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José Luis Galaz,
University of Chile, Chile

*CORRESPONDENCE

Mark W. Hamrick

mhamrick@augusta.edu

RECEIVED 22 June 2023

ACCEPTED 25 August 2023

PUBLISHED 08 September 2023

CITATION

Sultana S, Elengickal A, Bensreti H,
de Chantemèle EB, McGee-Lawrence ME
and Hamrick MW (2023) The kynurenine
pathway in HIV, frailty and inflammaging.
Front. Immunol. 14:1244622.
doi: 10.3389/fimmu.2023.1244622

COPYRIGHT

© 2023 Sultana, Elengickal, Bensreti,
de Chantemèle, McGee-Lawrence and
Hamrick. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 08 September 2023

DOI 10.3389/fimmu.2023.1244622
The kynurenine pathway in HIV,
frailty and inflammaging

Shabiha Sultana, Anthony Elengickal , Husam Bensreti ,
Eric Belin de Chantemèle, Meghan E. McGee-Lawrence
and Mark W. Hamrick*

Medical College of Georgia, Augusta University, Augusta, GA, United States
Kynurenine (Kyn) is a circulating tryptophan (Trp) catabolite generated by

enzymes including IDO1 that are induced by inflammatory cytokines such as

interferon-gamma. Kyn levels in circulation increase with age and Kyn is

implicated in several age-related disorders including neurodegeneration,

osteoporosis, and sarcopenia. Importantly, Kyn increases with progressive

disease in HIV patients, and antiretroviral therapy does not normalize IDO1

activity in these subjects. Kyn is now recognized as an endogenous agonist of

the aryl hydrocarbon receptor, and AhR activation itself has been found to induce

muscle atrophy, increase the activity of bone-resorbing osteoclasts, decrease

matrix formation by osteoblasts, and lead to senescence of bone marrow stem

cells. Several IDO1 and AhR inhibitors are now in clinical trials as potential cancer

therapies. We propose that some of these drugs may be repurposed to improve

musculoskeletal health in older adults living with HIV.
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1 Kynurenine accumulation with aging and
HIV infection

The World Health Organization estimates that 38 million people are infected with HIV

worldwide, and of those 23 million currently receive antiretroviral therapy (ART). Progress

in ART has enabled patients to live longer, and approximately 50% of people with HIV are

older than 50 years (1). Yet, patients on ART still experience major complications and

comorbidities from HIV infection. It is estimated that 20-30% of patients receiving ART

experience significant muscle wasting (2, 3). Indeed, a frailty phenotype is frequently

observed in HIV patients on long-term ART (4), involving declines in functional measures

such as grip strength and gait speed (5, 6). In addition, both osteoporosis and sarcopenia

are often observed together in older people living with HIV (7). Loss of muscle mass and

strength are in turn associated with poor health outcomes ranging from accelerated disease

progression to increased mortality (8, 9). The mechanisms underlying impaired muscle

function and the frailty phenotype of patients with HIV are not well understood, but they

do suggest an earlier onset of age-related musculoskeletal decline as compared to the HIV-

naïve population, a phenomenon referred to as accentuated aging (10). A key question
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from the recent (2020) NIH HIV ACTION Workshop on

Pathogenesis of Aging in People with HIV (10) is “Do the

mechanisms and mediators of age-related end-organ disease (e.g.,

sarcopenia) differ in aging with and without HIV and ART?”

Tryptophan (Trp) is an essential amino acid that cannot be

synthesized in humans and is only available through dietary

sources. Approximately 90-95% of dietary Trp is degraded along

the kynurenine (Kyn) pathway by two major enzymes; tryptophan

2, 3 dioxygenase (TDO) in the liver, and indoleamine 2, 3

dioxygenase (IDO) extrahepatically (11). A smaller (~3%) portion

of Trp is metabolized along the serotonin/melatonin pathway. In

the kynurenine pathway, Kyn is the first stable intermediate

metabolite formed (12). Kyn has been reported to exert its

functions through the Aryl hydrocarbon receptor (AhR), which

acts as a transcription factor (13, 14). A number of recent studies

demonstrate that Kyn increases with age (15–17). For example,

Sorgdrager et al. (15) demonstrated that Kyn is increased in serum

with age in humans but Kyn metabolites such as kynurenic acid

(KA) and quinolinic acid (QA) also increase, suggesting that the

entire Kyn pathway may be upregulated with aging. The authors

found that the same metabolites also increased with age in the

cerebrospinal fluid (15). Likewise, de Bie et al. showed that the Kyn/

Trp ratio was significantly correlated with age in older women (16),

and El Refaey et al. showed that in mice Kyn increased in an age-

dependent manner (17).

Kyn has been implicated in several age-related disorders

including neurodegeneration, osteoporosis, sarcopenia, and

inflammation (16–20). Treatment of rodents with exogenous Kyn,

either through diet or intraperitoneal injections, can induce bone

loss (17, 21, 22) and muscle atrophy (19). An increase in IDO

activity has been linked to an increased mortality rate in humans

(23), and frailty is associated with a marked increase in the Kyn/Trp

ratio (24–27). Suppressing Trp degradation and thus Kyn

accumulation increases lifespan in both C. elegans (28) and

Drosophila (29), and increased longevity in bats is associated with

endogenous inhibition of Trp breakdown by the gut microbiome

(30). Importantly, Kyn increases with progressive disease in HIV

patients (31–34) along with increased serum IFN gamma (35).

Furthermore, ART does not normalize IDO activity in these

subjects (36, 37).

2 Mechanisms of kynurenine
biogenesis with aging and
HIV infection

Trp commitment to the Kyn pathway is mediated by

indoleamine 2,3-dioxygenase (IDO1/IDO2) or tryptophan 2,3-

dioxygenase 2 (TDO) (38–40). The expression of TDO and IDO

enzymes in mammals varies not only by tissue/cellular localization

but also by the mechanism of their stimulation (12). TDO is

primarily found in the liver and neuronal tissue and is regulated

by glucocorticoids, where it helps to maintain homeostasis of

dietary Trp levels and mediate immune-related diseases and

central nervous system disorders (41) The function of IDO1 was

initially described as an innate mechanism of defense against
Frontiers in Immunology 02
microbial invasion because IDO1 could induce depletion of Trp

(41). The expression and activity of IDO1 are upregulated in

response to several inflammatory mediators including interferon-

gamma (IFN-g) (42), interleukin-1-beta (IL-1b) (43), tumor

necrosis factor (TNF- a) (42), and prostaglandin-E2 (PGE2) (44).

A substantial increase in inflammatory mediators such as IFN-g, IL-
1b, and TNF- a is seen in various organs and tissues with aging, a

process termed inflammaging (45–48). The increase in these

inflammatory cytokines increases TDO and IDO expression,

further catabolizing Trp and increasing the accumulation of Kyn

pathway metabolites (38). HIV infection has also been shown to

increase inflammatory mediators enhancing IDO1 expression (49–

51). Furthermore, it has been observed that HIV-infected

individuals have lower circulating Trp levels despite adequate Trp

dietary intake, suggesting an enhanced Trp degradation (52). This

common mechanism in IDO1 activation in both aging and HIV

infection might shed some light on the observed accelerated aging

in HIV infected individuals (53) (Figure 1). Nuclear factor kappa B

(NF-kB) activation downstream of inflammatory cytokine signaling

is known to induce TDOI/DO1 (31–33, 54), which is considered

among the most common mechanisms of Kyn biogenesis in the

setting of systemic inflammation with aging and HIV infection.

The association between the kynurenine pathway and human

immunodeficiency virus (HIV) infection has been established since

1991, when the elevated kynurenine-to-tryptophan (Kyn/Trp) ratio

was observed in people living with HIV (PWH) (30). Moreover, it

was also observed that, after the initial stage of infection, people

receiving early ART demonstrated a rapid return of the Kyn/Trp

ratio to normal concomitant with an improvement in CD4+/CD8

+T cells ratio in accordance with lower mucosal inflammation (55).

This observation suggested a correlation between heightened

kynurenine pathway activity and compromised immune function

in the context of HIV infection (33). Dendritic cells (DCs) and

monocytes express the enzyme IDO-1, which catabolizes Trp into

Kyn. This alters CD4+ T-cell development into regulatory T cells

(Tregs) rather than T-helper (Th17) cells, which negatively affects

T-cell responses. Through interferon signaling and Toll-like

receptor stimulation, this altered Th17/Treg balance is directly

related to elevated and sustained IDO-1 activity (56). Increased

IDO-1 activity is further associated with the plasma microbial

translocation markers, and the progression of HIV (57).

Immunological dysfunction and ongoing immunological

activation during HIV infection are both known to be

significantly influenced by microbial translocation (58). A link

may also exist between IDO activity and total HIV DNA in

blood, pointing to a potential role for IDO in HIV persistence

(57). There is also evidence that, in the case of HIV infection, gut

dysbiosis is a major driver of IDO1 activity, Trp degradation, and

Kyn biogenesis (59, 60). Specifically, the HIV infection itself can

cause pronounced changes to the gut microbiota, leading to

increased Trp degradation and elevated Kyn accumulation

independent of IFN-gamma or NF-kB activity (35, 61, 62). The

activation of the kynurenine pathway has been observed to occur

through the generation of neurotoxic quinolinic acid in

macrophages, as a direct result of the actions of the HIV proteins

Tat, Nef, and gp41 (63).
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3 Role of kynurenine signaling
through the aryl hydrocarbon
receptor in muscle and bone loss
with aging and HIV infection

Kyn is an endogenous ligand of the aryl hydrocarbon receptor

(AhR) (14, 23, 24, 64). AhR is bound to the molecular chaperone

heat-shock protein 90 (Hsp90) and dwells there in an inactive state

in the cytoplasm of the cell. Trp and its metabolite Kyn both enter

the cell via transporters including solute carrier family 7 member 5

(SLC7A5) and member 11 (SLC7A11) (65) (Figure 2). Once inside

the cell, Kyn can stimulate AhR translocation to the nucleus (66, 67)

where AhR separates from Hsp90 and forms a dimer with the aryl

hydrocarbon receptor nuclear translocator (ARNT) protein. The

heterodimer binds to a specific DNA sequence called the xenobiotic
Frontiers in Immunology 03
response element, or XRE, in the promoter region of potential target

genes (Figure 2). Previously it has been shown that Kyn’s AhR and

transcriptional activation of AhR stimulates both TGF beta 1 and

IDO1 expression; this creates a positive feedback loop as IDO1 can

degrade tryptophan to produce more Kyn (68, 69). Moreover, AhR

has been demonstrated to upregulate the expression of SLC7A5 (70,

71). Thus, the increase in SLC7A5 with kynurenine-activated Ahr

probably facilitates more kynurenine entry into the cell (72).

In cases of viral infection, constitutive AhR signaling inhibits the

type I interferon (IFN-I) response by upregulating the ADP-ribosylase

TIPARP (73). A recent study found that AhR activation by Trp

metabolites, especially Kyn, promoted HIV infection and decreased

CD4+ T cell counts. AhR activates viral transcription and infection by

directly binding to the HIV-1 5′ Long terminal repeat (5′-LTR) (74).
Moreover, Trp metabolites increase AhR translocation to the nucleus

which leads to the association with HIV 5′-LTR. Further, AhR and the

HIV-1 Tat protein may bind, attracting favorable transcriptional

elements that aid in infection (74). However, the role of AhR on

HIV-1 activationmay vary according to cell type. For example, another

study found that, in macrophages, the activation of AhR is responsible

for blocking HIV-1 replication by downregulating the transcription of

cyclin-dependent kinase CDK1, CDK2 which ultimately exerts

antiviral effects (75). Moreover, long-term exposure to AhR ligands

induces hypomethylation of AhR DNA binding regions (76), and HIV

infection increased hypomethylation in the promoters of numerous

genes including AhR (77).

Muscle loss is frequently observed in HIV patients on ARTwhich

contributes directly to increased morbidity (2). The clinical signs of

frailty, such as loss of energy, weight, and muscle mass, as well as

reduced motor function and low levels of physical activity, are

strikingly similar to those of advanced HIV infection (78). A key

frailty mediator is a mitochondrial dysfunction which increases with

aging (79). Hunt et al. (80) showed that PWH receiving

contemporary ART have more skeletal muscle mitochondrial

impairment than would be expected based on age alone. Activation
FIGURE 1

Shared mechanisms between aging and HIV infection in enhancing tryptophan metabolism to kynurenine via IDO1. Figure generated using BioRender.
FIGURE 2

Kynurenine (Kyn) signaling through the aryl hydrocarbon receptor
(AhR). AhR is normally bound to heat-shock protein 90 (Hsp90) in
the cytoplasm. Kyn enters the cell via transporters SLC7A5 and
SLC7A11 and binds the Hsp90-AhR complex. This complex
translocates to the nucleus where AhR forms a complex with aryl
hydrocarbon receptor nuclear translocator (Arnt) protein to activate
downstream targets such as Cyp1a1.
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of AhR by Kyn in the setting of aging and HIV infection is very likely

a drive of muscle dysfunction in these patients. We have found that

Kyn treatment in younger mice can reduce muscle size and strength

with an increase in reactive oxygen species levels (19). On other hand,

inhibition of IDO can increase muscle size and strength in aged mice

(19). These findings are further supported by work showing that

constitutive AhR overexpression increases ROS accumulation,

mitochondrial dysfunction, and skeletal muscle atrophy (81). Aging

and HIV infection therefore share several biological characteristics

associated with musculoskeletal frailty (Figure 3).

Similar findings have been made in bone that point to Kyn-

induced AhR activation as a driver of bone dysfunction with aging

and HIV infection. Bone mineral density (BMD) can decline rapidly

in patients with HIV starting ART (82). Moreover, BMD in HIV-

positive women decreases twice as quickly as compared to HIV-

positive men (82). Activation of AhR signaling promotes osteoporosis

with aging by stimulating the formation of osteoclasts (83, 84). While

there is abundant research supporting the involvement of Kyn

involvement in bone loss (17, 85–87), Eisa NH., et al. (13) further

clarified that osteoclastic transcription factors are upregulated by Kyn

signaling through AhR which results in an increased number of

osteoclasts. Moreover, Kyn treatment in mice caused an increased

serum level of the osteoclastic marker RANKL and the bone

resorption marker Pyd (17). Another study reported that activation

of AhR impeded the proliferation of osteoblasts derived from human

mesenchymal stem cells (85), and we recently showed that AhR

activation induced senescence in bone marrow stem cells (86). Kim

and colleagues (87) showed the detrimental effects of Kyn on human

bone metabolism where they studied bone marrow (BM) samples

from patients undergoing hip surgery. They found that BM
Frontiers in Immunology 04
kynurenine levels increased with age and it was linked to higher

fragility hip fracture risk, an increase in TRAP-5b and RANKL (two

markers of bone resorption) and a decline in total femur bone

mineral density (BMD). Together, these findings suggest that AhR

activation in the setting of HIV infection promotes both muscle and

bone loss with aging.
4 Potential strategies for
therapeutic intervention

A number of experimental therapies that target the Kyn

pathway are currently being tested as novel treatments for various

cancers (Table 1). The majority of these, such as Epacadostat,

Indoximod and Linrodostat are inhibitors of IDO1 that blunt the

formation of Kyn. Others such as IK-175 and BAY2416964 are

direct inhibitors of AhR activity. These therapeutics have been

reported to improve outcomes in cancer patients across several

different clinical trials and have shown better efficacy when used in

combination with other therapeutics such as Pembrolizumab, an

immune checkpoint inhibitor (CTI) (88).

Epacadostat, a highly selective and orally available inhibitor of

IDO1, is currently being studied in phase 3 clinical trials following

positive results from multiple phase 1 and 2 studies for a variety of

cancers. In one phase 1/2 study, Epacadostat was used in

combination with Pembrolizumab for patients with advanced solid

tumors and showed antitumor activity and safety (89). Similar results

were obtained in another phase 1/2 study of Epacadostat used with

ipilimumab in patients with melanoma (90). Linrodostat is another

oral inhibitor of IDO1 currently in phase 3 trials with a slightly
FIGURE 3

Aging and HIV induced damage in skeletal muscle and dysregulation of bone homeostasis: Aging and HIV cause mitochondrial damage in skeletal
muscle which leads to frailty. Activation of AhR in aging and HIV causes disruption of bone homeostasis and fat deposition in skeletal muscle.
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different mechanism of action, functioning as an irreversible suicide

inhibitor. In a phase 1/2 study of patients with advanced bladder

cancer, the combination of nivolumab and Linrodostat was well

tolerated and showed efficacy across the patient population (91).

Indoximod is a Trp analogue that can suppress the IDO pathway

which is normally upregulated in the absence of Trp. After

demonstrating safety and efficacy in phase 1 trials of patients with

advanced solid tumors (92, 93), many phase 2 clinical trials are

currently active. One of these trials that have published results was a

phase 2 trial investigating the addition of indoximod to patients with

advanced melanoma receiving CTIs such as pembrolizumab. The

therapeutic was well tolerated in this patient population and showed

antitumor efficacy (94). Table 1 summarizes some of the inhibitors in

clinical trials targeting AhR/IDO in cancer therapeutics.
5 Summary & conclusions

HIV is associated with accelerated or accentuated frailty. This is

characterized by aging phenotypes such as cognitive impairment,

cardiovascular disease, and muscle and bone loss. HIV-related

proteins themselves, as well as cytokines such as IFN-gamma,

increase expression of the Trp degrading enzyme IDO1,

generating Kyn as a by-product of Trp degradation. Kyn and the

Kyn/Trp ratio are markedly elevated in patients with HIV, even

after antiretroviral therapy. Similarly, aging causes an increase in

inflammatory mediators that upregulate activity of IDO1, thus

promoting Trp metabolism to Kyn. However, IDO1 activity may

be more pronounced in HIV infection due to gut dysbiosis which

may drive IDO1 activity. Increased IDO1 is associated with

microbial translocation and progression of HIV. Kyn induces

senescence in bone marrow cells, reduces bone formation, and

contributes to muscle atrophy and damage to the neuromuscular

junction. These effects appear to be mediated in part by activation of

aryl hydrocarbon receptor signaling. Small molecules that suppress

Trp degradation by IDO1 have shown potential for synergizing with
Frontiers in Immunology 05
antiretroviral therapies to improve health outcomes. Future studies

should be directed at examining AhR inhibition as a potential

companion strategy.
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TABLE 1 Inhibitors in clinical trials targeting the Kyn pathway in cancer therapeutics.

Drug Mechanism of Action Status NCT Numbers

Epacadostat IDO1 Inhibitor Phase 3 Trials NCT03361865
NCT03374488
NCT03260894
NCT03358472
NCT02752074

Linrodostat IDO1 Inhibitor Phase 3 trials NCT03329846
NCT03661320

Indoximod IDO Inhibitor Phase 2 Trials NCT01560923
NCT01792050
NCT04049669
NCT02077881

IK-175 AhR Inhibitor Phase 1 Trials NCT04200963
NCT05472506

BAY2416964 AhR Inhibitor Phase 1 Trials NCT04999202
NCT04069026

HTI-1090 IDO1 and TDO Inhibitor Phase 1 Trials NCT03491631
NCT03208959
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