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Single-cell and bulk RNA
sequencing analysis of B cell
marker genes in TNBC TME
landscape and immunotherapy
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Objective: This study amied to investigate the prognostic characteristics of triple

negative breast cancer (TNBC) patients by analyzing B cell marker genes based

on single-cell and bulk RNA sequencing.

Methods: Utilizing single-cell sequencing data from TNBC patients, we

examined tumor-associated B cell marker genes. Transcriptomic data from

The Cancer Genome Atlas (TCGA) database were used as the foundation for

predictive modeling. Independent validation set was conducted using the

GSE58812 dataset. Immune cell infiltration into the tumor was assessed

through various, including XCELL, TIMER, QUANTISEQ, CIBERSORT,

CIBERSORT-ABS, and ssGSEA. The TIDE score was utilized to predict

immunotherapy outcomes. Additional investigations were conducted on the

immune checkpoint blockade gene, tumor mutational load, and the GSEA

enrichment analysis.

Results: Our analysis encompassed 22,106 cells and 20,556 genes in cancerous

tissue samples from four TNBC patients, resulting in the identification of 116 B

cell marker genes. A B cell marker gene score (BCMG score) involving nine B cell

marker genes (ZBP1, SEL1L3, CCND2, TNFRSF13C, HSPA6, PLPP5, CXCR4, GZMB,

and CCDC50) was developed using TCGA transcriptomic data, revealing

statistically significant differences in survival analysis (P<0.05). Functional

analysis demonstrated that marker genes were predominantly associated with

immune-related pathways. Notably, substantial differences between the higher

and lower- BCMG score groups were observed in terms of immune cell

infiltration, immune cell activity, tumor mutational burden, TIDE score, and the

expression of immune checkpoint blockade genes.

Conclusion: This study has established a robust model based on B-cell marker

genes in TNBC, which holds significant potential for predicting prognosis and

response to immunotherapy in TNBC patients.

KEYWORDS

B cell marker genes, TNBC, single-cell sequencing, cancer immunotherapy,
predictive score
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Introduction

Triple-negative breast cancer (TNBC) is a distinct subtype of

breast cancer characterized by the absence of estrogen receptor

(ER), progesterone receptor (PR) and human epidermal growth

factor receptor 2 (HER2) expression in immunohistochemistry (1).

Accounting for approximately 15–20% of all breast cancers, TNBC

exhibits aggressive clinical symptoms (2). Although chemotherapy

remains a major therapeutic method for metastatic TNBC; its

efficacy is limited, yielding a median overall survival time of 12-

18 months (2). Consequently, there is an urgent need for innovative

therapeutic strategies.

In recent years, immunotherapy has emerged as a promising

intervention, demonstrating prolonged survival in various solid

tumors (3–5). Notably, immune checkpoint inhibitor (ICI)

monotherapy in TNBC patients has shown response rates ranging

from 5% to 23% (6), while combined with chemotherapy, for early-

stage TNBC patients exhibit pathologically complete response rates

between 22% and 60% (7). Despite these advances, only a subset of

patients benefits from immunotherapy, highlighting the need for the

development of predictive models and the identification of novel

biomarkers to better anticipate treatment outcomes and prognosis.

Single-cell RNA sequencing (scRNA-seq) technology and

related data analysis methods has facilitated the exploration of

molecular characteristics of immune cells within the tumor

microenvironment (TME) (8). This unparalleled opportunity has

provided insights into cancer immunity, enabling the establishment

of genetic markers based on immune cell molecular characteristics

to predict immunotherapy outcomes in cancer patients (9, 10).

Recent research has demonstrated that tumor-infiltrating B

lymphocytes (TIL-Bs) in breast cancer, responding to B cell receptor

(BCR) activation and generating immunoglobulin (Ig) in vivo (11–13).

Thus, B cells may significantly influence the prognosis of breast cancer,

particularly in patients with immunogenic TNBC. Here, our study

aimed to conduct an integrated analysis of scRNA-seq data from

TNBC samples, identify B cell marker genes, and subsequently develop

a predictive model for accessing the prognosis of TNBC patients.
Methods

Data collection

Transcriptional RNA sequencing data from single-cell profiling

datasets of four TNBC tumor tissue (GSM4909281, GSM4909282,

GSM4909283 and GSM4909284; accessible at https://

www.ncbi.nlm.nih.gov/geo/) were acquired for the purpose of

investigating B cell marker genes. Concurrently, clinical profiles

and transcriptomic data were obtained from the Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.
Processing single-cell sequencing data

The single-cell sequencing data obtained from patients were

subjected to comprehensive analysis through the R software and
Frontiers in Immunology 02
related packages. Seurat objects were constructed following the

parsing of single-cell sequencing data sourced from TNBC

samples represented by GSM4909281 , GSM4909282 ,

GSM4909283, and GSM4909284. The DoubletFinder package

was applied to eliminate the cell doublets within the sample.

Exclusion criteria for cells of suboptimal quality are as follows:

1) the number of features exceeding 500 and falling below 6000, 2)

the mitochondrial genes expression below 10%, 3) the expression

of erythroid genes less than 5%. In order to integrate data from

mult iple samples , the software known as “harmony”

was employed.

The Uniform Manifold Approximation and Projection

(UMAP) method was adopted to reduce the number of

dimensions, displaying clustered cells with only two dimensions

on a map. The subpopulations of tumor-associated B cells were

determined by using the “SingleR” software as previous publications

indicated (14, 15). Marker genes for different cell types were

ascertained through Wilcoxon-Mann-Whitney test and the

“FindAllMarkers” function analysis. The criteria for filtering

marker genes of various cell types included a | log2 (fold change)

| > 1 and the adjusted P value less than 0.05.
Functional enrichment

The functional annotation of marker genes associated with

tumor-associated B cells was augmented through enrichment

analysis using the Gene Ontology (GO) and the Kyoto

Encyc lopedia of Genes and Genomes (KEGG) . The

c2.cp.v2023.2.Hs.symbols.gmt dataset from the MSigDB database

(https://www.gsea-msigdb.org/gsea/msigdb) was used for Gene Set

Enrichment Analysis (GSEA) to elucidate the biological processes

involved in the B-cell marker gene.
A predictive model of B cell marker gene

A predictive model for B cell marker gene expression in TNBC

was developed to predict TNBC prognosis. In the univariate COX

regression analysis, genes identified as B-cell markers were

incorporated. The least absolute shrinkage and selection operator

(LASSO) regression was performed to construct a penalty function,

effectively compressing the coefficients of variables and reducing

overfitting of the model caused by prognosis-related genes.

Subsequently, the outcomes from the multivariate COX

regression analysis were used to formulate a predictive B cell

marker gene score (BCMG score) model.

The formula is as follows:

BCMG   score = b1 *   Expr1 + b2 *   Expr2 +… + bn*Exprn

Here, Expr denotes the mRNA expression of the crucial gene, n

denotes the number of genes included in the model, and b
represents the associated regression coefficient determined in the

multivariate gene COX regression analysis. The data was then

classified into higher and lower- BCMG score groups based on

the median value of the BCMG score.
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To validate the model’s robustness, an independent third-party

validation set, GSE58812, was employed to assess and confirm the

predictive performance of the model.
Immune infiltration analysis

Based on the gene expression dataset of patients, the

CIBERSORT algorithm was conducted to determine the

magnitude of immune cell proliferation in each sample.

Spearman correlation analysis was performed to examine the

variations in immune cell infiltration between the two groups. A

single-sample GSEA was carried out to further assess the differences

in immune cell activity between the higher and lower- BCMG score

groups. Estimation techniques were implemented to determine the

differences of immune scores, stromal scores, overall scores, and

tumor purity between the two groups. Multiple tools, including

XCELL, TIMER, MCP counter, CIBERSORT, and CIBERSORT-

abs, were applied to establish a correlation between B cell marker

genes and immune cells.
Forecasting the patient’s response
to immunotherapy

Spearman test was used to analyze the correlation of expression

between model and immune genes. The TIDE score was

incorporated to evaluate the effectiveness of immunotherapy in

individual patients. Patients with lower TIDE scores indicated a

decreased risk of immunological escape, which suggested a higher

likelihood of effective immunotherapy. An online tool TIDE (http://

tide.dfci.harvard.edu/) was used to examine the immunotherapy

scores of each patient, and investigate the differences in

immunotherapy results between the higher and lower- BCMG

score groups.
Analysis of the tumor’s mutational burden

The raw data of the patient’s tumor mutations were obtained

and downloaded from the TCGA database. The “maftools”

package in R was used to generate waterfall graphs in

accordance with predefined specifications. This study also

further assessed the differences in tumor mutation burden as

well as predicted discrepancies between higher and lower-

BCMG score groups.
Statistics analyses

Kaplan-Meier method and the log-rank test were utilized for

survival analysis. Alternately, the Wilcoxon rank-sum test was

employed to compare the differences existing between the two

groups. R (4.1.2, available at https://www.r-project.org/) was

conducted throughout the entire data analysis process. P values of

less than 0.05 on both sides were defined as statistically significant.
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Results

Examination of single cells

The integration of single-cell sequencing data from four TNBC

patients was achieved using the “Harmony” package. After excluding

cells of suboptimal quality, the subsequent study consisted of the

examination of 22,106 cells and 20,556 genes (Figure 1). The

identification of potential marker genes for TNBC-associated B cells

was conducted through the application of the Wilcoxon-Mann-

Whitney test, revealing 116 distinct genes with significant differences

(Table S1). The clinical characteristics of the training group TCGA and

the testing group GSE58812 was detailed in Table S2.
Tumor-associated B-cell marker gene
enrichment analysis

The investigation of genes enriched in tumors associated B cells

yielded notable results. The GO and KEGG analysis revealed that

marker genes of B cells predominantly influenced functional

pathways specific to B cells. Significant differences were observed in

cell pathway activity scoring across different cell types. Particularly,

the unfolded protein response signaling pathway demonstrated

notable activity in B cells. The B cell marker genes mainly

participate in biological processes such as pid CD8 tcr dowstream

pathway, pid IL12 pathway, WP cancer imunotherapy by PD 1

blockade, and WP T cell recpto signaling pathway. (Figure 2).
Development of a predictive model for B-
Cell marker gene expression

The evaluation of the 116 genes involved a univariate COX

regression to identify the 10 genes associated with prognosis. In

order to prevent overfitting, a lasso regression analysis was

subsequently performed. The results of the lasso regression were

further subjected to a multifactor COX regression analysis to

construct predictive models. The final model incorporated the

following variables: ZBP1, SEL1L3, CCND2, TNFRSF13C, HSPA6,

PLPP5, CXCR4, GZMB, and CCDC50 (Figures 3A, B).

The predictive score was computed based on the expression

levels of the selected genes using the following formula:

BCMG score = (� 0:0390� ZBP1) + (� 0:3450� SEL1L3) + (� 0:0474� CCND2) + (�
0:0716� TNFRSF13C) + (0:2560� HSPA6) + (0:5725� PLPP5) + ( − 0:1924�

CXCR4) + ( − 0:1424� GZMB) + ( − 0:1246� CCDC50)

Patients from TCGA and GEO were divided into higher and

lower- BCMG score groups according to the median value of the

scores obtained from TCGA.
Model validation

The survival curves revealed that patients classified in the higher

BCMG score group had a worse prognosis than those in the lower
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BCMG score group (Figures 3C, D). The time-dependent receiver

operating characteristic (ROC) curves indicated that the predictive

model had an outstanding discriminatory capability (Figures 3E, F).

Importantly, these results were not only internally validated within

the study group but also externally validated in an independent

validation group (Figures 3E, F). According to the findings of the

independent predictive study (Figures 4A, B), the predictive model

was identified as a significant independent predictive factor in

patients with TNBC. The correlation analysis with clinical

characteristics further highlighted the close association between

the predictive model and lymph node metastases (Figure 4). In-

depth exploration of the correlation between the model genes and

patient prognosis (Figure 5) revealed that the expression levels of

ZBP1, SEL1L3, CCND2, TNFRSF13C, CXCR4, GZMB, and CCDC50
Frontiers in Immunology 04
were higher in the lower BCMG score group compared to the higher

group. Conversely, the higher BCMG score group exhibited

significantly higher levels of expression for HSPA6 and

PLPP5 (Figure 6).
Analysis of tumor mutation burden

The analysis of the tumor mutation burden revealed an inverse

relationship with the prognostic model. The waterfall plot visually

illustrated that the mutation types were not identical between the

higher and lower- BCMG score groups. The survival analysis results

indicated that patients with lower tumor mutation load exhibited a

more favorable prognosis (Figure 7).
B

C D

E F

A

FIGURE 1

Single cell sequencing profile of 22,106 cells from human samples of TNBC. (A–C) UMAP plots of 22,106 tumor-associated B cells here, colored by
individual samples (A), 22 cell clusters identified when resolution equals 2 (B) and cell types (C). (D) Heatmap displaying the top 10 marker genes in
each cell cluster. (E) Proportions of each cell type in each sample colored by cell types. (F) Expression analysis of BCMGs in 22 cell clusters. The
intensity of the color indicates the average expression of the gene. Dot size indicates the percentage of cells expressing the gene.
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Analysis of TME

The CIBERSORT analysis demonstrated the differential

presence and activity of various immune cell types in the TMB

between the higher and lower- BCMG score groups. Specifically,

CD8+ T cells, activated memory CD4+ T cells, M1macrophages, M2

macrophages and eosinophils were found to serve different

functions between the two groups (Figures 8A, B). The overall

activity of the majority of immune cells exhibited notable changes in

both groups, further emphasizing the dynamic nature of the TME

(Figure 8C). The ESTIMATE algorithm indicated that the lower

BCMG score group had significantly higher tumor scores,

interstitial scores, total scores, and tumor purity scores than the

higher BCMG score group (Figure 8D). Furthermore, correlation

analysis between the predictive scores and the TME analyzed by the

four methods CIBERSORT-ABS, CIBERSORT, QUANTISEQ, and
Frontiers in Immunology 05
XCELL, demonstrated the potential influence of B-cell marker gene

model on the TME (Figure 9).
Predictions regarding immunotherapy

Correlation analysis revealed that ZBP1, GZMB, CCND2, and

TNFRSF13C exhibited strong correlations with the majority of the

genes that inhibit immune response (Figure 10A). Simultaneously, a

significant difference was observed between the higher and lower-

BCMG score groups concerning the expression of several immune

blockade checkpoint genes (Figure 10C). The TIDE ratings were

used to make predictions about the outcomes of immunotherapy

treatment for patients classified as either high or low BCMG

expression. The TIDE scores of patients in the high expressed

group were significantly higher than those of patients in the low
B C

A

FIGURE 2

Exploring the differences in activity in different cell types by employing different enrichment analysis methods. Histogram of GO (A), KEGG (B) and
GSEA (C) enrichment analysis.
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expressed group, which indicated a higher likelihood of immune

evasion in the high expressed group and immunotherapy may be

less effective for patients at high expression. In addition, there were

observed differences between the two groups in terms of CD8

scores, CD274 ratings, MDSC scores, T cell dysfunction scores,

and T cell exclusion scores (Figure 10B).
Discussion

In this study, we investigated the role of B-cell marker genes in

TNBC using scRNA-seq technology. We successfully established a

novel prediction score for TNBC patients, derived from the

identified B-cell marker genes within the TCGA database. This

prediction score was rigorously validated for its predictive

capabilities in an independent cohort of the GEO dataset. Our
Frontiers in Immunology 06
analysis highlighted specific genes, including ZBP1, SEL1L3,

CCND2, TNFRSF13C, CXCR4, GZMB, and CCDC50, which

exhibited protective characteristics. In contrast, HSPA6 and

PLPP5 were identified as having negative implications.

Subsequently, the nine gene signatures collectively contribute to a

robust predictive model that emerges as a promising predictor for

clinical prognosis in TNBC patients.

Patients with TNBC exhibit a significantly higher level of

immune infiltration compared to other breast cancer subtypes,

despite their overall poor prognosis. The higher immune

infiltration is characterized by elevated tumor-infiltrating

lymphocytes (TILs) (16), increased levels of PD-L1 expression in

tumor cells and immune cells (17, 18), and a greater number of non-

synonymous mutations, which produce tumor-specific neoantigens,

activate neoantigen-specific T cells, and trigger anti-tumor immune

responses (19, 20). This unique immune landscape suggests a
B

C D

E F

A

FIGURE 3

Construction of BCMG score model in the TNBC cohort. (A) Log (l) change curves of regression coefficients and cross-validation for optimizing the
parameter in LASSO regression. (B) Tenfold cross-validation of adjusted parameter choices in lasso regression. (C, D) Kaplan-Meier survival analysis
of TCGA and GSE58812 of TNBC patients stratified by higher and lower- BCMG score. (E, F) ROC curve analysis for predicting the risk of death in
the cohort of TCGA (E) and GSE58812 (F).
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greater potential for benefit from immunotherapy in TNBC

comparison to other subtypes. ICIs can block immunosuppressive

receptors and increase the cellular toxicity and proliferation of TILs

(3, 21, 22). According to the findings of a few studies, the

effectiveness of ICI monotherapy ranges from 5% to 23% (6),

whereas the effectiveness of combination therapy ranges from

22% to 60% (7). Nonetheless, some patients experienced

resistance during or after treatment, leading to immune escape

and tumor recurrence. Dual checkpoint blockade, which have

synergistic anti-tumor effects in advanced malignancies, such as

anti-CTLA-4 and anti-PD-1, could potentially serve as a more

effective therapeutic strategy (23). Furthermore, recent studies

have explored innovative strategies, such as bispecific antibodies

targeting TGF-b and PD-L1 (BiTP), which have demonstrated

potent antitumor activity in TNBC. BiTP in murine TNBC

models showed higher anti-tumor activity compared with solo

anti-PD-L1 or anti-TGF-b (24). The rejection and exhaustion of
Frontiers in Immunology 07
CD8+ T cells are two key factors that contribute to the reduced

tolerance of ICI therapy. When enhanced CD8+ T-cell infiltration

occurs, there is a shift towards heat immunity (25). BiTP has a high

binding affinity to the dual targets, which reduces collagen

deposition, enhances CD8+ T-cell penetration and increases

TILs (26).

Our study provides valuable insights into the molecular

landscape of TNBC-associated B cells and their functional

implications in tumor biology. These findings underscore the

intricate interplay between the identified prognostic model and

the immune landscape within the TME, and we also illustrate

potential immunomodulatory roles of the B-cell marker genes in

the context of TNBC. Moreover, the differential mutation burden

observed in distinct BCMG score groups highlights the importance

of considering mutational characteristics in conjunction with the

prognostic model for a comprehensive understanding of the disease

prognosis in TNBC patients.
B

C

D E F

A

FIGURE 4

Clinical analysis in the cohort of TCGA. (A) Univariate Cox regression analysis revealed the association between patients’ survival and
clinicopathological parameters along with BCMG score. (B) Multivariate Cox regression analysis uncovered that only the BCMG score (P< 0.001) was
an independent prognostic factor for TNBC patients. (C) The prediction of 3-, 5-, and 7-year survival for TNBC patients based on the prognostic
nomogram derived from the BCMG score and other clinicopathologic feature. (D) Clinical correlation with age, stage, T, N, M and BCMG score
shown in heatmap. (E) DCA curve analysis. (F) Calibration Curve illustrated the consistency between predicted and observed 3-, 5-, and 7- year
survival rates in TNBC patients depending on the prognostic nomogram.
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Extensive investigations in the breast cancer TME have

primarily focused on CD8+ T lymphocytes and natural killer

(NK) cells (27). In contrast, TIL-B lymphocytes (TIL-Bs) cells

may exhibit antigen-induced phenotype (28), and it is

hypothesized that autoantibodies play a role in initiating tumor

cell clearance (29). TIL-Bs have also been identified as antigen-

presenting cells, contributing to the stimulation of an immune

response against tumors (30). Moreover, there is a potential for TIL-

Bs to form stromal clusters with T cells, engaging in functional

cross-talk in both directions. The formation of BCR-immune

complexes may also be facilitated by TIL-Bs through the

upregulation of BCR pathway components (1). Besides, CD8+ T

cells represent pivotal defense cells in TME and establish a

functional cycle with dendritic cells (DCs) and NKs (31). Positive

crosstalk is observed between CD8+ T cells and DCs, with CD8+ T

cells inducing NK cell activity (32). Therefore, it is possible that B

cells exert a significant influence on the prognosis of breast cancer,

particularly in patients of immunogenic TNBC.
Frontiers in Immunology 08
The scRNA-seq technology has allowed for a more in-depth

exploration of the molecular properties of immune cells within the

TME, offering potential insights into novel biomarkers (33). In this

study, the investigation of B-cell marker genes provides valuable

insights into the potential role of nine specific genes in influencing

the prognosis of individuals diagnosed with TNBC. ZBP1,

overexpressed in necrotic breast tumors, has been linked to the

induction of interferon. In the absence of ZBP1, both the process of

tumor necrosis and the suppression of metastasis are prevented

(34). SEL1L3, with decreased expression in cancer cells during

sustained endoplasmic reticulum stress (35), may serve as a

predictive tool for survival outcomes and immunotherapy

response in various cancers (36–39). The promoter of CCND2 is

hypermethylated (40–42) in solid tumors, which leads to CCND2

hypo-expression (40, 43, 44) and promotes cell proliferation (45).

TNFRSF13C could encode B-cell activating factor receptor, which

regulates B-cell proliferation, development and maturation (46, 47).

High levels of CXCR4 levels were expressed in more than 40% of
B C

D E F

G H I

A

FIGURE 5

Survival analysis in TNBC patients based on BCMG score. Kaplan-Meier survival analysis of TCGA TNBC patients stratified by high and low CCDC50,
CCND2, CXCR4, GZMB, HSPA6, PLPP5, SEL1L3, TNFRSF 13C, and ZBP1 (A–I), which were based on the best cutoff values.
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B

C D

E F

A

FIGURE 6

Prognostic analysis of TNBC patients on the basis of BCMG score in TCGA and GEO. BCMG score distribution in TCGA (A) and GSE58812 (B).
Scatterplot of survival status and survival time of TNBC patients in TCGA (C) and GSE58812 (D). Heatmap generated on the basis of identified gene
expression in TCGA (E) and GSE58812 (F).
B

C D

E F

A

FIGURE 7

Tumor mutation burden analysis. (A, B) Differential counting of tumor mutation burden between higher and lower - BCMG score groups. (C) Tumor
mutation load comparison. (D) Correlation analysis of BCMG score and mutation burden. (E, F) Prognostic analysis of tumor mutation load in higher
and lower- BCMG score groups.
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breast tumor tissues (48) and in 75% of TNBC patients (49), and

overexpression of CXCR4 in cancer cells contributes to tumor

growth, invasion, metastasis, and recurrence (50). GZMB, known

for stimulating anti-tumor immune responses and inhibit tumor
Frontiers in Immunology 10
growth (51), is correlated with favorable prognosis in breast cancer

tissues (52, 53). CCDC50 is known to mediate apoptosis via the NF-

kB pathway (54) and had prognostic predictive value in lung

adenocarcinoma (55). The two-way role of HSPA6 in tumor,
B

C D

A

FIGURE 8

Correlation of the B cell prognostic model genes with immune cell infiltration and immune checkpoint in TCGA cohort. (A) Analysis of immune cell
infiltration in higher and lower- BCMG score groups. (B) The comparison of 22 immune cells’ infiltration level in higher and lower- BCMG score
groups. (C) The comparison of 28 immune cells’ infiltration level in higher and lower- BCMG score groups. (D) TME score differences compared
based on the ESTIMATE algorithm. *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 9

BCMG score and immune cell correlation analysis. (A) Spearman correlation analysis showed that BCMG scores strongly correlated with tumor-infiltrating
immune cells. (B–G) Correlation of predictive models and immune cells based on XCELL, TIMER, QUANTISEQ, CIBERSORT, and CIBERSORT-abs.
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acting as both a potential target for tumor inhibition and risk factor

of tumor development and tumor progression, underscores the

complexity of its functions in cancer biology (56). Our study

suggested a negative correlation between high HSPA6 expression

and prognosis, which contradicts the findings reported by Shen

et al., where high HSPA6 expression was positively correlated with

longer overall survival (57). This discrepancy may arise from the

multifaceted functions of HSPA6, affecting different aspects of

cancer biology. PLPP5 participates in the regulation of many

cancer-associated transduction pathways such as the JAK/STAT

(58), and its overexpression in pancreatic and small cell lung cancer

cells may promote proliferation and survival (59). However, in

breast cancer cell lines, down-regulation of PLPP5 inhibits tumor

growth and increases apoptosis (60), which is consistent with

our study.

Despite these intriguing findings, there are certain limitations in

the current study. Additional research is needed to get a deeper

understanding of molecular interactions and mechanisms
Frontiers in Immunology 11
underlying these gene functions. Furthermore, it is essential to

verify these findings in cell lines, animal models, and tissue samples

to ensure their relevance and applicability to clinical settings.
Conclusion

In conclusion, this study established a robust model utilizing B

cell marker genes to predict prognosis and immunotherapy

response in TNBC patients, contributing novel insights into the

understanding of TNBC molecular landscape and its implications

for therapeutic interventions. The discovery of these gene

signatures adds to our understanding of TNBC and offers a

promising avenue for improving patient outcomes and guiding

therapeutic strategies in this challenging subtype of breast cancer.

Further research and clinical validation may continue to refine the

application of these gene signatures in the clinical management of

TNBC patients.
B

C

A

FIGURE 10

Prediction of response of TNBC patients to immunotherapy. (A) Analysis of differences in TIDE, IFNG, MSI Expr, Merck18, CD274, CD8, Dysfunction,
Exclusion, MDSC, CAF, and TAM M2 between higher and lower- BCMG score groups. (B) Analysis of immune checkpoint blocking gene expression
between higher and lower- BCMG score groups. (C) Relevance of model genes and immune checkpoint blocking gene.
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