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Regulation of lung inflammation
by adiponectin

Joo-Yeon Lim and Steven P. Templeton*

Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute,
Terre Haute, IN, United States
Adiponectin is an insulin sensitizing hormone that also plays a role in the

regulation of inflammation. Although adiponectin can exert pro-inflammatory

effects, more studies have reported anti-inflammatory effects, even in non-

adipose tissues such as the lung. Obesity is considered an inflammatory disease,

is a risk factor for lung diseases, and is associated with decreased levels of plasma

adiponectin. The results of recent studies have suggested that adiponectin exerts

anti-inflammatory activity in chronic obstructive pulmonary disease, asthma and

invasive fungal infection. The signaling receptors of adiponectin, AdipoR1 and

AdipoR2, are expressed by epithelial cells, endothelial cells, and immune cells in

the lung. In this mini-review, we discuss the anti-inflammatory mechanisms of

adiponectin in lung cells and tissues.
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Introduction

Adiponectin (APN) is a protein abundantly produced by adipocytes. It is present at

high concentrations in plasma and regulates glucose levels, lipid metabolism, and insulin

sensitivity. Plasma APN levels are relatively high in lean and healthy individuals. Decreased

circulating levels of APN in obese individuals could enhance the risk of insulin resistance,

type 2 diabetes, and cardiovascular disease (1). APN has also been reported to be produced

by lymphocytes, skeletal muscle cells, cardiomyocytes, osteoblasts, and liver cells (2–5).

APN binds to signaling adiponectin receptors AdipoR1 and AdipoR2 (6) and the non-

signaling receptor T-cadherin (7). While AdipoR1 binds to the globular form of APN,

AdipoR2 preferentially binds to the high-molecular weight (HMW) form (8). The HMW

isoform is consist of several linked hexamers and trimers (9). Interestingly, females have

higher circulating levels of total APN with higher proportions of HMW isoform compares

to males (10–12). Unlike the expression of APN, there are no sex differences in the

expression of AdipoRs in adipose tissue (13).

Obesity is associated with a higher incidence of various diseases, including pulmonary

disorders, such as asthma, chronic obstructive pulmonary disease, and pulmonary

hypertension, and is also associated with decreased plasma adiponectin (14–18).

Obesity-associated dysregulation of immune responses, inflammatory vigor, and adipose
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tissue immune cell infiltration are also believed to contribute to

infectious disease pathogenesis (19).

According to the World Health Organization (WHO), the two

most common chronic lung diseases are COPD and asthma,

causing restricted airflow and breathing problem. APN has been

implicated to play a role in the pathophysiology of COPD. Many

studies revealed decreased serum APN in COPD patients (20). With

a steadily increasing population of immunocompromised patients,

disease caused by fungal infections remain a great threat to public

health. Among lung fungal pathogens, such as Aspergillus,

Cryptococcus, and Pneumocystis, Aspergillosis (approximately

57%) by Aspergillus spp. was most common (21). While the APN

roles have been more thoroughly investigated in COPD and asthma,

fewer studies have implicated in APN lung diseases. APN is

required for metabolism and has a regulatory role in

inflammation, primarily exerting anti-inflammatory effects. Here,

we specifically review published studies that examine the anti-

inflammatory activity of APN in inflammatory pulmonary

diseases and cells of the lung.
APN and lung disorder

APN and COPD

Chronic Obstructive Pulmonary Disease (COPD) is a globally

increasing cause of mortality with increasing prevalence over the

past 20 years (22). Population aging, smoking and exposure to air

pollution are leading risk factors for COPD (22–24). COPD patients

showed increased numbers of lung inflammatory cells such as

neutrophils, macrophages, and CD8+ T cells, with increased

production of chemokines and cytokines (25). A mouse model of

COPD with tobacco smoke exposure showed increased APN

production in bronchoalveolar lavage fluid (BALF) and APN gene

expression by airway epithelial cells (26), suggesting that APN has

the potential to modulate the inflammatory response in COPD.

Another study used an elastase-induced emphysema model to

identify the possible role of APN in the pathogenesis of COPD

(27). Elastase-induced emphysema is associated with reduced APN

concentration. APN-deficient (APN KO) mice show a progressive

COPD-like phenotype characterized by progressive emphysema,

increased endothelial apoptosis and increased TNF-a activity. APN

is associated with inflammation in COPD and is positively

correlated with as the neutrophil-recruiting chemokine IL-8 (26).

APN can therefore be a biomarker for disease severity and

progression in patients of COPD (28).
APN and asthma

Asthma is a chronic inflammatory disorder that affects airways in

the lungs narrowed and swollen by inflammation and blocked by

excess mucus. The most common asthma triggers include air pollen,

dust products, animal dander, tobacco smoke and a wide range of
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fungi (29). In an obesity-related asthma mouse model used by Zhu

et al., APN level in serum and BALF as well as adiponectin receptor

(AdipoR) mRNA expression in lung were decreased and exogenous

APN treatment increased both the APN level and AdipoR expression

(30). In a mouse model of asthma by Medoff et al., ovalbumin

(OVA)-sensitized and challenged APN KO mice exhibited increased

pulmonary vascular remodeling, eosinophilic inflammation, and

inflammatory chemokine gene expression compared to control

mice (31). Furthermore, Obesity is associated with low-grade

inflammation and enhances chronic inflammation in the airways of

asthmatic obese patients. Expression of AdipoR2 and T-cadherin

genes in bronchial epithelial cells was higher among obese patients

with asthma than obese controls (32). Obesity in mice was associated

with increased BALF macrophages, neutrophils and eosinophils, and

increased Th2 cytokine production, including IL-13 and IL-5.

Administration of exogenous APN reduced inflammation in obese

mice, suggesting a therapeutic potential for the adiponectin pathway

(33), and an APN receptor agonist reduced IL-4, IL-17, IL-23, and

TNF-a in an OVA/lipopolysaccharide (LPS)-induced obese

asthmatic model (34). In summary, APN treatment alleviated

pathological changes in lung with reduction of eosinophils, total

cell numbers in BALF, the eosinophil-attracting chemokine eotaxin

and myeloperoxidase levels, which suggests that APN regulates cell

migration into the airway and clearance of pulmonary inflammation

in obesity-related asthma (30, 31).

In obese asthmatics, low APN was found more frequently than

high (35) and non-obese individuals had higher levels of serum

APN compared to obese (36). However, two other studies found no

correlation between APN and obesity (37, 38). The differences in

results of these studies might be related to demographic differences

in age, gender, race, and disease severity. Although clinical data

depend mainly on the serum APN, results from animal models and

cell cultures demonstrate a potential benefit of APN pathway-

stimulating therapy in asthmatics (35).
APN and pulmonary aspergillosis

In invasive aspergillosis patients, excessive inflammation is

associated with increased mortality (39). However, the effects of

APN on anti-fungal immune responses in the lung remains unclear.

Fungal spores are easily aerosolized and inhaled (40).

Different manifestations of Aspergillus infection include

allergic bronchopulmonary aspergillosis, chronic pulmonary

aspergillosis, and invasive aspergillosis. Allergic bronchopulmonary

aspergillosis is considered poorly controlled asthma, while

invasive aspergillosis occurs in immunocompromised patients such

as those with COPD, solid organ or bone marrow transplant

recipients, intensive care unit patients, and patients with severe

viral infection (HIV, influenza A virus, COVID-19) (41–45).

Invasive aspergillosis has an extremely high mortality rate (50-90%)

in immunocompromised patients (46). Aspergillus fumigatus is most

prevalent and the major cause of aspergillosis (47). APN KO mice

with invasive aspergillosis exhibit increased disease pathology
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including decreased survival rate, increased fungal burden in the lung,

increased cytokine production (IL-6 and TNF-a), and increased

eosinophil recruitment (48). Aspiration of Aspergillus fumigatus

conidia or chitin, one of the fungal cell wall components induced

increased eosinophil recruitment in APNKOmice compared to wild-

type controls (48, 49), and recombinant murine APN inhibited

chitin-mediated eosinophil recruitment (49). Thus, it is likely that

APN inhibits excessive inflammation in invasive aspergillosis, either

directly or indirectly by enhancing antifungal immunity.

The roles of adiponectin in COPD, asthma, and pulmonary

aspergillosis is summarized in Figure 1. Recent studies suggest a role

for APN in regulating the inflammatory response in aspergillosis,

COPD and asthma in either animal models or human patients (28,

35, 38). However, there are limited studies examining the role of

APN during fungal infection in murine lungs (48, 49). Moreover,

the number of the immunocompromised individuals is rapidly

increasing, due to increased use of immunosuppressive therapies.

Despite immune suppression, aspergillosis patients can succumb to

an uncontrolled inflammatory response. Moreover, COPD and

asthma patients showed increased hypersensitivity to Aspergillus

fumigatus (29, 50, 51). More research is need to further unravel the

anti-inflammatory mechanisms of the APN pathway in lung

disease, especially in the context of fungal infection.
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APN and bacterial and viral infections

Tuberculosis is a bacterial infectious disease that most often affects

the lungs, which is caused byMycobacterium tuberculosis. One-third of

the world population is infected with this pathogen. Infection of M.

tuberculosis alters adipose tissue morphology and contributes to an

acute loss of body fat, which worsens pulmonary pathology.

Comparing the lungs of M. tuberculosis-infected fat-ablated mice to

infected fat-unablated mice, the levels of cytokines, such as TNF-a,
IFN-g, CD68, IL-12, and IL-10 were increased (52). APNmay promote

a reduction of TNF-a in the lungs in M. tuberculosis-infected mice

(52). In acute lung injury model, APN attenuates LPS-induced lung

injury in acute lung injury model (53). These reports suggest that APN

regulates pulmonary pathology during bacterial infection.

Epidemiological evidence suggests an association between

obesity and increased susceptibility to viral pneumonias

associated with influenza, SARS-CoV-2, and COVID-19 cases (19,

54, 55). APN level is reduced in the patients infected with influenza

A virus and COVID-19 with respiratory failure (56–58).

Overexpression of IL-6, a key adipocyte-secreted inflammatory

mediator, is an important risk factor worsening outcomes in

influenza virus infection (59). In COVID-19, APN is generated by

lymphocytes and downregulates the bone marrow production of
FIGURE 1

Adiponectin effect on lung disease. Obesity and aging are associated with loss of muscle mass, insulin resistance, and features of metabolic
syndromes. Adiponectin (APN) activity is linked to metabolism and inhibition of inflammation. Decreases/deficiencies in plasma APN, even due to
obesity, may contribute to adipose tissue inflammation, induction of asthma and TNF-a production in adipose and non-adipose tissues such as the
lung. APN regulates inflammation in chronic pulmonary disease (COPD), asthma, fungal, bacterial, and viral infection. Adiponectin deficiency in
COPD, aspergillosis, viral infection or tuberculosis resulted in increased expression of the proinflammatory cytokines TNF-a and IL-6, further
suggesting that APN functions exerts anti-inflammatory activity. However, the effects of APN or AdipoRon on viral infection remain unknown.
Treatment with APN or its agonist affects cytokine production; a decrease of IL-13 and IL-5 in asthma model and an increase of IL-8 in COPD, and
increased IL-4, 1L-17, IL-23, and TNF-a in asthma. APN treatment also inhibited lung eosinophil recruitment in response to chitin.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1244586
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lim and Templeton 10.3389/fimmu.2023.1244586
granulocytes, with the activation of regulatory T cells (60). While

the levels of cytokines in lung in COVID-19 patients have not been

analyzed, the plasma levels of IL-6, TNF-a, and IL-10 were highly

increased in severe COVID-19 patients with comparable levels to

non-COVID-19 patients (61). So far, no study evaluated the effect of

APN or AdipoRon on SARS-CoV-2 infection (62). These studies

suggest that the APN pathway could be manipulated to provide

protection against detrimental inflammation in response to

viral infection.
Anti-inflammatory activity of
adiponectin on lung cells

APN/AdipoRs in lung immune cells

APN and AdipoRs are expressed in the lung, suggesting an

important role for the APN pathway in lung biological processes

(63). Alveolar macrophages from APN KO mice released higher

matrix metalloproteinases and TNF-a, which was suppressed by

APN pretreatment (63). In humans, APN release from lung

explants is negatively correlated with body mass index (64). Lung

macrophages express both of the signaling APN receptors AdipoR1

and AdipoR2 (64). Lung macrophages treated with APN or its

AdipoR1/R2 agonist AdipoRon resulted in decreased LPS- and poly

(I:C)-induced production of TNF-a, IL-6, CXCL1 and CXCL8 (64).
In the murine macrophage-like cell line RAW264, the globular

domain of APN binds to the AdipoR1 and inhibits the TLR-induced

NF-kB activity (65).

In lean mice, lung regulatory T cells (CD3+ CD4+ Foxp3+ cells)

increased AdipoR1 expression, while obese mice with allergic

inflammation had reduced AdipoR1 expression in lung regulatory

T cells and increased expression in BALF eosinophils (66). Thus,

adiponectin exerts anti-inflammatory effects on lung cells, likely due

to signaling through adiponectin receptors.
APN/AdipoRs in lung fibroblast, epithelial
cells, and endothelial cells

Idiopathic pulmonary fibrosis is a common pulmonary disease,

with high mortality, especially in older people. The idiopathic

pulmonary fibrosis mouse model of bleomycin challenge induced

a remarkable collagen fiber accumulation with extensive alveolar

damage. Furthermore, APN treatment attenuated bleomycin-

induced histopathology and inhibits TGF-b1-induced fibrosis in

human lung fibroblasts with decreased TNF-a, IL-6, IL-1b, and IL-

18 expression (67). Paraquat is an herbicide used worldwide and

exposure to paraquat may cause acute injury and fibrosis in humans

(68). In a pulmonary fibrosis model induced by paraquat, APN

attenuated the fibrosis with decreased TGF-b1 and a-smooth

muscle actin by regulating the NF-kB pathway (69). Human lung

fibroblasts also express both AdipoR1 and AdipoR2, and APN
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treatment increased fibroblast expression of AdipoR1 but not

AdipoR2. Knockdown of AdipoR1 using siRNA reversed the

APN-mediated protective effect against paraquat-mediated

fibrosis, demonstrating the importance of the APN-AdipoR1

pathway in fibroblasts for protection against pulmonary

fibrosis (69).

In contrast, airway epithelial cells express significant levels of

APN and AdipoR1, but not AdipoR2 in COPD patients and

cultures of human lung epithelial cells (26). APN attenuated A549

cellular apoptosis and ameliorated cytotoxic effects induced by

TNF-a and IL-1b by inhibiting NF-kB transactivation through

AdipoR1. APN increased mRNA expression of the anti-

inflammatory cytokine IL-10 in lung epithelial A549 cells (70). In

summary, these studies provide evidence for a direct effect of APN

on proliferation and inflammation of A549 epithelial cells with a

protective role of APN in lung cells.

Hallmark features of acute lung injury include immune and

endothelial cell activation and loss of vascular integrity (71). When

acute lung injury was induced in control and APN KO mice by

administration of LPS, APN KO mice appeared more ill with

increased BALF protein concentration, increased production of

TNF-a and IL-6, and decreased level of IL-10 in lung

homogenates (53). Compared to the control mice with LPS

injection, increased expression of IL-6, E-selectin, and Nox2 were

detected in endothelial cells of APN KO mice (33). APN localizes to

pulmonary vascular endothelium and APN deficiency leads to an

age-dependent inflammatory vascular phenotype (72). APN

deficiency also impairs mitochondrial function, promotes

endothelial cell activation, and increases the susceptibility to LPS-

induced acute lung injury (73). These finding suggests that

parenchymal cells of the lung may play a role in the protective

actions of APN.
Molecular mechanism of APN action on
lung disease

In obesity-related asthma mice, APN treatment relieved

inflammation and improved AMPK activity with a decrease in

iNOS, Bcl-2, and NF-kB levels in lung (30). Treatment of

Compound C, the AMPK inhibitor, reverses the effects of APN

(30). It has been reported that APN directly binds to AdipoR1 and

mediates signaling by activating AMPK.

M. tuberculosis infection increases the levels of both PPAR-g
and PPAR-a, key regulators of adipogenesis and lipid oxidation in

the lungs (52). In LPS-induced acute lung injury model, NF-kB
activation is APN is increased in APN KO mice (53).

In healthy mice, APN treatment induces the activation of p38

MAPK in Helios− regulatory T cells and upregulates the expression

of AdipoR1 (74). In human epithelial cell line A549, activation of

the APN-AdipoR1 pathway reduces cytotoxic effects inhibiting NF-

kB activation and cytokine gene expression through ERK1/2 and

AKT (70).
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Conclusions and perspectives

There is increasing data suggesting that APN exerts an anti-

inflammatory effect in the lung. Lung cells, including immune

cells, epithelial cells, and endothelial cells, express AdipoRs,

indicating they also have signaling ability upon binding to

APN or an AdipoR agonist such as AdipoRon. Although both

pro- and anti-inflammatory properties have been reported, anti-

inflammatory function of APN was mainly observed in lung cells

(Table 1). APN can trigger the activation of AMPK, PPAR, ERK,

and AKT through its receptors. It is well known that APN

improves different lung diseases; enhancing the signaling

might prove a therapeutic target. However, further research

will clarify the roles and mechanism of APN pathway-

induced protection in lung diseases, including fungal, bacterial,

and viral infection, which could result in novel therapies that

protect against infection, excessive inflammation, and other

lung pathologies.
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TABLE 1 Effects of APN in different lung cell types.

Cell types Cell source Function Reference

Alveolar macrophages APN KO mice APN suppresses high matrix metalloproteinases and TNF-a (63)

Human lung macrophages LPS- and poly (I:C) infection
in vitro

APN inhibits infection-induced production of TNF-a, IL-6, CXCL1 and CXCL8 (64)

Murine macrophage-like cells
RAW264

Cell line APN binds to AdipoR1 and inhibits the TLR-induced NF-kB activity (65)

Lung regulatory T cells Obese mice challenged with
ovalbumin

Allergic inflammation reduces AdipoR1 expression (66)

Human lung fibroblasts HELF TGF-b1-induced fibrosis in
vitro

APN inhibits the production of TNF-a, IL-6, IL-1b and IL-18 (67)

Human lung fibroblasts WI-38 Paraquat-induced fibrosis in
vitro

APN increase AdipoR1 but not AdipoR2 (69)

Airway epithelial cells A549 Cell line APN induces release of IL-8, and IL-10 (26)

APN attenuates apoptosis and inhibits TNF-a and IL-1b by inhibiting NF-kB
activity through AdipoR1

(70)

Endothelial cells APN KO mice with LPS
injection

Increased production of IL-6, E-selectin, and Nox2 is detected (53)
APN, Adiponectin; AdipoR, adiponectin receptors; APN KO mice, Adiponectin-deficient mice; LPS, Lipopolysaccharide.
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