathy. Of the 109 patients 50 (45.9%) had

one or several, nonsynonymous, rare (MAF <0.01) germline

variants. These 109 patients had altogether 51 different and in

total 66 variants in 25 complement genes of soluble classical, lectin

or terminal pathway factors or in the membrane-bound

components (receptors or regulators). As many as 21/66 (31.8%)

of the variants were in the terminal pathway. The list of gene

variants is presented in Supplementary Table S2.

Patients with endotheliopathy had variants in several

complement pathways. The most notable ones were detected in

the terminal pathway (C6 and C9), lectin pathway (MASP1) and in

ITGAM encoding for CD11b, a part (the alpha-chain) of the b-
integrin complement receptor type 3, CR3 (Figure 1). Examples of

discovered variants are given in Figures 2, 3, where the locations of

the variant in protein domain sequences (2A and 3A) and structures

(2B and 3B) are indicated. Four patients had the same rare

(gnomAD Finn MAF= 0.009608) missense variant (rs183125896;

Thr279Ala) in the C9 gene. Two of these patients were diagnosed

wi th endothe l iopathy , CLS fo l lowed by thrombot i c

microangiopathy (TMA), and furthermore one with a capillary

leak syndrome-like (CLS-like) phenotype. One of the patients with

CLS and TMA had only this C9 variant, the other also a variant in

C1s (rs149869489; Pro428Arg). This C9 variant has no previously

known disease associations and is classified by the ACMG

guidelines as a variant of uncertain significance (VUS). A

schematic C9 protein structure and the location of the variant in

both C9 and the MAC complex is shown in Figure 2. Two patients

had a rare (gnomAD Finn MAF= 0.009841) variant (rs142896559;

Gly452Glu) in the C6 gene. One of these patients was diagnosed

with CLS, severe anal pain and diarrhea. This C6 variant is classified

as likely benign.

We found four different integrin alpha-M (ITGAM) variants in

five patients, all classified as VUS. One of our patients with a

missense variant in the ITGAM gene (rs61755176; Arg292His:

gnomAD Finn MAF= 0.0005198) was diagnosed with CLS and

TMA, but also showing signs of VOD. The other patient with a

missense variant in the ITGAM gene (rs775141495; Ile13Ser:

gnomAD Finn MAF<0.0001) had a similar gastrointestinal

bleeding and bilirubin increase suggesting endotheliopathy, but

not fulfilling the diagnostic criteria for TMA or VOD. This

patient also developed hypertension and acute respiratory distress

syndrome (ARDS) and died D+65 post-transplant. No infection

etiology was found for the patient´s increasing oxygen requirement

and pulmonary problems. The schematic structure of the a-M
frontiersin.org
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FIGURE 1

The cumulative incidence (%) and the total number (n) of variants observed per complement pathway component coding gene. The number of variants per
gene is equal to the number of patients with a variant in that gene. Above are shown the variants of the patients without endotheliopathy (patient n=92) and
below those with endotheliopathy (patient n=17). C1r, complement component C1r subcomponent; C1s, complement component C1s subcomponent; C2,
complement component C2; C4A/B, complement components C4A and C4B; CRP, C-reactive protein; FCN1, Ficolin-1 (M-ficolin); FCN3, Ficolin-3; MASP1,
Mannan-binding lectin serine protease 1; C5, complement component C5; C6, complement component C6; C7, complement component C7; C8,
complement component C8; C9, complement component C9; CD55, DAF, Decay-accelerating factor; C5AR1, C5a anaphylatoxin chemotactic receptor 1;
CD93, complement component C1q receptor; CR1, complement receptor type 1; CR2, complement receptor type 2; ITGAM, integrin subunit alpha M;
complement receptor type 3, ITGAX, integrin subunit alpha X; ITGB2, integrin beta-2; VSIG4, V-set and immunoglobulin domain-containing protein 4 (also
called complement and Ig receptor/CRIg).
A B

FIGURE 2

(A) Schematic location of variant rs183125896 encoded amino acid (Thr279Ala) in the domain structure of C9 protein. Variant is located in exon 6,
which codes for the MACPF (membrane attack complex/perforin) domain. (B) Barrel structure of the membrane attack complex (https://
www.uniprot.org). TSP1, thrombospondin type-1 repeat; LDL, low-density lipoprotein receptor class A repeat; EGF, epidermal growth factor- like
domain.
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domain of the CR3 protein in complex with C3b and the location of

variant rs61755176 on the CR3 is shown in Figure 3. According to

this structure, the location of Arg292His is close to the attachment

site to iC3b. On the other hand, and although the published protein

structure of CR3 includes the integrin a-M-chain, it does not

include the Ile13Ser variant (rs775141495) located in the first

blade of the b-propeller domain of CD11b. Thus, no predictions

can be made to its expected effect on CR3 function.

One patient with severe CLS and TMA/VOD with rapid weight

gain, ascites, pleural effusion, elevated bilirubin, hepatomegaly, low

levels of coagulation factors and GI-bleeding, had an ultrarare

missense variant in the MASP1 gene (rs1712360640; Ala544Thr).
Frontiers in Immunology 06
This variant was absent in gnomAD but found in ALFA project

Europe with an allele frequency <0.0001 and is classified as VUS.

The variant has not been reported in ClinVar. This variant is

located in the serine protease domain, but its possible effect on

the protease function is not known.

Compared to gnomAD, the gene variants seen in our patients

with endotheliopathy were all significantly (FDR < 0.05) enriched.

The associations between the genetic findings and endotheliopathy

diagnoses are shown in Figure 4. Overall, 14/25 genes coding for

components of the complement system had an increased burden of

missense variants among our patients in comparison to the

gnomAD Finnish population. In our pathway burden analysis,
A B

FIGURE 3

(A) Schematic location of the ITGAM variant rs61755176 encoded amino acid (Arg292His) in the CR3 alpha-chain (CD11b). The variant is located in
exon 9 coding the edge of the I-domain surrounded by the beta-propeller domain repeat domains in the CD11b part (coded by ITGAM) of the CR3
receptor. (B) 3-dimensional structure of the CD11b-iC3b complex (https://www.uniprot.org). The variant amino acid is located close to the binding
site of CR3 to iC3b.
FIGURE 4

The chord diagram depicts the associations between genetic findings (left) and diagnoses (right). The width of each chord is determined by the
number of patients in the diagnosis group with variants in the gene. CLS, capillary leak syndrome; TMA, thrombotic microangiopathy; TMA_I, TMA-
like; CLS_TMA, CLS+TMA; CLS_TMA/VOD, CLS+TMA/VOD.
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variants of the classical pathway of complement activation were

found to be enriched in the patients in comparison to gnomAD

controls. All complement gene variants enriched in our patient

population are shown in Table 2. Although a fair comparison can be

made only to the gnomAD Finnish population, we also made a

comparison to gnomAD Europe (Supplementary Table S2). It

showed features that distinguish the Finnish population from the

rest of Europeans.
4 Discussion

The present study found a higher-than-expected frequency of

rare complement gene variants possibly related to vascular

complications following HSCT in children. Particularly

interesting associations were found to the terminal pathway

complement components C6 and C9 as well as to the main

phagocytic complement receptor type 3 (CR3, CD11b/CD18).

While pathway-burden analysis indicated that rare missense

variants in genes coding for classical pathway are enriched in

patients in general, from the point of view of endotheliopathy,

ma i n l i n k s we r e f o und t o t h e t e rm in a l p a t hway

complement components.
Frontiers in Immunology 07
We found five patients with mutations in the ITGAM gene

encoding for CD11b (integrin alpha-M), a central part of the key

complement receptor CR3. CD11b alpha chain forms the CR3

receptor together with the integrin beta 2 chain (CD18 encoded by

ITGB2). CR3 binds structures coated with iC3b, which is an

inactivated form of C3b. CR3 regulates the adherence of

neutrophils and monocytes to stimulated endothelium.

Importantly, CR3 mediates the phagocytosis of complement

iC3b-coated microbes and other particles. CR3 functions also as a

receptor for the coagulation system proteins fibrinogen and factor X

(FX). Mutated ITGAM may thus result in diminished neutrophil

adhesion and migration, reduced phagocytosis, increased cytokine

production and elevated anti-dsDNA antibody formation, which

may further trigger the complement cascade (33). Genetic variants

in the ITGAM gene are strongly associated with systemic lupus

erythematosus (SLE) and its complications (lupus nephritis, etc)

(33), as well as with pre-eclampsia (34). CR3 and CR4 are both b2-
integrins that specifically recognize iC3b. It has been previously

found that variant rs2230424 in CR4, located in the first blade of the

b-propeller domain, results in a decreased binding capacity of CR4

to iC3b (34). We speculate, that ITGAM variant (rs775141495), also

in the first blade of the b-propeller domain, may also interfere with

the binding of CR3 to iC3b.
TABLE 2 Complement gene variants enriched in the patient population (N=109) compared to gnomAD non-cancer Finn population (N=10 816).

Variants in cohort (N) Variants in gnomad (N) p-value q-value OR CI95

Classical pathway 14 668 0.0131 2.08 1.21-Inf

C1S 3 19 0.0014 0.0035 15.65 3.89-Inf

C2 4 26 0.0002 0.0009 15.25 4.80-Inf

C4B 4 3 0.0000 0.0000 131.35 28.38-Inf

Lectin pathway 7 703 ns

FCN1 3 16 0.0009 0.0025 18.58 4.55-Inf

MASP1 3 38 0.0083 0.0160 7.83 2.02-Inf

Terminal pathway 20 1594 ns

C6 3 34 0.0063 0.0131 8.75 2.25-Inf

C7 3 25 0.0028 0.0064 11.90 3.01-Inf

C8A 6 33 0.0000 0.0000 18.02 7.23-Inf

C9 5 22 0.0000 0.0001 22.52 8.01-Inf

Regulators and receptors 24 2253 ns

CD55 3 13 0.0005 0.0017 22.87 5.49-Inf

CD93 2 17 0.0156 0.0279 11.66 1.90-Inf

CR1 6 44 0.0000 0.0001 13.51 5.50-Inf

ITGAM 5 29 0.0000 0.0001 17.09 6.20-Inf

VSIG4 4 14 0.0000 0.0001 28.28 8.45-Inf
fron
C1s, complement component C1 subcomponent s; C2, complement component 2; C4B, complement component C4B; FCN1, Ficolin-1 (M-ficolin); MASP1, Mannan-binding lectin serine
protease 1; C6, complement component C6; C7, complement component C7; C8A, complement component C8 alpha subunit; C9, complement component C9; CD55, DAF, Decay-accelerating
factor; CD93, complement C1q receptor; CR1, complement receptor type 1; ITGAM, integrin subunit alpha M; complement receptor 3, VSIG4, V-set and immunoglobulin domain containing 4
(also called complement and Ig receptor (CRIg).
The first row in each category indicates the complement pathway burden association of all the rare variants observed in this pathway. Also Benjamini-Hochberg method corrected p-values (q-
value) are given. ns, not significant.
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Acute respiratory distress syndrome (ARDS) is characterized by

an increased permeability of endothelium and epithelium leading to

an inflammatory reaction with accumulation of neutrophils and a

protein-rich edema of the lungs. Later, also macrophages, strongly

expressing CR3, promote the inflammatory response. Biomarkers of

the endothelial damage have been linked to increased morbidity and

mortality (35–37). One of our patients with the ITGAM variant

(rs775141495; Arg292His) had an endotheliopathy-like clinical

phenotype with ARDS. The patient´s ARDS symptoms evolved

from day 30 post-transplant, thus matching the timeline of the post-

engraftment acute phase (30-100 days post-transplant) pulmonary

complications. An impaired cellular immunity plays a central role

in this phase in both the infectious and non-infectious

complications with the latter including many entities related to

endothelial damage (38, 39). Our patient with the ITGAM variant

Arg292His with CLS followed by TMA/VOD was treated with

defibrotide (6.25mg/kg iv q. 6 hours) and survived. The other one

with ARDS was not treated with defibrotide and died. Defibrotide is

found to diminish the endothelial activation and enhance the local

antithrombotic effects, while having also anti-inflammatory effects

by interacting with the endothelium (40). In the clinical trial by

Frame et al. (41) defibrotide was found safe, and even with the study

not being designed to address the efficacy of defibrotide, the survival

rates of the patients treated with defibrotide were promising, when

compared to other patients with SARS-CoV-2 ARDS.

Mannan-binding lectin-associated serine protease -1 (MASP-1)

is an initial part of the lectin pathway and can promote activation of

both complement and coagulation. It is a procoagulant by inducing

fibrin formation with thrombin, but it also directly activates

prothrombin, FXIII and thrombin-activatable fibrinolysis

inhibitor (TAFI) (42, 43). Thrombin, on the other hand, has been

reported to directly activate the complement cascade by cleaving C3

and C5 (44). The lectin pathway was suggested to mediate

complement activation in SARS-CoV-2 infection, and the

MASP2-inhibitor narsoplimab had a promising effect in critically

ill COVID-19 patients (45). The lectin pathway may also play a role

in HSCT-related TMA. Adult patients with HSCT-TMA treated in

a phase II study with narsoplimab showed significant improvement

in TMA-related laboratory values, and the treatment resulted in a

good clinical response with improved overall survival (46). Our

patient with the MASP-1 variant Ala544Thr had severe and

persistent diffuse gastrointestinal bleeding leading to ICU-

admission twice and ending up being lethal. Massive

haemorrhage is thought to be a possible trigger of complement

activation (47, 48) and activated complement could contribute to

tissue damage seen at the site of the haemorrhage (49, 50). We

speculate that the MASP-1 variant rs1712360640 with severe GI-

bleeding could lead to a more vigorous activation of the

complement and coagulation cascade, leading to endothelium-

related complications.

C6 is an essential part of the membrane attack complex (MAC).

The variant (rs142896559; Gly452Glu) seen in our patient with CLS

in located in the MAC perforin (MACPF) domain of the C6 protein

(51). The variants seen in C6 and C9 are both located in the MACPF

domain. The functional consequences of this variant in C6 are
Frontiers in Immunology 08
currently not known. However, the essential role of C6 in the

generation of the complement membrane attack complex (MAC)

and location of the variant in one of the key domains suggests that it

could be involved in abnormal assembly of MAC.

While the functional consequences of the C9 variant

(rs183125896; Thr279Ala) observed in four patients are also

unclear, interestingly, reports on other C9 variants in connection

to TMA have recently been published (52, 53). It is therefore

possible that, in the HSCT patients, this mutation, normally

tolerable, could contribute to triggering TMA.

Many variants were overrepresented in the whole HSCT

population (Table 2). Interestingly, also transplant patients

without vascular problems showed enrichment of variants in

many complement genes. This could be related to the underlying

reasons for the HSCT (usually malignancy, but also hematopoietic

syndromes, immunological or metabolic disorders; Table 1). In this

scenario, complement may have functioned insufficiently to prevent

the disorder. Furthermore, the variants observed in the

endotheliopathy patients were enriched in the patient population,

although the small sample size of endotheliopathy patients did not

warrant direct statistical comparison. A reason for this could be an

incompatibility in the complement system between the recipient

and the donor. Components from the donor and the recipient (e.g.

between an activating and a regulating factor) may have a mismatch

with each other and lead to events that harm the vascular

endothelium. This hypothesis is supported by the fact that

patients with endotheliopathy had more matched unrelated

donors than those without endotheliopathy (p=0.031).

The limitation of our study is the size of our cohort. Gene

burden analysis may be influenced by the relatively small N and the

findings should be evaluated using a larger validation cohort. The

strength of our study is the uniform Finnish ethnicity of the

patients. Because of the centralization of more than 95% of the

paediatric HSCTs in Finland to one, single centre, the cohort covers

the whole Finland and represents the national population well.

Thus, the frequency of variants in the patient set and gnomAD non-

cancer Finns was comparable. Comparison to gnomAD Europeans

(Supplementary Table S2) showed differences in complement

variant distribution between Finns and the rest of Europeans.

This is understandable, because it is well known that Finns are a

genetically relatively uniform but distinct population in

Europe (54).

Treatment-related toxicity is still a significant clinical

problem in paediatric allo-HSCT. Injury to the vascular

endothelium is relatively common after HSCT with varying

phenotypic appearances suggesting hitherto unidentified

underlying mechanisms. Rare and ultrarare variants in

complement genes are overexpressed in patients with injury to

the vascular endothelium. These nonsynonymous variants in

complement genes may be related to endotheliopathy and poor

prognosis seen in these patients. Our hypothesis is that in

addition to these variants, also genetic incompatibility between

the donor and the recipient predisposes to endothelial damage

and problems seen post-HSCT. Studies to address this

hypothesis are underway.
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