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450 million years in the making:
mapping the evolutionary
foundations of germinal centers

Hanover Matz*† and Helen Dooley

Department of Microbiology and Immunology, Institute of Marine and Environmental Technology,
University of Maryland School of Medicine, Baltimore, MD, United States
Germinal centers (GCs) are distinct microanatomical structures that form in the

secondary lymphoid organs of endothermic vertebrates (i.e., mammals and

some birds). Within GCs, B cells undergo a Darwinian selection process to

identify clones which can respond to pathogen insult as well as affinity mature

the B cell repertoire. The GC response ultimately generates memory B cells and

bone marrow plasma cells which facilitate humoral immunological memory, the

basis for successful vaccination programs. GCs have not been observed in the

secondary lymphoid organs of ectothermic jawed vertebrates (i.e., fishes,

reptiles, and amphibians). However, abundant research over the past decades

has indicated these organisms can produce antigen specific B cell responses and

some degree of affinity maturation. This review examines data demonstrating

that the fundamentals of B cell selection may be more conserved across

vertebrate phylogeny than previously anticipated. Further, research in both

conventional mammalian model systems and comparative models raises the

question of what evolutionary benefit GCs provide endotherms if they are

seemingly unnecessary for generating the basic functional components of

jawed vertebrate humoral adaptive immune responses.

KEYWORDS
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Introduction

B cells are the functional centerpiece of humoral adaptive immunity in jawed

vertebrates. During the immune response, the host immune system selects B cell clones

with B cell receptors (BCRs)/immunoglobulins (Igs) that recognize immunogens or

antigens. These clones will proliferate and differentiate into antibody-secreting plasma

cells, resulting in protective antibody titers that circulate in the blood and penetrate tissues

to clear offending pathogens. In mammals and birds this response is facilitated by

specialized microanatomical structures known as germinal centers (GCs). Over the

course of a humoral response, GCs mediate maturation of peripheral antibody binding

affinity (1, 2) and export effector cell types that generate long term immunological memory,

namely long-lived bone marrow plasma cells (BMPCs) and memory B cells (MBCs) (3, 4).
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GCs form in the secondary lymphoid organs (SLOs) after

cognate B cells and T cells recognize antigen and interact at the

follicular border (5, 6). Several functional characteristics define

the GC reaction. B cells segregate into two poles or zones of the

GC: the dark zone (DZ) containing cells known as centroblasts, and

the light zone (LZ) containing cells known as centrocytes (7, 8).

This compartmentalization is established by expression of specific

chemokines and chemokine receptors. GC B cells expressing the

receptor CXCR4 migrate to the DZ by sensing CXCL12 produced

by stromal cells, while B cells expressing CXCR5 migrate towards

CXCL13 produced in the LZ (7). Within the DZ B cells proliferate

and express activation induced cytidine deaminase (AICDA) which

mediates somatic hypermutation (SHM) of Ig variable (V) regions

(2, 9). These clones can then exit the DZ and enter the LZ to

undergo selection against antigen presented on the surface of

follicular dendritic cells (FDCs) (7, 10). FDCs retain non-

degraded antigen in immune complexes (ICs) (10) which preserve

the non-linear epitopes BCRs can recognize. If SHM results in BCRs

with increased binding affinity, the corresponding GC B cell clones

can more efficiently extract antigen from the surface of FDCs (11,

12) and present antigenic peptides to T follicular helper (Tfh) cells

present in the GC (13). Tfh cells supply signals that promote the

survival of higher affinity clones (14, 15). Thus, through iterative

rounds of proliferation/SHM and Darwinian selection, the GC

reaction both identifies B cells which can bind antigens and

supports affinity maturation of the polyclonal antibody response.

Bona fide GCs have only been observed in the SLOs of

endothermic jawed vertebrates (mammals and birds); no

ectothermic vertebrates studied have histologically observable

GCs (16). The absence of GC structures in ectothermic

vertebrates would suggest these taxa are incapable of generating

effective B cell responses. Indeed, affinity maturation of antibodies

in ectothermic vertebrates appears limited (approximately 10-fold

maximum increase) (17–20) compared to endotherms (>100-fold

increases) (1). Despite this, many studies demonstrate that

ectothermic vertebrate antibody titers increase in an antigen-

specific fashion in response to immunization or pathogen insult

(18, 20–23), indicative of B cell clonal selection. AICDA-mediated

SHM of Igs is also found in all jawed vertebrate lineages (20, 24–27),

demonstrating a key role for mutation of BCRs in adaptive

immunity. Finally, there is evidence for secondary recall

responses in ectothermic jawed vertebrates (21, 28–30), indicative

of B cell memory (although recall titers do not always exceed those

of the primary response). Indeed, in some taxa immunological

memory has been shown to persist for significant periods (>8 years)

after primary exposure (31). Together these results demonstrate

that ectothermic jawed vertebrate B cell responses are functionally

protective in the absence of true GCs, even if affinity maturation is

not as robust.

Interestingly, many functional characteristics deemed integral

to mammalian B cell responses have since been shown to develop

independently of the GC reaction. B cell clones which have

undergone class switch recombination (CSR) of Ig isotypes, once

believed to occur primarily within the GC, have been identified

prior to GC-entry (32). Studies in mice indicate that affinity

maturation of antibodies can proceed without GCs (33), and that
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extrafollicular B cell responses can facilitate both selection and

affinity maturation (34). Finally, some evidence suggests that GCs

may not be necessary for generating long-lived BMPCs (35, 36), and

certainly memory B cells can be produced in a GC-independent

fashion (37). Thus, if GCs are unnecessary for affinity maturation

and immunological memory, and if ectothermic vertebrates can

seemingly produce protective humoral responses without GCs, why

did endothermic vertebrates evolve these intricately organized

structures of B cell selection?

This review will examine what is known about B cell selection

sites in jawed vertebrate lineages outside of mammals. Comparisons

across taxa show that many fundamental components of the

mammalian GC response are more conserved across jawed

vertebrate phylogeny than previously appreciated.
Mammals: germinal centers
are forever
Our understanding of the tissue architecture which supports B

cell selection in mammals is derived primarily from studying the

SLOs of mice (Mus musculus), specifically the C57BL/6 laboratory

strain. The primordial SLO is the spleen, where antigen collects

from the circulatory system and is brought into contact with the

major cellular participants of the adaptive immune response: B cells,

T cells, and antigen presenting cells (APCs). The spleen is present in

all jawed vertebrates; in contrast, lymph nodes as SLOs for

screening antigen in the afferent lymph are only observed in

mammals and, reportedly, at least some avian species (38).

Broadly, splenic immune architecture increases in complexity

from basal jawed vertebrates, such as cartilaginous fishes, to

those, like mammals, that emerged more recently (Figure 1)

(reviewed in (39)). While the mouse spleen is not representative

of every aspect of SLO architecture in mammals, or even exactly the

same as the human spleen (reviewed in 40), it provides a good

foundation for understanding mammalian B cell selection.

The spleen consists of red pulp and white pulp regions. Immune

cells are primarily localized in the white pulp. The red pulp filters

aged and dead red blood cells, and helps transport antigen to the

white pulp (reviewed in (40)). The mouse splenic white pulp is

demarcated from the red pulp by the marginal zone (Figure 1). The

marginal zone contains multiple cell types that participate in

antigen trafficking, including innate-like marginal zone B cells,

marginal zone macrophages, and marginal metallophilic

macrophages (41). The white pulp is permeable to small (<65

kDa) molecules, but larger antigens must be transported across

the marginal zone to concentrate with cognate B and T cells (42).

Embedded within the mouse white pulp are B cell follicles

surrounded by a defined T cell zone, also known as the

periarteriolar lymphoid sheath (PALS). Maintenance of the T cell

zone is controlled by expression of the chemokine receptor CCR7

and corresponding ligands CCL19 and CCL21 produced by stromal

cells (43, 44). B cells are localized to the B cell zone by expression of

the chemokine receptor CXCR5 and its corresponding ligand

CXCL13, produced by FDCs to maintain the structure of the
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follicle (45, 46). FDCs are specialized APCs derived from a

nonhematopoietic precursor (47), are dependent on LTa1b2
signaling (48, 49), and express the cellular adhesion molecules

VCAM-1 and ICAM-1, plus complement receptors CR1 and

CR2 (50, reviewed in 51). Thus, the mammalian splenic

architecture maintains clearly defined B and T cell zones

separated from the surrounding red pulp in which B cell selection

is orchestrated (Figure 1).

B cell selection occurs when B cells recognize their cognate

antigens, migrate to the border of the B and T cell zones, receive T
Frontiers in Immunology 03
cell help, then proceed to form GCs in the B cell follicles (5, 6). It is

within these specialized structures that four major processes occur:

1. Segregation of B cell clones into distinct functional zones based

on chemokine receptor expression, 2. Presentation of nondegraded

antigen in ICs by specialized APCs to B cells, 3. Proliferation of

activated B cells and SHM of Ig V regions mediated by AICDA, and

4. Co-stimulation of B cells by Tfh cells. The combination of these

processes results in Darwinian selection of antigen-specific B cells

that subsequently affinity matures the peripheral antibody response.

Mammalian B cells can express multiple Ig heavy (H) chain isotypes
FIGURE 1

Evolution of splenic white pulp in jawed vertebrates. Increasing complexity in the organization of adaptive lymphocytes is observed from
cartilaginous fishes to mammals and birds. The central tree represents the timeline of jawed vertebrate evolution; major branch points when
taxonomic groups diverged from a common ancestor are indicated as millions of years ago (mya). Each jawed vertebrate lineage is represented
adjacent to its branch by a depiction of the predominant comparative model species. Cell types and structures are annotated in the key.
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serving different effector functions: IgM, secreted as a high avidity

pentamer; IgD, an enigmatic isotype expressed on the surface of

naïve B cells; IgG, with various subclasses depending on the species;

IgA, secreted as a dimer at mucosal barriers; and IgE, typically

associated with defenses against helminth infections (reviewed

in 52).

While placental mammals (Eutheria) arose ~160 million years

ago (mya) (53), the ‘mammalian model’ of B cell selection is built

upon ~500 million years of prior jawed vertebrate evolutionary

history. Indeed, while many features of the mammalian GC reaction

were long assumed to be exclusive characteristics, examination of

other jawed vertebrate lineages reveals analogous features,

suggesting their origin in a jawed vertebrate ancestor.
Aves: you only evolve germinal
centers twice

Birds (Aves), the other vertebrate lineage to have evolved true

endothermy, also exhibit specialized GC-like structures for B cell

selection in their SLOs. Modern birds diverged from a common

ancestor with other jawed vertebrates (specifically Reptilia) ~200

mya (54). While their SLO architecture shares similarities with

mammalian white pulp, there are key anatomical differences in the

organization of their lymphocyte zones.

The majority of our (limited) understanding of avian B cell

selection is derived from studying the chicken (Gallus gallus

domesticus) spleen, although there are reports that lymph nodes may

be present in ducks (Anas platyrhynchos domesticus) (38). The chicken

spleen contains defined lymphocyte regions, but they are not

demarcated by a marginal zone as in the mouse spleen (Figure 1). A

PALS surrounding the central arterioles contains T cells as well as

reticular cells and macrophages (55). Adjacent to the PALS is a peri-

ellipsoid sheath (PELS) at the termination of the splenic arterioles. This

PELS region primarily contains B cells (55), and it is equivalent to the B

cell follicles of the mammalian spleen. Between the PALS and PELS are

additional white pulp regions containing observable lymphocytes,

presumed to be a mixture of B and T cells (55).

Immunization with antigen produces GCs in the chicken spleen

(55–57); these begin to form 3-4 days after immunization and are

fully formed and discernable approximately 6-7 days post-

immunization (55–57). While mammalian GCs form within the B

cell follicle, chicken GCs form in the white pulp region between the

PALS and PELS (55). In contrast to the mammalian GC which is

divided into two poles, establishing the DZ and the LZ, Yasuda et al.

showed the circumference of the chicken GC is the equivalent of the

mammalian DZ (Figure 2). BrdU+ labeling in immunized chickens

reveals that highly proliferative cells are localized around the

outside of the GC in a ring-like formation. These cells are

negative for surface Ig light (L) chain or IgM, similar to

mammalian centroblasts in the DZ (55). The central region of the

chicken GC is believed to be equivalent to the mammalian GC LZ,

containing Ig+ positive cells as well as DCs able to trap ICs (55).

CD3+ T cells are also observed within the chicken GC,

primarily within the central LZ (55). Observations suggest that
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the proportion of CD3+ T cells does not change within the chicken

GC over the course of an immune response, but there is evidence for

CSR and expansion of IgY+ (the avian ortholog of mammalian IgG)

B cells (56). Immunization with labeled human serum albumin

demonstrates that protein antigen begins to localize to the chicken

white pulp within 2-3 days, but only becomes present within GCs 4-

7 days after immunization (57). White et al. hypothesized that

antigen localization in GCs was dependent on the formation of

antibody-antigen ICs, as the increase in GC-localized antigen

correlated with an increase in circulating antigen-specific

antibody titers (57). In this study, antigen was retained in GCs up

to 42 days post-immunization. The antigen-bearing cells within

chicken GCs are believed to be true FDCs because hematopoietic

lineage negative (CD45-) cells expressing surface VCAM-1, ICAM-

1, and Ig (presumably as ICs) have been characterized (58).

However, it remains to be confirmed if chicken FDCs are truly of

a non-hematopoietic origin equivalent to mammalian FDCs.

The appearance of GCs in both mammals and birds is most

likely a result of convergent evolution. No ectothermic vertebrates

possess GCs, and birds share a more recent common ancestor with

reptiles than with mammals, diverging approximately 300 mya (54).

The absence of evidence for either GCs or endothermic metabolism

before this divergence suggests these adaptations evolved at least

twice in jawed vertebrates.

While different in cellular organization, avian GCs are

functionally equivalent to mammalian GCs in their ability to

select antigen-specific B cell clones. Increases in antigen-specific

antibody titers are observed after immunization in birds (57, 59).

Comparisons of antibody responses in rabbits versus chickens/

ducks demonstrates that the avian B cell selection system can also

increase the affinity of the polyclonal B cell repertoire (60, 61). In

some animals, ongoing affinity maturation of the repertoire is

observed after 50+ days, but this may be dependent on antigen

availability (60). The avian Ig H isotypes are IgM and IgY, which

comprise the majority of the primary and secondary responses,

respectively, as well as IgA (reviewed in 62).

The endothermic jawed vertebrates thus define a paradigm of B

cell adaptive immunity in which GCs are established early (2-4

days) after immunization, antigen-specific antibody titers increase

relatively quickly, and affinity maturation results in significant

(>100-fold) increases in antigen binding affinity.
Reptiles: PALS and PELS are not
enough (for robust affinity maturation)

Traveling further down the vertebrate evolutionary tree brings

us to the non-avian reptiles (turtles, crocodilians, squamates, and

tuatara), which diverged from other jawed vertebrates ~300 mya

(54). Reptiles are the lineage with which birds most recently shared

a common ancestor, so it is not surprising that the reptilian splenic

structure closely resembles that of birds. Reptilian white pulp

contains defined PALS and PELS regions (Figure 1). As examined

in the Caspian turtle (Mauremys caspica), the inner region of the

PELS appears to consist of Ig+ cells surrounded by an outer region
frontiersin.org
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of Ig- cells (63), presumably B cells and T cells respectively. The

PALS appears to consist primarily of T cells (63). Variation in this

microarchitecture is observed across various reptile species, with

squamates (lizards and snakes) described as having less complex

white pulp compared to chelonians (turtles) (63–65). Antigen-

trapping DC-like cells have been observed in the white pulp of

the reticulated python (Malayopython reticulatus) (64). Reptilian

splenic white pulp also displays a ‘seasonality’ correlated to seasonal

changes in thymic structure. The thymus, the primary lymphoid

organ for T cell development in jawed vertebrates, undergoes

involution seasonally in some reptiles, resulting in variations in

the splenic microarchitecture (66, 67). Thymectomy (68) and adult
Frontiers in Immunology 05
thymic involution (69) also result in reduced cellularity of the PALS

region of the reptilian spleen, further evidence that this region is an

organized T cell zone. While reptiles have organized B and T cell

zones, they do not form observable GCs in their white pulp (63, 64).

Despite this, reptiles are capable of generating antigen-specific

Ig responses upon pathogenic infection or immunization (70–73).

Evidence also exists for isotype switching and SHM in reptilian Igs

(24). However, these antibody responses are slower than those

observed in mammals and birds, with antibodies detected around

one week post-immunization but titers typically not peaking until

6-8 weeks (22, 74, 75). True anamnestic immune responses have not

been widely documented in reptiles. Reptilian antibody titers
FIGURE 2

Comparison of GC structures in mammals and birds versus follicle-based selection in sharks. GCs segregate antigen-specific clones from the wider
naïve B cell pool in the follicle, thus DZ and LZ B cells are predominantly derived from antigen-binding clonotypes. In contrast, B cell selection
occurs across the entire follicle in sharks, with the central ‘LZ’ equivalent containing both ‘LZ’-like B cells (presumably antigen-specific) undergoing
selection and ‘bystander’ B cells (non-antigen binding). This is hypothesized to produce a more ‘permissive’ but less efficient selection environment
than found in GCs, and it may represent the primordial selection environment of the common jawed vertebrate ancestor (JVA). Cell types are
annotated in the key.
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typically neither increase in magnitude nor attain peak levels more

rapidly after secondary exposure to antigen (70, 72, 74, 76).

Maturation of the binding affinity of the reptilian antibody

response has also not been reported (70, 74). However, circulating

antigen-specific antibody titers can persist in reptiles for significant

periods after immunization (70, 71, 77). Origgi et al. investigated

secondary challenge of Greek tortoises (Testudo gracea) with

tortoise herpesviruses, reporting serum neutralizing antibody

titers that may be indicative of a shorter latency period after re-

exposure to the pathogen (22, 72). However, due to the absence of

data indicating whether these antibody titers had returned to

baseline prior to secondary challenge, it is not possible to

definitively determine if these results prove true humoral

immunological memory in this species. The Ig H chain isotypes

expressed by reptilian B cells are IgM, IgD, IgY, the functional

equivalent of mammalian IgG, and IgA depending on the species

(reviewed in 78). Additionally, some reptile species have a unique

isotype, IgD2, which is a chimera of IgD- and IgA-related constant

domains and may play a role in mucosal protection (79, 80).

There is a paucity of literature on reptilian immune responses,

making it difficult to draw definitive conclusions about this lineage.

However, from the available data it seems that reptilian antibody

responses lack the robust affinity maturation observed in

endotherms as well as the rapid increases in secondary antibody

titers. The slower humoral response in reptiles has been attributed

to the lower core body temperature of ectotherms, but increasing

the ambient temperature to 37°C did not alter the kinetics of the

antibody response in turtles (70). It thus appears that while reptiles

possess distinct splenic microarchitecture, the absence of GCs

deprives their immune system of a selective environment capable

of significantly maturing their antibody repertoires over the time

periods studied.
Amphibians: on double-duty antigen
presenting service

Modern amphibians last shared a common ancestor with the

other vertebrate groups ~350 mya (54) and represent the divergence

point where tetrapods emerged and began to evolve terrestrial

lifestyles. The best studied model of amphibian immunity is the

African clawed frog (Xenopus laevis). In mammals, B cell follicles

form around the central arterioles of the spleen during ontogeny

and are later dispersed by the accumulation of T cells that form the

PALS regions, establishing the mature splenic architecture. In

Xenopus, B cell follicles also surround central arterioles, but there

is no displacement to form observable T cell zones during

development (Figure 1). Instead, the follicles are surrounded by a

double layer of elongated cells termed the ‘Grenzschichtmembran

of Sterba’ (GS) (81). T cells are dispersed outside this GS, but after

immunization are recruited to the borders of the white pulp,

presumably from the red pulp and peripheral circulation (82).

The T cells form a corona surrounding the B cell follicle, and B

cell-T cell contacts can be observed at the white pulp border (82).

Thymectomy depletes lymphocytes from the red pulp and results in
Frontiers in Immunology 06
abolition of this T cell ring (83). AICDA is expressed in the follicles

of the spleen after immunization (84), indicative of SHM. However,

no GC-like structures or clusters of proliferating (BrdU+) cells have

been observed in the spleen of Xenopus (85).

Amphibians are the first vertebrate class to have evolved

canonical Ig CSR. The Xenopus laevis genome contains canonical

switch (S)-regions to facilitate AICDA-mediated recombination

(86). These S-regions can functionally replace mouse S-regions

for CSR (87), and Xenopus AICDA can facilitate CSR in AICDA-

deficient mammalian cells (88). It is possible that this adaptation co-

evolved with the closer association of B cell-T cell interaction

observed at the borders of the amphibian white pulp to facilitate

efficient isotype switching. The amphibian Ig H chain isotypes as

identified in Xenopus are IgM, IgD, IgX which plays an important

role in mucosal immunity, IgY, and IgF (reviewed in 78).

APCs have been identified in amphibians that appear to fulfill the

functional roles of both conventional dendritic cells (cDCs), presenting

peptide antigens to T cells, and FDCs, presenting non-degraded

antigen in ICs to B cells. These cells, first identified in Xenopus laevis

and thus termed ‘XL’ cells, have the morphological characteristics of

cDCs, including long cytoplasmic processes (89), and appear to be

capable of trapping antigen at their plasma membrane (90). Following

immunization with human IgG, antigen was found to localize at the

perimeter of the Xenopus laevis white pulp, in a similar position to the

XL cells (91). This led to the hypothesis that XL cells may be

responsible for antigen trafficking and presentation in amphibian

white pulp. This hypothesis was subsequently confirmed by Neely

and colleagues who showed that in Xenopus immunized with

fluorescent R-phycoerythrin (PE), antigen could be observed at the

perimeter of the white pulp, where T cells subsequently colocalized

(82). XL cells express bothMHC class II and the T cell chemoattractant

CCL19, indicative of a role in antigen presentation to T cells, but they

are also capable of native antigen retention and presentation, exhibit

positive surface staining for amphibian Igs, and express the B cell

chemoattractant CXCL13 (82). Collectively, these results suggest XL

cells may fulfill a ‘double-duty’ antigen presenting role for both T cells

and B cells, preceding the evolution of canonical FDCs in endotherms.

The amphibian B cell response has similar kinetics to the

reptilian response. IgM predominates the primary response for

the first week or so, with IgY titers increasing approximately two

weeks post-immunization, consistent with antigen-driven CSR (82).

In Xenopus infected twice with the ranavirus Frog Virus 3 (FV3),

FV3-specifc IgY titers were detectable around one week after the

second infection, peaked at ~3 weeks, and remained detectable up to

4 weeks post-infection (92). These anti-FV3 antibodies could

neutralize virus, and adult frogs challenged 15 months after

infection displayed an anti-FV3 IgY memory response (93).

Xenopus previously exposed to Batrachochytrium dendrobatidis, a

chytrid fungus, exhibited pathogen-binding IgM, IgY, and IgX in

mucus secretions (94), indicative of a role for Igs in amphibian

mucosal immunity. However, the Xenopus IgY antigen-specific

response to the hapten dinitrophenyl (DNP) displayed limited

heterogeneity and affinity maturation compared to mammalian

responses, hypothesized to be a result of ineffective B cell

selection in the absence of GCs (20).
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The amphibian adaptive immune system demonstrates a

crossroads in evolution, where closer association of B cells and T

cells in the splenic white pulp appears to be correlated with the

emergence of bona fide CSR. ‘Double-duty’ APCs, capable of

presenting antigen to both B cells and T cells, may define

ectothermic B cell selection prior to the evolution of canonical

FDCs and GCs.
Teleosts: live and let macrophage

The most diverse lineage of vertebrates on Earth is by far the

bony fishes (Osteichthyes), dominated by the ray-finned fishes

(Actinopterygii) containing the infraclass teleosts (Teleostei). Ray-

finned fishes diverged ~420 mya, with teleosts separating ~300 mya

(95). Much of our knowledge of bony fish immunity has come from

studying this group. The teleost spleen diverges markedly from the

microarchitecture observed in the previously described jawed

vertebrate taxa. There are regions of red pulp and white pulp, but

lymphocytes are distributed throughout both without identifiable B

cell follicles or major regions of B cell/T cell organization (96, 97)

(Figure 1). Instead, following immunization or infection,

lymphocytes appear to aggregate around pigmented macrophages,

producing foci in the spleen known as melanomacrophage centers

(MMCs) (96, 98–100). MMC presence and size appears correlated

with infection status in bony fishes, and thus MMCs have been

utilized to asses health in commercially relevant fish species (101).

Melanomacrophages are highly phagocytic and will uptake injected

materials, such as microspheres or bacteria (102, 103). There is

evidence that antigen can be trapped in ICs in teleost spleen,

although it remains unclear if these ICs are primarily retained by

the MMCs or splenic ellipsoids (96, 104, 105). However, AICDA

expression has been detected in cells interspersed within MMCs,

suggesting a role for MMCs in the adaptive response (106).

Additionally, cells within these clusters express Ig H chains with

others expressing T cell receptors and CD4 (106).

Research in zebrafish (Danio rerio), the classic teleost model

organism, by Waly et al. indicates that MMCs may function as a

selective environment for B cell responses. Waly et al. found that

individual MMCs display low BCR clonal diversity with expansion

of oligoclonal lineages, suggesting proliferation of selected B cell

clonotypes (107). They also found higher replacement to silent

mutation ratios (R/S) in the complementarity determining regions

(CDRs) of zebrafish Ig VDJ repertoires compared to the framework

regions (FWR), indicative of antigen-driven selection favoring

mutations in the antigen-binding region of Ig V sequences (107).

Finally, they suggest that MMCs in the teleost spleen may trap and

retain antigen (107) similar to mammalian FDCs. However, the role

of MMCs as the de facto APC for B cell antigen retention and

presentation in fish remains debatable. It remains possible that

MMC formation is a physiological adaptation only tangentially

associated with teleost immune responses (108). Further, whether
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such as CXCL13, or if they can also present antigen to T cells like

Xenopus XL cells, remains to be determined.

There is an extensive body of literature examining teleost antigen-

specific antibody responses, particularly in the context of vaccination

against pathogens which threaten commercial aquaculture species

(reviewed in 109). The teleost Ig H chain isotypes are IgM, IgD, and

IgT (reviewed in 110). IgM responses dominate the teleost serum, while

IgT is functionally equivalent to mammalian IgA, playing an important

role in mucosal defense (111). Antigen-specific antibody titers can be

detected in teleosts anywhere from 2-4 weeks post-immunization, with

titers peaking at approximately 10-12 weeks post-immunization (18,

112). Depending on the immunizing antigen used, secondary responses

can be detected in teleosts indicative of immunological memory (28,

113, 114). Affinity maturation of peripheral antibody responses has

been detected in bony fishes. Cain et al. reported a 2-3 fold increase in

antibody-antigen binding in immunized trout (18). Kaattari et al.

demonstrated that this affinity maturation results from the emerging

dominance of high affinity subpopulations of antibody later in the

response (19), although it is not certain if this is a result of SHM of

initially selected clonotypes or the expansion of newly selected

clonotypes later in the response. The high affinity subpopulations

persist longer and achieve higher titers than low affinity

subpopulations (115). This shift to high affinity subpopulations was

also observed in channel catfish (Ictalurus punctaus), resulting in

affinity maturation of the antigen-specific antibody response (112).

Considering the vast diversity of teleost species care must be

taken not to generalize for the whole lineage using data obtained

from only a few species. Indeed, the radiation of teleosts has resulted

in extreme losses of adaptive immune function in several species.

Genomic studies in Gadiformes (cod, haddock, pollock etc.)

demonstrate a loss of both MHC class II and CD4 genes (116,

117), nullifying canonical T cell dependent antibody responses in

this group. Additionally, cod AICDA is catalytically inactive,

severely limiting secondary antibody diversification (118). The

evolution of unique reproductive strategies also appears to have

influenced the loss of immune genes in other bony fishes. Several

genes of the MHC II pathway are lost in pipefishes (syngnathids)

which exhibit male pregnancy (119), and some species of anglerfish

(Lophiiformes), a lineage that has evolved extreme forms of sexual

parasitism, have concomitantly lost many aspects of canonical

adaptive immunity (120). These findings in teleosts underscore

the malleability of adaptive immunity when confronted with

singular evolutionary pressures.

While study of additional (varied) bony fish species will certainly

improve our knowledge, current evidence supporting MMCs as the

functional analogues of mammalian GCs in the bony fishes is far from

conclusive. However, based on data from the other vertebrate lineages

and recent studies performed in the more evolutionary ancient

cartilaginous fishes (below), it is very unlikely that MMC-based

selection represents the ‘primordial’ state found in the jawed

vertebrate ancestor, but is more likely a bony fish-specific derivation.
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Cartilaginous fishes: for B cell
follicles only

Cartilaginous fishes (Chondrichthyes) are the oldest extant

taxonomic group of vertebrates with Ig-based adaptive immunity.

Chondrichthyes emerged in the early Silurian period ~450 mya

(121, 122) and is divided into two subclasses: Holocephali (chimeras

or ratfishes) and Elasmobranchii (sharks, skate, and rays). The

elasmobranchs have been the focus of most studies on cartilaginous

fish immunity; in particular, the little skate (Leucoraja erinacea) and

nurse shark (Ginglymostoma cirratum) have been key model

organisms for this lineage.

The tissue architecture of the nurse shark spleen reflects the

basal position of this lineage in phylogeny. There are identifiable red

pulp and white pulp regions, but no marginal zone or border

surrounding the white pulp (123) (Figure 1). During

development, B cells begin to populate the spleen around the

central arterioles, forming nascent follicles (124). In adult

animals, Ig+ B cells populate the follicles of the white pulp, and

Ig secreting plasma cells are identifiable in the red pulp (125). Cells

with dendritic-like processes have also been observed in nurse shark

spleen which express MHC class II and may accumulate antigen on

their plasma membranes (39, 124). No identifiable T cell zones are

present in the shark spleen, and up until recently it was unclear how

T cells were organized in cartilaginous fish SLOs. In situ

hybridization experiments revealed T cells are found in small

aggregates within the red pulp, external to the B cell follicles

(126). Visually discernable GCs have not been found in the shark

spleen (16, 123).

Our laboratory recently provided the first evidence for how B

cell selection may be orchestrated within the cartilaginous fish SLO.

Fluorescence in situ hybridization experiments revealed that the

splenic follicles of immunized nurse sharks contain Ig+/AICDA

+/Ki-67+ cells around the circumference of the white pulp (127)

(Figure 2). CD3ϵ+ T cells were identified in aggregates associated

with the borders of B cell follicles, as well as distributed within the

follicles themselves (127). Single nuclei sequencing of nurse shark

spleen samples revealed B cells with centrocyte- and centroblast-like

gene expression signatures (127). Additionally, we identified a

subset of T cells that expressed genes associated with mammalian

Tfh cells (127). Finally, we demonstrated that nondegraded antigen

in the form of fluorescent R-PE can be presented in the center of B

cell follicles, and the Ig V regions of BCR sequences isolated from

follicles show higher R/S ratios in the CDRs compared to FWRs

(127). Collectively, these results suggest shark B cells undergo

selection against antigen in the center of follicles, possibly

receiving co-stimulation from Tfh-like cells. They then migrate to

the outer edge of the follicle to proliferate/hypermutate, and

eventually exit the follicle to differentiate into antibody-secreting

plasma cells. Of note, the organization of the immunized shark B

cell follicle with proliferating cells around the circumference

resembles the structure of the avian GCs identified by BrdU+

staining (55) (Figure 2).

The presence of nondegraded antigen retained in shark B cell

follicles suggests that the paradigm of ‘double-duty’ presenting cells
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not been identified in any ectothermic vertebrates, but more

definitive work is necessary to determine if cartilaginous fishes

have APC populations capable of presenting antigen to both T cells

in an MHC class II dependent fashion, as well as B cells in the form

of captured ICs. Certainly, the accumulating data demonstrates that

the antigen presenting function of FDCs was present in jawed

vertebrates long before the cell type emerged in mammals (82, 127).

Despite the lack of complexity in cartilaginous splenic

architecture compared to mammals, the ‘B cell follicle only’

system still supports robust humoral immunity. Sharks have 3 Ig

H chain isotypes: IgM, expressed in pentameric (pIgM) and

monomeric (mIgM) forms; IgW, the ortholog of mammalian IgD;

and Ig new antigen receptor (IgNAR), an H-chain only isotype that

does not associate with L chain (reviewed in 128). Early antibody

responses are dominated by low affinity, high avidity pIgM (21).

After immunization, antigen-specific mIgM and IgNAR titers

increase for up to 2-3 months and persist for long periods (21).

Shark Ig genes mutate at very high rates (26, 129), and both mIgM

and IgNAR undergo affinity maturation (17, 21). Humoral

immunological memory has been described in nurse shark up to

8 years after primary exposure (31).

Even in cartilaginous fishes, a lineage that diverged very early in

jawed vertebrate evolution, key hallmarks of GC-based B cell

selection are present in the SLO.
No time for slow selection—why did
endotherms evolve germinal centers?

From the studies highlighted above, two conclusions emerge.

First, SLO architecture increases in complexity as one moves

forward in jawed vertebrate evolution, culminating in the

emergence of GCs in birds and mammals (Figure 1). The

exception to this paradigm is the bony fishes, which lack

discernable white pulp or organized lymphocyte zones. Second,

the major functional characteristics of humoral immunity,

specifically the capacity to produce antigen-specific antibody

titers, to affinity mature antibody repertoires, and to generate

secondary memory responses, are present in all jawed vertebrate

lineages to some extent. If these key immunological adaptations are

possible without GCs, it begs us to ask why did the specialized

microstructure of the GC evolve? Based upon current data it seems

that the emergence of GCs is not due to the presence of a more

‘advanced’ adaptive immune system in endothermic jawed

vertebrates. Rather, the convergent evolution of endothermic

metabolism in birds and mammals may have necessitated the

development of a more stringent B cell selection environment in

these lineages.

Cells able to present antigen to B cells are clearly present in

ectothermic vertebrates even if bona fide FDCs are not.

Interestingly, several lines of evidence demonstrate that some

mammalian cDCs can present membrane-bound antigen to B

cells (reviewed in 130). Specifically, the type 2 cDC subset (cDC2)

which localizes to the B-T cell border may exhibit ‘double-duty’
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abilities and present antigen to both B cells and T cells in mammals

(131, 132). Indeed, such cDCs could be the primordial system of

antigen display, with FDCs co-opting this role very late in jawed

vertebrate evolution.

Our recent work shows that intact antigen is widely distributed

across the center (and apparent LZ equivalent) of nurse shark B cell

follicles (127). Given that B cell division rates are almost certainly

slower at lower (i.e., exothermic) body temperatures and there is no

visible segregation of antigen-specific clones from the wider

population of B cells, we hypothesize that this reduces selection

pressure, facilitating the retention of lower affinity clones while also

supporting the production of an extensive and diverse memory B

cell pool (133). Such a permissive selection environment would

explain the delayed antibody responses and lower levels of affinity

maturation reported in cartilaginous fishes and other

ectothermic vertebrates.

In contrast, GCs in endotherms are founded by antigen-specific

B cell clones that have received T cell help. These B cells can divide

at a much faster rate at an endothermic core body temperature, and

so the selective environment becomes increasingly segregated from

the wider pool of non-specific clones. Further, only the FDCs at the

center of the LZ act as a long-term reservoir of intact antigen in

mice (134). Thus, it appears that the distinct microanatomical

structure of the GC intensifies selection pressures by increasing

competition for antigen and T cell help, thereby facilitating faster,

more efficient selection of higher affinity antigen-specific B cells in

endotherms. This would be evolutionary advantageous given that

the maintenance of warmer core temperatures also supports the

rapid proliferation of potentially infectious organisms (135–137),

and may be required in endothermic vertebrates to avoid

succumbing to pathogen infections before sufficient protective

antibody titers can be mounted (138).

However, ‘faster’ selection does not, on its own, appear to fully

explain the evolutionary advantage of GCs (138). While endotherms

attain peak antibody titers more quickly than ectotherms (138),

pathogens generally exhibit far shorter replicative cycles than the

host organisms they infect, whether endothermic or exothermic.

Influenza-like viruses, for example, infect a wide range of

endothermic and ectothermic vertebrate hosts and successfully

replicate at a variety of temperatures (139–141). While viruses in

ectotherms may replicate slower than in endotherms, surely those

pathogens which escape immediate control by the innate immune

system still pose a threat to host survival long before antibody

responses begin to peak. Under this lens, antibody-based adaptive

immunity would bestow little evolutionary advantage.

Rather, we propose that the initial selective advantage of

antibody-based adaptive responses was the immunological

memory conferred by antigen-experienced B cell clones. In this

scenario an ectothermic jawed vertebrate ancestor with a ‘slow-but-

permissive’ adaptive immune system could produce a diverse

memory repertoire capable of combating future pathogen

variants. Indeed, it has been suggested that the primordial role of

SHM was to further diversify the repertoire of antigen-specific

memory B cells (142). When endothermic metabolism emerged as

an adaptation it accelerated B cell division in SLO selective sites,
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quicker and more stringently. While not the driving force, a by-

product of this evolutionary process would be more rapid primary

responses and higher levels of affinity maturation, as observed in

endotherms. Indeed, a possible drawback of faster B cell selection is

immunodominance (reviewed in 143), leading to vaccine responses

predominantly directed towards undesirable epitopes. Restrictive

selection may also result in a low frequency of de novo clones

responding to heterologous antigens (144, 145), thus limiting the

final repertoire.

Understanding that the mammalian GC response is just an

accelerated version of the selection models in ectotherms suggests

that vaccine efficacy may be improved by modifying immunization

strategies. Indeed, strategies such as slow release of antigen (146) or

promotion of persistent GCs (147), mimicking the selection

environment/kinetics in ectothermic vertebrates, seem to generate

more diverse B cell responses better able to deal with

pathogen variants.
Conclusion

It is increasingly apparent that sophisticated B cell selection

mechanisms incorporating T cell help, SHM driven by AICDA, and

specialized cells capable of presenting native antigen emerged early

in jawed vertebrate evolution. As evolutionary pressures forced

more efficient selection of antigen-specific B cell clones, the

complexity of SLO tissue organization also increased to facilitate

the coordination of B cell, T cell, and APC interactions, culminating

in the appearance of GCs. While mammalian GC selection may be

more stringent, this may come at the cost of antigenic imprinting

and B cell immunodominance. New immunization strategies that

mimic the selective environment/kinetics of ectothermic vertebrates

may help in the fight against rapidly evolving pathogens such as

influenza, HIV, or human coronaviruses.
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