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Since the successful application of messenger RNA (mRNA) vaccines in

preventing COVID-19, researchers have been striving to develop mRNA

vaccines for clinical use, including those exploited for anti-tumor therapy.

mRNA cancer vaccines have emerged as a promising novel approach to

cancer immunotherapy, offering high specificity, better efficacy, and fewer side

effects compared to traditional treatments. Multiple therapeutic mRNA cancer

vaccines are being evaluated in preclinical and clinical trials, with promising

early-phase results. However, the development of these vaccines faces various

challenges, such as tumor heterogeneity, an immunosuppressive tumor

microenvironment, and practical obstacles like vaccine administration methods

and evaluation systems for clinical application. To address these challenges, we

highlight recent advances from preclinical studies and clinical trials that provide

insight into identifying obstacles associated with mRNA cancer vaccines and

discuss potential strategies to overcome them. In the future, it is crucial to

approach the development of mRNA cancer vaccines with caution and diligence

while promoting innovation to overcome existing barriers. A delicate balance

between opportunities and challenges will help guide the progress of this

promising field towards its full potential.

KEYWORDS

mRNA cancer vaccines, cancer, cancer vaccine, personalized vaccine, cancer therapy,
immunotherapy
1 Introduction

Cancer is one of the tremendous challenges to human health globally and the leading

cause of death. Based on the most recent statistical report, about 5370 new occurrences, and

1670 deaths each day are expected during 2023 in the United States (1). Due to high

morbidity and mortality rates, tremendous efforts have been devoted to the search for
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anticancer modalities (2, 3). Although advances have been made in

traditional therapeutic methods, including surgery, chemotherapy,

and radiotherapy, the reliable cure is still limited. In recent years,

immunotherapy has become an essential focus for cancer treatment,

and multiple immune checkpoint inhibitors (ICIs) are approved as

a therapy for cancer (4, 5). ICIs with apparent efficacy and low side

effects raise new hope for cancer patients and lead to an increased

awareness of the influential role of the immune system in the

success of anticancer therapy (5, 6). However, limited benefit

populations, drug resistance, and high costs remain significant

concerns for ICIs (7). Hence, there is an imminent need to look

for novel and effective ways to activate the immune system to

fight tumors.

Recently, the successful applications of COVID-19 global

pandemic offered a great opportunity for messenger RNA

(mRNA)vaccines in antitumor therapy (8–10). Therapeutic

mRNA cancer vaccines as a novel immunotherapeutic strategy,

which aims to kill tumor cells via invoking antitumor adaptive

immune responses, have attracted great attention (11, 12).

Specifically, therapeutic mRNA cancer vaccines encode the key

components for the process of the immune response, such as

tumor-specific antigens (TSAs), tumor-associated antigens

(TAAs), and immune modulatory factors, thus promoting

immune activation to perform antitumor functions (13, 14).

Therapeutic mRNA cancer vaccines have been reported to

provide stronger cellular or humoral immunity than traditional

inactivated pathogen or protein-based vaccines (15). Not only that,

it has the advantages of low cost, rapid development, safety and

flexibility, and potent immunogenicity (14). Currently, multiple

therapeutic mRNA cancer vaccines are being evaluated in phase I/II

trial trials with promising early-phase results (14, 16). In view of
Frontiers in Immunology 02
therapeutic mRNA cancer vaccines are undergoing early stages of

clinical development, it is crucial to more fully understand current

status and challenges of therapeutic mRNA cancer vaccines.

In this review, we evaluate the benefits of therapeutic mRNA

cancer vaccines while providing a succinct overview of their

classification and mechanism. Particularly, we highlight recent

advancements from preclinical studies and clinical trials that

identify the obstacles associated with the development of mRNA

cancer vaccines and discuss potential strategies to overcome them.
2 Advantages of mRNA
cancer vaccines

mRNA vaccine has its origin in the 1990s when Wolff et al.

found that mRNA could directly transfect muscle cells when

injected in vivo, leading to the expression of the encoded related

protein (16). However, its clinical application is restricted due to a

lack of efficient synthesis, modifications, and delivery technologies

(17). With recent breakthroughs and developments, the success of

COVID-19 vaccines raised the hope for mRNA-based therapeutics

for the treatment of various types of diseases, most notably

in cancer.

The unique mechanism of action of the mRNA cancer vaccine

has permitted the offer of advantages over conventional cancer

therapy such as surgery, chemotherapy, and radiation therapy.

Figure 1 demonstrates the advantages of mRNA vaccines for the

treatment of cancer. A primary advantage of mRNA cancer vaccine

is potent immunogenicity, which supports strong humoral immune

response and the cell-mediated immune response, thus exhibiting a

strong anti-tumour effect (18, 19). For metastatic tumours, which
FIGURE 1

The advantages of mRNA vaccines in the context of cancer therapy.
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are not easily cured by surgery, the mRNA cancer vaccine was

found to be effective as it can provoke a systemic immune response

(20, 21). Apart from the above, mRNA cancer vaccines can build

and maintain long-term immunological memory making

preventing tumour recurrence possible (16). Several of mRNA

cancer vaccines has been shown to have potent therapeutic

efficacy in preclinical cancer models for primary tumor and

metastases (6, 21).

Another significant advantage of mRNA cancer vaccines is the

ability to support personalized therapies, which can increase

therapeutic efficacy and minimize side effects (18, 22). mRNA

vaccines with highly versatile allow mRNA sequences to be easily

tailored to encode personalized antigens or cytokines of interest to

against cancer (11, 22). mRNA cancer vaccine as nucleic acid

vaccine, which can be translated immediately after it enters the

cytoplasm and entry into the nucleus is not required (23). In

contrast to DNA vaccines, mRNA cancer vaccines could avoid

the requirement of nuclear localization and the risk of insertional

mutagenesis associated with DNA (18). Furthermore, mRNA

cancer vaccines do not carry the risks of accidental infection,

making it an essential safety issue (24, 25). Of particular

significance, mRNA production is faster, more flexible and less

expensive compared to many current vaccination strategies (26).

For example, mRNA vaccination enables the fast and secure

production of vaccines during pandemics such as SARS-CoV2

(27). Moreover, mRNA vaccines can be manufactured without

encountering the complex, time-consuming challenges associated

with plasmid DNA, viral vectors, or recombinant proteins (16).

Figure 2 outlines the advantages and disadvantages of other types

of cancer vaccines in comparison to mRNA cancer vaccine. DNA

vaccines have certain advantages over mRNA vaccines in terms of
Frontiers in Immunology 03
storage and stability (28). DNA vaccines can be stored for a long time

under regular freezing conditions and are relatively stable, with less

degradation (28). However, DNA vaccines also have some

drawbacks. DNA vaccines carry a potential risk of integration into

the host genome, which may result in insertional mutagenesis (29).

Additionally, DNA vaccines have relatively poorer immunogenicity,

partly due to their inefficient delivery strategy (29). Compared to

mRNA cancer vaccines, bacterial and viral vector vaccines elicit

stronger immune responses and exhibit high stability under

different storage conditions (15, 30). However, they also face

drawbacks such as safety concerns associated with live vectors and

potential impact of pre-existing immunity on effectiveness (15, 30).

Peptide-based cancer vaccines offer advantages in terms of facile

manufacturing and lower cost compared to mRNA cancer vaccines

(31). However, they are inferior to mRNA cancer vaccines in terms of

immunogenicity, which may result in relatively weaker vaccine

efficacy, necessitating the implementation of additional measures to

enhance immune response (32). Adjuvants are typically required to

enhance immune response for peptide-based vaccines (31, 32).

Compared to mRNA cancer vaccine, dendritic cell (DC) vaccines

have an advantage because DC cells comprise a versatile cell type

capable of engaging multiple facets of the immune system, making

them more applicable to a broad range of cancers (33). However, the

production of DC cancer vaccines requires complex operational steps

and higher costs than mRNA cancer vaccine (33). Despite the

inherent advantages and disadvantages of different types of cancer

vaccines, mRNA cancer vaccines exhibit a distinctive amalgamation

of characteristics that hold great promise for revolutionizing cancer

treatment. However, to fully harness their potential, extensive

research and clinical trials are required to optimize the efficacy,

safety, and implementation of mRNA cancer vaccines.
FIGURE 2

The advantages and disadvantages of other types of cancer vaccines in comparison to mRNA cancer vaccine.
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3 Classification and mechanism of
action mRNA cancer vaccines

mRNA cancer vaccines hold immense potential as a personalized

cancer therapy that harnesses the patient’s own immune system to

specifically target and eliminate tumor cells (12). The progress in

next-generation sequencing technologies has made it possible to

quickly and cost-effectively compare tumor and normal sequences,

serving as the initial stage for identifying cancer targets (34). Figure 3

shows the comprehensive design and production process of mRNA

cancer vaccines, which encompasses sample acquisition, gene

sequencing and target identification, mRNA sequence design,

vaccine production, as well as administration of the final vaccine

product. These vaccines can be categorized into three distinct types -

those encoding TSAs, TAAs, and immunostimulatory factors– with

each type involving internalization of the vaccine into cells,

transcription of mRNA sequences encoding selected targets,

delivery to immune cells, stimulation of the immune system, and

promotion of tumor cell killing (Figure 4) (13, 35, 36). Each type of

vaccine has a unique mechanism of action, characteristics, and

potential advantages for cancer treatment.

mRNA cancer vaccines encoding TSAs constitute a promising

form of personalized cancer therapy, designed to selectively target

and eliminate tumor cells while minimizing damage to healthy cells

(37). The presence of TSAs is restricted to tumor cells, thereby

supporting the generation of specific immune responses against

individual tumor antigens in patients (38). This specificity grants

mRNA cancer vaccines encoding TSAs several advantages over

traditional anti-cancer therapy, including greater efficacy and

reduced toxicity (39). Furthermore, these vaccines are highly

immunogenic and effective in stimulating robust T cell responses,

as the selected targets are specific to the tumor and less likely to have

been eliminated during the development of immune self-tolerance

(40). Notably, mRNA cancer vaccines encoding TSAs can be
Frontiers in Immunology 04
designed to target various types of mutations, including single

nucleotide variants and indels resulting in frameshift mutations

that may alter protein function. Once synthesized, these mRNA

sequences are delivered to the patient’s immune cells either in vitro

or in vivo using lipid nanoparticle delivery systems or

electroporation techniques (41–43). This ensures that the patient’s

immune cells are equipped with the necessary tools to identify and

destroy cancer cells.

TAAs, which include cancer or germline genes and lineage-

specific differentiation markers, have emerged as attractive targets

for vaccine development (26). Among the promising strategies in

cancer immunotherapy are mRNA cancer vaccines encoding TAAs

(44). These vaccines are designed to stimulate an immune response

against proteins expressed by both cancer cells and normal cells (13).

The principle behind mRNA cancer vaccines encoding TAAs is to

induce a specific immune response against antigens that are

overexpressed on the surface of cancer cells relative to normal cells.

The process involves identifying the TAAs expressed by the patient’s

tumor cells and designing mRNA sequences that encode those

antigens. Subsequently, the mRNA is delivered into immune cells,

translated and processed into antigen-major histocombatibility

complex (MHC) class I/II complexes and then presented on the

surface of these cells. This presentation triggers an immune response

specifically targeting cells expressing these antigens. Importantly,

mRNA cancer vaccines encoding TAAs offer significant advantages,

especially in treating certain types of cancer such as lung cancer or

melanoma, which exhibit elevated levels of TAAs expression (13).

Immune-regulating factors are molecules capable of either

stimulating or suppressing specific immune cell functions, inclusive

of cytokines, co-stimulatory ligands and receptors (45). The mRNA-

encoded immunostimulatory factors vaccine represents a novel class

of vaccines that utilizes mRNA as a vehicle for encoding immune-

regulating factors, ultimately augmenting the immune response

against cancer cells. The fundamental principle that underlies the

design of this vaccine is to increase the concentration of immune-
FIGURE 3

The design and production process of mRNA cancer vaccines. The design and production process of mRNA cancer vaccines include sample acquisition,
gene sequencing and target identification, mRNA sequence design, vaccine production, as well as administration of the final vaccine product.
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regulating factors, thereby promoting immune system function and

bolstering defense against cancer cells. The mRNA vaccine encoding

immune stimulatory factors can simultaneously introduce encoded

sequences of multiple immune stimulatory factors, activating and

enhancing immune system responses through various pathways. In

recent studies, the most commonly used cytokines include IL-2, IL-12

andOX40L (46). These cytokines have been shown to stimulate T-cell

proliferation and enhance the anti-tumor immune response (47–49).

Furthermore, the mRNA vaccine encoding immune stimulatory

factors can serve as an adjuvant for the mRNA vaccine encoding

TAAs. By using the mRNA encoding TAAs together with the mRNA

encoding immune stimulatory factors, the immune activity and anti-

tumor effects of the TAAs vaccine can be enhanced. The presence of

immune stimulatory factors can augment the immune response

elicited by the mRNA encoding TAAs, further facilitating effective

recognition and targeting of tumor cells by the immune system. A

recent prominent vaccine of interest is ECI-006, which is a

combination mRNA cancer vaccine comprising TriMix (mRNA

encoding DC activation molecules CD40L, CD70, and caTLR4) and

mRNA encoding TAAs (tyrosinase, gp100, MAGE A3, MAGE C2,

and PRAME). This innovative vaccine holds promise in boosting the

immune response against cancer cells, making it a significant focus of

current research.
4 Clinical trials of mRNA
cancer vaccines

Both preclinical and clinical evidence have shown that the use of

mRNA for prophylaxis and therapy has potential in preventing

infectious diseases and treating cancers (50). Additionally, mRNA

vaccines have demonstrated a safe and well-tolerated profile in both

animal models and human trials (51). As of April 30th, 2023,

ClinicalTrials.gov reports that 35 clinical trials are actively assessing
Frontiers in Immunology 05
the safety and efficacy of mRNA cancer vaccines for select cancer

types (Table 1). These trials comprise preliminary investigations

into the pharmacological, dosing, and immunogenic features of

mRNA vaccines, as well as larger-scale evaluations of their potential

to mitigate tumor recurrence or enhance survival rates. However, it

is noteworthy that these studies remain in their initial phases, and

additional research and validation will be crucial to corroborate

their effectiveness.
4.1 mRNA cancer vaccines encoding TSAs

Table 1 presents a summary of registered clinical trials based on

clinicaltrials.gov for mRNA cancer vaccines encoding TSAs. One of

these vaccines, mRNA-4157, is a personalized mRNA vaccine that

has the capacity to encode up to 34 antigens and is currently being

assessed for its effectiveness in treating melanoma (NCT03897881).

Results from the phase IIb KEYNOTE-942 trial indicate that

mRNA-4157/V940 combined with pembrolizumab could be a

potential adjuvant therapy for melanoma, as patients receiving

this combination had a significant reduction in disease recurrence

risk compared to those who only received PD-1 inhibitor, showing

promising results (52). In a phase 1 clinical trial, autogene

cevumeran (BNT 122) containing up to 20 neoantigens was

tested for its ability to stimulate immunity against neoantigens in

patients with resected pancreas ductal adenocarcinoma (PDAC).

The results revealed that patients who responded to the vaccine

exhibited a longer recurrence-free survival than non-responders at

an early median follow-up of 15 months, suggesting that vaccine-

induced neoantigen-specific immunity may be associated with

improved outcomes in PDAC (53). However, evidence for the

effectiveness of mRNA-4650 in treating gastrointestinal cancer

appears to be discouraging. A study by Cafri et al. evaluated the

immunogenicity and clinical efficacy of mRNA-4650 and only
FIGURE 4

Mechanism of action of mRNA cancer vaccines. The mechanism of action of mRNA cancer vaccines involving internalization of the vaccine into
cells, transcription of mRNA sequences encoding selected targets, delivery to immune cells, stimulation of the immune system, and promotion of
tumor cell killing.
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TABLE 1 Characteristics of ClinicalTrials.gov registered mRNA cancer vaccines, including those encoding TSAs, TAAs, and immunostimulatory factors.

NCT
member

Vaccine type Target antigen Sponsor Cancer type Vaccine
routes

Phase Combination

mRNA cancer vaccines encoding TSAs

NCT03639714 GRT-C901/GRT-
R902

Personalized
neoantigen

Gritstone bio NSCLC; Colorectal cancer;
Gastroesophageal
Adenocarcinoma; Urothelial
Carcinoma

IM I; II Ipilimumab;
Nivolumab

NCT03897881 mRNA-4157 Up to 34 neoantigen Moderna Melanoma IM II Pembrolizumab

NCT03313778 mRNA-4157 Several neoantigen Moderna Unresectable solid tumors IM I Pembrolizumab

NCT03480152 mRNA-4650 Up to 20 neoantigen National Cancer
Institute

Solid Tumors IM I; II None

NCT03289962 Autogene
Cevumeran (BNT
122)

Up to 20 neoantigen Genentech Melanoma; NSCLC; Bladder
; Colorectal; Triple Negative
Breast; Renal; Head and
Neck; Other Solid Cancers

IVI I Atezolizumab

NCT03908671 Personalized
mRNA Tumor
Vaccine

NA Stemirna
Therapeutics

Advanced esophageal cancer
and NSCLC

SC NA None

NCT03468244 Personalized
mRNA Tumor
Vaccine

NA Changhai
Hospital

Solid Tumors SC NA None

NCT05761717 Personalized
mRNA Tumor
Vaccine

NA Shanghai
Zhongshan
Hospital

Postoperative Hepatocellular
Carcinoma

SC NA Stintilimab

NCT04486378 RO7198457 Encoding individual
mutations

BioNTech Colorectal Cancer IVI II None

NCT04161755 RO7198457 Encoding individual
mutations

BioNTech Pancreatic Cancer IVI I Atezolizumab

NCT03815058 RO7198457 Encoding individual
mutations

Genentech Advanced melanoma IVI II Pembrolizumab

NCT03289962 RO7198457 Encoding individual
mutations

Genentech Solid tumors IVI I Atezolizumab

NCT02316457 VAC_W_bre1_uID
and IVAC_M_uID

BC TAA and
encoding individual
mutations

BioNTech TNBC IVI I None

mRNA cancer vaccines encoding TAAs

NCT03948763 mRNA-5671/V941 KRAS G12D/G12V/
G13D/G12C

Merck Sharp &
Dohme LLC

KRAS Mutant NSCLC and
Colorectal cancer and
Pancreatic Adenocarcinoma

IVI I Pembrolizumab

NCT04526899 BNT111 NY-ESO-1,
tyrosinase, TPTE
and MAGE-A3

BioNTech Melanoma IVI II Cemiplimab

NCT02410733 Lipo-MERIT
(BNT111)

As above BioNTech Advanced melanoma IVI I None

NCT04382898 BNT112 PAP, PSA, and three
undisclosed antigens

BioNTech Prostate Cancer IVI I; II Cemiplimab

NCT04534205 BNT113 HPV16 E6 and E7
oncoproteins

BioNTech Head and neck squamous
cell carcinoma

IVI II Pembrolizumab

NCT03418480 BNT113 HPV16 E6 and E7
oncoproteins

University of
Southampton

Advanced HPV16+ cancer ID I; II Anti-CD40
antibodies

(Continued)
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observed an increase in the frequency of cancer-specific T cells, but

no clinical benefit (22).

Currently, several institutions such as BioNTech and Moderna

have joined forces in the pursuit of developing personalized mRNA

cancer vaccines, with numerous clinical trials currently underway.

Despite having a theoretically proven efficacy, these vaccines face

obstacles in areas such as design, production, and cost. Thus,

additional optimization efforts are necessary to overcome these

challenges. Furthermore, further preclinical and clinical trials are

indispensable in validating the effectiveness of personalized mRNA
Frontiers in Immunology 07
cancer vaccines. These trials can identify opportunities for

improvement and expedite the translation of this innovative

approach from bench to bedside, ultimately benefiting

cancer patients.
4.2 mRNA cancer vaccines encoding TAAs

Fifteen clinical trials are currently in progress to assess mRNA

cancer vaccines that encode TAAs, as demonstrated in Table 1. The
TABLE 1 Continued

NCT
member

Vaccine type Target antigen Sponsor Cancer type Vaccine
routes

Phase Combination

NCT04163094 BNT115 Ovarian cancer TAA University
Medical Center
Groningen

Ovarian cancer IVI I carboplatin plus
paclitaxel

NCT05142189 BNT116 NSCLC TSA BioNTech NSCLC IVI I Cemiplimab plus
Docetaxel

NCT05557591 BNT116 NSCLC TSA BioNTech Advanced NSCLC with
PDL1 ≥ 50%

IVI I; II Cemiplimab

NCT05714748 EBV mRNA
vaccine

EBV oncoproteins West China
Hospital

EBV-positive advanced
malignant Tumors

IM I None

NCT03164772 BI 1361849 MUC1, survivin,
NY-ESO-1, 5T4,
MAGE-C2, and
MAGE-C1

Ludwig Institute
for Cancer
Research

Metastatic Non-small Cell
Lung Cancer

ID I; II Durvalumab,
Tremelimumab

NCT05738447 HBV mRNA
vacccine

HBV oncoproteins West China
Hospital

HBV-related Refractory
Hepatocellular Carcinoma

IM I None

NCT04573140 RNA-LP vaccine Tumor mRNA and
pp65 LAMP

University of
Florida

Glioblastoma IVI I None

NCT04503278 CARVac Encoding CLDN6 BioNTech Cell &
Gene Therapies
GmbH

CLDN6-positive relapsed or
refractory advanced solid
tumors

IVI I; II CAR-T therapy

NCT03394937 ECI-006 TAA: gp100,
tyrosinase,
MAGE-A3, MAGE-
C2,
PRAME

eTheRNA
immunotherapies

Melanoma Intranodal I None

mRNA cancer vaccines encoding immunostimulatory factors

NCT03871348 SAR441000(BNT
131)

IL-12sc, IL-15 sushi,
GMCSF, IFNa

Sanofi Metastatic Neoplasm intratumorally II Cemiplimab

NCT04455620 BNT151 Optimized IL-2 BioNTech Solid Tumor IVI I; II

NCT04710043 BNT152+153 IL-7, IL-2 BioNTech Solid Tumor IVI I None

NCT03291002 CV8102 TLR7/8, RIG-1 CureVac Skin cancer intratumoral I anti-PD-1

NCT03323398 mRNA-2416 OX40L Moderna Relapsed/Refractory Solid
Tumor Malignancies

intratumoral I; II Durvalumab

NCT03739931 mRNA-2752 OX40L, IL-23,
IL-36g

Moderna Relapsed/Refractory Solid
Tumor Malignancies or
Lymphoma

intratumoral I Durvalumab

NCT03946800 MEDI1191 IL-12 MedImmune
LLC

Solid Tumors Cancer intratumoral I Durvalumab
TSAs, tumour-associated antigens; TAAs, tumor associated antigens; LAMP, lysosomal associated membrane protein; TNBC, triple negative breast cancer; BC, breast cancer; EBV, epstein-barr
virus; HBV, hepatitis B virus; NY-ESO-1, New York esophageal squamous cell carcinoma 1; MAGE-A3, melanoma-associated antigen A3 tyrosinase; TPTE, transmembrane phosphatase with
tensin homology; IM ,intramuscular; IVI, intravenous injection; SC, subcutaneous injection; ID, intradermal administrations; NA, Not applicable.
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BNT111 vaccine developed by BioNTech is an example of an

mRNA cancer vaccine that encodes four melanoma-associated

antigens (MAAs) including New York esophageal squamous cell

carcinoma 1 (NY-ESO-1), melanoma-associated antigen A3

(MAGE-A3), tyrosinase, and transmembrane phosphatase with

tensin homology (TPTE) (44). These RNAs are encapsulated in

liposomes and administered intravenously to patients. In a phase I

trial, this vaccine alone and in combination with ICIs induced

durable objective responses and had a favorable safety profile

among patients with advanced melanoma (44). Currently, a phase

II trial is underway evaluating the vaccine candidate in combination

with the anti-PD-1 antibody cemiplimab for patients with

unresectable stage III or stage IV melanoma who are refractory to

or have relapsed after anti-PD-1 therapy. These findings suggest

that the BNT111 vaccine holds great promise as a treatment option

for melanoma and may provide new hope for patients with

advanced forms of the disease.

mRNA-5671 is a tetra-valent vaccine that has been formulated

with lipid nanoparticle (LNP) technology and is based on

messenger RNA (36). This innovative vaccine targets four of the

most frequent KRAS mutations - G12D, G13D, G12C, and G12V

(36). Pre-clinical investigations have indicated a substantial

improvement in CD8 T cell responses to KRAS antigens post-

immunization with mRNA encoding KRAS mutations (36). In a

phase I trial, patients suffering from advanced or metastatic NSCLC,

colorectal cancer, or pancreatic adenocarcinoma, and having KRAS

mutations, are being enrolled to determine the efficacy of mRNA-

5671 with or without pembrolizumab (NCT03948763).

A phase 1/2 clinical trial (NCT04382898) is currently underway

to evaluate the effectiveness of the cancer vaccine BNT112. This

vaccine encodes five different tumour-associated antigens and is

being administered alone or in combination with cemiplimab to

patients with metastatic castration-resistant prostate cancer.

Another trial is a randomised phase 2 study (NCT04534205)

evaluating the anti-human papillomavirus (HPV)-16-derived

oncoprotein-encoding mRNA BNT113 vaccine in HPV16-

positive, PD-L1-positive head and neck squamous cell carcinoma.

BNT113 is also being tested in a two-arm phase 1/2 vaccine dose-

escalation study (NCT03418480) for patients with previously

treated or advanced HPV16-positive head and neck squamous

cell carcinoma. Another phase 1 study (NCT04163094) is being

conducted to evaluate the BNT115 that encodes ovarian-specific

tumour-associated antigens. This vaccine is being administered

both before and in combination with adjuvant and neoadjuvant

chemotherapies to patients with ovarian cancer. Finally, a fifth

clinical trial (NCT05142189) is evaluating the FixVac vaccine

BNT116 in combination with cemiplimab or docetaxel in a phase

1 study for patients with advanced or metastatic non-small cell

lung cancer.
4.3 mRNA cancer vaccines encoding
immunostimulatory factors

The profound potential of mRNA cancer vaccines stems from

their ability to encode a wide range of proteins, including
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immunostimulants that can modify the tumor immune

microenvironment (TME) and enhance the efficacy of immune

checkpoint inhibitors (51). This promising avenue of mRNA vaccine

research has spurred clinical trials of cytokine-encoding mRNA

products by BioNTech and Moderna, with highly encouraging

results (13, 54). For instance, intratumorally administered mRNA-

2416 produced by Moderna, which encodes OX40L, demonstrated

safety and tolerability in a phase I trial and elicited broad

proinflammatory activity with desirable changes in the TME (54).

These findings provide critical support for its further investigation in

combination therapy with anti-PD-L1 inhibitor durvalumab in solid

tumors. Similarly, co-administration of mRNA-2752 encoding

OX40L/IL23/IL36g with durvalumab in a dose escalation study

(NCT03739931) exhibited antitumor effects, validating the potential

of mRNA cancer vaccines as a therapeutic modality. Furthermore,

BioNTech’s BNT131 (SAR441000), which encodes IL-12sc, IL-

15sushi, IFN-a for intratumoral injection, is being tested as

monotherapy and in combination with cemiplimab for patients with

advanced solid tumors to alter the TME. Several other mRNA products

have also shown promise, such as ECI-006, a combination of TriMix

and melanoma-specific TAAs administered intranodularly and being

tested in a phase 1 study of resected melanoma (NCT03394937); and

MEDI1191, an immunomodulatory fusion protein containing IL-12a
and IL-12b subunits developed for intratumoral injection (55). While

only seven product candidates are currently undergoing clinical trials,

the results thus far demonstrate the immense potential of mRNA

cancer vaccines in improving cancer immunotherapy outcomes

(Table 1). With these promising results, further research is needed to

determine the optimal administration route and maximize

vaccine efficacy.
5 Current challenges and
future perspectives

Numerous clinical trials are currently under development or in

progress to assess the safety and efficacy of mRNA cancer vaccines

(51). Despite promising results in preclinical and early-phase

clinical trials, the successful translation of mRNA cancer vaccines

into clinical practice faces several obstacles. These challenges

include tumor heterogeneity, an immunosuppressive tumor

microenvironment, optimal vaccine administration routes, and

the identification of biomarkers to monitor treatment response.
5.1 Tumor heterogeneity

The complexity of treatment decisions is enhanced by tumour

heterogeneity, which can be divided into spatial and temporal

heterogeneity (56). Temporal heterogeneity refers to the dynamic

evolution of the genomes through the tumour progression course,

whereas spatial heterogeneity refers to the phenomenon that a

tumour is composed of subclones of different genetic

backgrounds (57–59). This heterogeneity leads to variable

responses to therapies among individuals with cancers of the
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same tumour subtype and is believed to be one of the major causes

of progressive disease and failure of therapy (60, 61). Typically, only

a small fraction of a specimen is sampled for mRNA cancer vaccine

design, which is unlikely to provide full information on tumour

gene profile, contributing to increased uncertainties for the clinical

efficacy of mRNA cancer vaccine (11). Thus, tumour heterogeneity

largely limits the efficacy of mRNA cancer vaccine and how to

overcome tumor heterogeneity is a difficult challenge for its

clinical application.

To overcome spatial heterogeneity in tumours, one strategy is to

use tumour tissue multipoint sampling to identify differences

between tumour regions and inform the design of personalised

mRNA cancer vaccines. Another approach involves using mRNA

cancer vaccines that target multiple antigens expressed across

various tumour regions, thereby compensating for spatial

heterogeneity. Meanwhile, monitoring disease progression and

adjusting treatment plans accordingly may help to address

temporal heterogeneity. However, these strategies not only

increase the complexity of vaccine design and administration but

also raise costs and increase treatment time for patients. Another

promising method is the use of artificial intelligence algorithms

such as MHC-binding prediction, quantification of mutated

transcript expression, and clonality of the mutation to predict

neoantigens based on tumour genomic data, then used to

prioritize these mutations as vaccine candidates based on their

likelihood to elicit a T cell response, which could improve the

efficiency and accuracy of vaccine design and overcome the

heterogeneity of tumour (62–64). However, to date, there is still

limited information on artificial intelligence for mRNA cancer

vaccine design. This is certainly an important and interesting area

worthy of future investigations.
5.2 Immunosuppressive
tumor microenvironment

Tumour initiation, progression and maintenance depend highly

on interactions between the tumour and the associated

microenvironment (65). Tumour microenvironment refers to the

surrounding microenvironment of tumour cells, including

surrounding cells, signalling molecules, and extracellular matrix

(66). The importance of the tumor microenvironment in cancer has

been recognized since the late 1800s and then accumulating

evidences suggested immunosuppressive TME not only promote

immune evasion and tumor growth, but also lead to decrease the

efficacy of immunotherapy (67–69). Immunosuppressive TME

could decrease the efficacy of immunotherapy by inhibiting the

function and activation of immune cells, such as T cells and natural

killer cells, which are critical for attacking and eliminating cancer

cells (14). Although mRNA cancer vaccine may have the capability

to elicit a cellular immune response, the inhibitory tumor

microenvironment can impede T cell infiltration into tumors and

result in T cell exhaustion (50). As with many other

immunotherapies, overcoming immunosuppressive TME is one of

the most challenging and unsolved problems for mRNA

cancer vaccine.
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Combining mRNA cancer vaccines with other anti-cancer

treatments, which is being constantly tried in cancer patients, can

be an effective strategy for overcoming the immunosuppressive

microenvironment. One commonly used combination therapy is to

combine mRNA vaccines with immune checkpoint inhibitors, which

can “release the brakes” on the immune system, allowing it to attack

cancer cells more effectively (55, 70). Adoptive T-cell therapy, another

type of immunotherapy, can also be used alongside mRNA vaccines.

This innovative treatment involves extracting T-cells from a patient’s

blood or tumor, modifying them in a laboratory to target specific

cancer antigens, and then reintroducing them into the patient’s body.

Combining these modified T-cells with mRNA vaccines can

significantly enhance the immune response against cancer cells,

thus improving the efficacy of this therapy (71). The combination

of mRNA vaccines and radiotherapy has also shown promising

therapeutic effects in preclinical and clinical models (72, 73).

Overall, combining mRNA cancer vaccines with other anti-cancer

treatments can be a powerful approach to overcoming the

immunosuppressive microenvironment in tumors. Continued

research and development of these combination therapies will be

critical to improving outcomes for cancer patients.
5.3 Vaccine administration routes

Poor performance in any step of the mRNA delivery process

would compromise the therapeutic efficacy, and administration

routes should be a first-order consideration for the clinical usage

of mRNA cancer vaccine (74, 75). The administration route of

mRNA vaccines strongly influences the translation efficiency of the

target protein and the distribution of mRNA cancer vaccine in vivo

(16, 76). Currently, there is no consensus on the optimal route of

administration for mRNA vaccines, although the SARS-CoV-2

mRNA vaccines that have received approval utilize intramuscular

injection (50). Various routes, including intramuscular,

subcutaneous, intranodal, intradermal, and intranasal vaccination,

are actively being explored in the search for an optimal

administration route for mRNA cancer vaccines (55). Each

administration route for mRNA cancer vaccines has unique

advantages and limitations. As depicted in Figure 5, the strengths

and weaknesses of diverse mRNA cancer vaccines administration

routes are presented.

Intramuscular and intravenous injections are the two most

frequently used administration routes in clinical trials for mRNA

cancer vaccines (Table 1). Intramuscular administration is a widely

used and feasible vaccination route that involves the direct injection

of a vaccine into muscle tissue (14, 77). This method has

demonstrated efficacy in inducing an immune response for

mRNA cancer vaccines, being both easily executed and well-

tolerated with the added benefit of offering flexible dosing

options, while also causing minimal side effects at the injection

site (78). Consequently, its use has become prevalent (14, 77, 78).

Additionally, intravenous injection is the most frequently used

direct administration route in current clinical trials for active

therapeutic mRNA cancer vaccines (79). It has been shown to be

safe, well-tolerated, and capable of inducing an immune response
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1246682
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1246682
against cancer cells (80). Furthermore, it enables the vaccine to

reach multiple lymphoid organs and allows for repeated dosing to

maintain immunity over time (55, 80).

Intranasal administration of mRNA cancer vaccines can

effectively deliver the vaccine to antigen-presenting cells in the

peripheral lymph nodes (81, 82). However, intranodal injections

provide a more direct route to reach lymphatic antigen-presenting

cells (83). While both delivery methods have their advantages, they

also face significant limitations. Intranasal administration may offer

non-invasive delivery but is restricted by nasal cavity volume

constraints (81, 82). Conversely, intranodal injections require

specialized equipment and highly skilled personnel, and the

injection volumes are small, which may not be sufficient for larger

tumors or inducing a robust immune response (84). Accordingly,

further research is necessary to optimize these methods for mRNA

cancer vaccines.

Intratumoral injections of mRNA cancer vaccines, which can

rapidly activate immune cells and minimize off-target, have been

investigated in clinical and preclinical trials (85, 86). Although this

approach aims to induce local inflammation with mRNA encoding

immunostimulatory, its effectiveness is limited by the size and

location of the tumor, which may restrict the amount of vaccine

that can be delivered (87). Repeated injections may be required to

maintain the immune response over time, and combining

intratumoral injections with systemic delivery methods such as

immune checkpoint inhibitors may offer a more comprehensive

approach to treating cancer (55). Despite these limitations,

intratumoral injections remain a promising area of research for

directly interact with immune cells to activate an immune response

mRNA cancer vaccine. Intradermal and subcutaneous injections are

two common administration routes for mRNA cancer vaccines

(74). Both methods allow regional antigen-presenting cells to easily

process the mRNA, which is essential for eliciting an immune

response against cancer cells (74). However, these administration

routes often induce severe local injection-site reactions than

intramuscular administration, which can negatively impact

patient compliance and overall treatment efficacy (14, 74).
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In view of the immense potential offered by various routes of

administration for successful cancer therapy, it is of paramount

importance to thoroughly assess the advantages and disadvantages

of each vaccination route. Recently, investigators have utilized a

non-invasive method involving a dual radionuclide near-infrared

probe to track the spatiotemporal trafficking of the vaccine

following intramuscular injection, offering essential guidance in

precisely evaluating the dose, injection site, and biological

distribution of the vaccine (88). In order to determine the most

effective vaccination route and optimize vaccine efficacy, there

remains a pressing need for novel approaches that can accurately

monitor and analyze the spatiotemporal kinetics of vaccines (88).

By carefully weighing the pros and cons of each administration

route, we can identify the most promising strategies for delivering

immunotherapies that can target cancer cells effectively while

minimizing off-target effects. Furthermore, by leveraging

advanced tools to track and analyze vaccine movement within the

body, we can acquire critical insights into the factors that govern

their biological activity and efficacy. Therefore, these innovative

methods hold tremendous promise for advancing our

understanding of how to optimize mRNA cancer vaccination

routes and maximize the impact of cancer immunotherapy.
5.4 Biomarkers for monitoring the
treatment response

The introduction of mRNA cancer vaccines represents an

exciting new frontier in cancer treatment, but also underscores

the need for novel efficacy evaluation standards. Unlike traditional

cancer treatments, such as chemotherapy, targeted therapy, and

radiation therapy, which targeting the tumor cells directly and

emphasizing tumor shrinkage as a successful response to

treatment evaluated by radiological imaging, mRNA vaccines

stimulate the immune system to produce an anti-tumor response

indirectly that standard radiographic imaging techniques do not

account for this unique mechanism of action and may not reflect
FIGURE 5

The strengths and limitations inherent in a range of administration routes for mRNA cancer vaccines.
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the true clinical benefit of mRNA vaccines (89). mRNA cancer

vaccines may lead to inflammatory reactions resulting in tumour

swelling, which results in increased complexity of evaluating the

efficacy of mRNA cancer vaccines (90). Moreover, cancer vaccines,

particularly when used as monotherapy, may exhibit greater efficacy

in cases of low disease burden and may not produce the striking

radiographic responses typically observed with cytotoxic therapy

(91). As a result, the development of cancer vaccines may encounter

difficulties in demonstrating effectiveness when evaluated in late-

stage disease using traditional assessment methods such as standard

radiographic response evaluation criteria (92). Due to their highly

individualized and customized nature, personalized mRNA cancer

vaccines require different treatment plans and dosages tailored to

each patient’s unique condition and cancer type (89). To

meaningfully identify which mRNA cancer vaccines should

advance beyond early phase trials and into larger phase III

clinical trials, novel biomarkers need to establish that can

accurately monitor the treatment response to these vaccines.

Quantitative measurement of immune cell responses is essential

for establishing surrogate biomarkers of efficacy, especially for

tumor antigen-specific T cell responses, which are critical in

selecting optimal doses for cancer vaccine trials and have the

potential to lead to tumor rejection. Multiple studies are

evaluating the effectiveness of mRNA therapies by measuring

immune response indicators, such as cytokines, chemokines, or

immune cells in the blood. A variety of immune monitoring

techniques, including flow cytometry analysis of cell populations’

phenotypes, functionalities, and activation status, are employed

(93). Additionally, enzyme-linked immunospot (ELISPOT) assays

measure cytokine release after antigen-specific immune responses,

while peripheral cytokine profiling using enzyme-linked

immunosorbent assay evaluates innate immune responses (93–

95). Another method, tetramer analysis with MHC multimers

loaded with antigen peptides, is used to measure antigen-specific

CD8 T cells, and T cell receptor analysis through sequencing and

polymerase chain reaction helps to elucidate the immune repertoire,

including genetic arrangement and specificity. These assays are

applied to immune cells in peripheral blood mononuclear cells

acquired from patients to detect and describe T cell responses.

Although ELISPOT is one of the most commonly used techniques

to identify CD8 T cell responses to a given antigen, its quantitative

output cannot determine the absolute number of antigen-specific T

cells (94). It is noteworthy that currently available immunological

assays, such as ELISPOT, flow cytometry-based multimer staining,

and intracellular cytokine staining, have been found to exhibit

technical inconsistencies across different laboratories (96). For

example, one study reported inter-laboratory variations of up to

50% in ELISPOT (96). Standardized and harmonized procedures,

from specimen banking to assay validation and result reporting, are

thus necessary for successful clinical development.

Over the past few decades, single-cell RNA sequencing (scRNA-

seq) technology has garnered significant attention as a novel tool in

assessing the immunotherapy response of cancer patients (97). The

scRNA-seq technology refers to a collection of techniques that enable

the untargeted quantification of transcripts present in individual cells,

facilitating the identification of cell types and states associated with
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immunotherapy response (97, 98). The scRNA-seq technology allows

for the comprehensive analysis of cellular transcriptomes, facilitating

the identification of distinct immune cell subsets and their gene

expression patterns correlated with immunotherapy response (99).

Furthermore, this technique provides insights into the dynamic

changes within the tumor microenvironment during

immunotherapy, aiding in the understanding of mechanisms

underlying treatment response (99). Recently, multiple studies have

reported utilized scRNA-seq to explore immune cell subset

infiltration and regulation changes pre- and post-mRNA vaccine

administration to understand therapeutic response and analyze

underlying mechanisms to determine mRNA vaccine efficacy. With

further advancements in technology and deeper applications, scRNA-

seq technology holds the promise of providing valuable insights into

mRNA cancer vaccine efficacy detection.

Recently, the circulating tumour DNA (ctDNA) test has the

advantages of sensitivity, flexibility, repeatability, and safe gain

much attention to help the evaluation of treatment responses, and

the application of ctDNA detection in monitoring mRNA cancer

vaccine therapeutic response is a worthwhile attempt (100).

Accumulating evidence suggests that changes in ctDNA levels

during treatment compared to baseline can serve as a valuable

biomarker for stratifying patients as molecular responders or

nonresponders and distinguishing those with a favorable

prognosis, especially those displaying stable disease according to

RECIST v1.1 criteria (101). Palmer et al. investigated the utility of

ctDNA as a potential biomarker for monitoring therapeutic

responses to mRNA cancer vaccines (70). Their study

demonstrated that a decrease in ctDNA levels among patients

undergoing treatment was positively correlated with prolonged

overall survival, thereby underscoring ctDNA’s potential as a

promising biomarker for predicting treatment response (70). The

future exploitation of efficacy evaluation system integration of

immunologic and radiologic endpoints, the establishment of

biomarkers, and standardization of evaluation protocols is needed

to develop in the future, which will be necessary to realize the full

potential of this promising technology in the fight against cancer.
6 Conclusions

Altogether, mRNA cancer vaccines present a promising new

approach to anticancer therapies with both opportunities and

challenges. The highly personalized and specific nature of this

technology offers tremendous potential for precision medicine in

the fight against cancer. However, further clinical trials are

necessary to fully establish the safety and efficacy of mRNA

cancer vaccines and additional preclinical studies are warranted

to explore the combined use of mRNA cancer vaccine and

other anticancer therapies. Additionally, addressing issues

such as tumoral heterogeneity, routes of administration and

development of methods to assess the efficacy processes will be

critical for advancing this technology toward meaningful clinical

outcomes. With continued research and investment, mRNA

cancer vaccines hold great promise as a transformative therapy

for cancer patients.
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