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Toll-like receptors (TLRs) serve as the body’s first line of defense, recognizing

both pathogen-expressed molecules and host-derived molecules released from

damaged or dying cells. The wide distribution of different cell types, ranging from

epithelial to immune cells, highlights the crucial roles of TLRs in linking innate

and adaptive immunity. Upon stimulation, TLRs binding mediates the expression

of several adapter proteins and downstream kinases, that lead to the induction of

several other signaling molecules such as key pro-inflammatory mediators.

Indeed, extraordinary progress in immunobiological research has suggested

that TLRs could represent promising targets for the therapeutic intervention of

inflammation-associated diseases, autoimmune diseases, microbial infections as

well as human cancers. So far, for the prevention and possible treatment of

inflammatory diseases, various TLR antagonists/inhibitors have shown to be

efficacious at several stages from pre-clinical evaluation to clinical trials.

Therefore, the fascinating role of TLRs in modulating the human immune

responses at innate as well as adaptive levels directed the scientists to opt for

these immune sensor proteins as suitable targets for developing

chemotherapeutics and immunotherapeutics against cancer. Hitherto, several

TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical

compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have

been found to confer protection against several types of cancers. However,

administration of inappropriate doses of such TLR-modulating therapeutics or a

wrong infusion administration is reported to induce detrimental outcomes. This

review summarizes the current findings on the molecular and structural biology

of TLRs and gives an overview of the potency and promises of TLR-directed

therapeutic strategies against cancers by discussing the findings from established

and pipeline discoveries.
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1 Introduction

Cancer is the primary cause of human death with one out of six

deaths worldwide (1). According to the World Health Organization

(WHO), nearly 10 million deaths have been recorded in 2020 and

the mortality graph is following an increasing trend (1). Various

types of cancers have been diagnosed through the advancements in

diagnostic methodologies. Regrettably, nearly every part of the

human body is vulnerable to cancer development, and neoplastic

growth in different organs is widely recognized as a major

contributor to the lethal forms of cancer (1, 2). According to the

reported statistics up to 2020, breast cancer, lung cancer, colon and

rectum cancer, prostrate cancer, non-melanoma skin cancer, and

gastric cancer respectively represent 2.26%, 2.21%, 1.93%, 1.41%,

1.20%, and 1.09% of the global disease burden of cancers (3, 4). In

terms of mortality rate, lung carcinoma is reported as the most fatal

type of cancer, followed by colorectal carcinoma, hepatocellular

carcinoma, gastric carcinoma, and ductal carcinoma (3). Moreover,

approximately four thousands children are usually diagnosed with

cancers out of which cervical cancer is considered as one of the

common forms of cancer (3).

With the effectiveness of immunotherapy in addressing various

types of cancer in humans, the recent introduction of TLRs-based

therapies is evidencing exciting results in terms of elongation of

survival, and reduction of metastasis, as well as improving the

overall prognosis of several diseases (5, 6). (Toll like receptors)

TLRs are the pattern recognizing receptors (PRR) that play a fate-

deciding role in various infectious and non-infectious diseases of

humans including cancer (7–9). Due to this knowledge, TLRs are

effective immunoglycoproteins that are activated through four

different groups of ligands including damage/danger-associated

molecular patterns (DAMPs), microbial/microbe-associated

molecular patterns (MAMPs), pathogen-associated molecular

patterns (PAMPs), and xenobiotic-associated molecular patterns

(XAMPs) (10–13).

TLRs act as innate immune receptors and selectively bind to

pathogenic ligands commonly known as PAMPs to elicit an innate

immune response by activating the inflammatory signaling cascade

(8, 9). Up to now, 13 TLRs (TLR 1-13) have been discovered in

mammals (e.g., in mice (TLR1-13) and humans (TLR1-10)) which

are grouped into two categories, i,e. extracellular or cell surface

(TLR1, TLR2, TLR4, TLR5, TLR6 and TLR11) and intracellular

(TLR3, TLR7, TLR8 and TLR9) TLRs (7, 11, 14, 15). Each TLR

possesses a structure with three distinct domains viz. extracellular

leucine-rich repeats (LRR) domain, a transmembrane domain, and

an intracellular TIR domain (8, 9). The extracellular domain of a

particular TLR binds to a specific pathogenic ligand through the

coordinated association of a co-receptor namely MD2 (9, 16).

Binding with the pathogenic ligand results in a conformational

change in the intracellular TIR domain that facilitates the

recruitment of various adaptor molecules, including myeloid

differentiation factor 88 (MyD88), TIR-domain-containing

adapter-inducing interferon-b (TRIF), TIR domain-containing

adapter protein (TIRAP)/MyD88 adapter-like (MAL), and TRIF-

related adaptor molecule (TRAM)) (7). Subsequently, TIRAP

recruits MyD88 with TLR2 and TLR4 in order to stimulate the
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cascade of events in transcriptional activation of nuclear factor-kB
(NF-kB) and/or mitogen-activated protein kinase (MAPKs) (7, 9,

17). On the other hand, the binding of TRIF with the TIR domain of

TLR3/4 induces the proliferation of interferon regulatory factor-3

(IRF-3), NF-kB, and MAPKs (7, 17). The binding of bacterial LPS

with TLR4-MD2 complex elicits a signaling cascade either through

MyD88-dependent or -independent pathways (7, 8). TLRs, except

for TLR3, mediate the downstream signaling through MyD88, a

adaptor protein that ubiquitously expressed in all the immune cells

and several cancer tissues (18–20). Previous findings have

demonstrated that MyD88 and its related signaling pathways play

crucial roles in the progression and development of cancer-

associated cells. Therefore, identifying aberrant MyD88

expression is employed to predict prognosis of various human

cancers (e.g., lymphoid, liver, hepatic, gastric and colorectal

cancers (18, 21, 22). Herein, we present a comprehensive

overview of the molecular and immunological aspects of TLR-

directed chemo- and immunotherapy against different human

cancers by reviewing the significant contributions made till date

by the scientific communities across the globe.
2 TLRs in cancers

The causes of cancers are indeed multiple and multifactorial that

include the effect of exogenous mediators as well as disruption of

homeostasis in the human cell and tissue system (23). However, the

gain-of-function of protooncogenes and loss-of-function of tumor

suppressor genes are the most critical parameters behind the

oncogenic transformation events occurring in the human body (23).

Though, environmental pollution, altered lifestyle, and food habits,

exposure to ionizing and non-ionizing radiations, consumption of

carcinogenic contaminants through food and drinks, infection of

oncogenic viruses e.g., hepatitis B virus (HBV), hepatitis C virus

(HCV), human papillomavirus (HPV), and oncogenic bacteria e.g.,

Helicobacter pylori (H. Pylori), Fusobacterium nucleatum (F.

nucleatum), Clostridium spp, Escherichia coli (E. coli) are the major

causes of neoplastic transformations in humans (23–30). Moreover,

human immunodeficiency virus (HIV) is known as an important

biological predisposing factor for developing cervical cancer which

may increase the risk of this cancer up to six-folds (31, 32).

Nevertheless, several other agents as listed by the International

Agency for Research on Cancer (IARC), and some genetic and

physiological predisposing factors are also considered the risk

factors for various cancers of humans (2, 33). So far, several

prevention and intervention strategies have been implemented and

are currently employed to reduce the harmful impact of cancer (5, 6,

34). Numerous prevention approaches have been recommended for

avoiding or reducing the risk of cancer, and/or prolonging the

survivability of cancer-affected individuals. These include quitting

smoking and limiting alcohol intake, increasing physical activities,

following a healthy diet, and maintaining a healthy lifestyle. On the

other side, anticancer therapy is majorly comprised of the

administration of various anti-tumor drugs/hormones, TLR

agonists, and antagonists as immunomodulators and/or

immunotherapeutics against various types of cancers (6, 35–37).
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As discussed in the previous section, the TLRs belong to the

PRR family recognizing the DAMPs, MAMPs, PAMPs, and XAMPs

to elicit immune responses (11, 12). They are the key immune

sensors for recognizing invading pathogens and are expressed over

the sentinel of immune systems that includes macrophages and

dendritic cells (7, 16, 38). TLRs play a vital role in the initiation and

proliferation of malignant tumors, and in the prognosis of cancer.

They promote the carcinogenesis process through the release of

proinflammatory cytokines and anti-apoptotic factors, recruitment

of immune cells, and proliferation of the cells across the tumor

microenvironment (TME) to create a tumor-friendly milieu (39).

Moreover, TLRs are also associated with angiogenesis,

metastasis and chemoresistance, and poor survivability. For

example, the sensing of bacterial LPS mediates the activation of

TLR signaling pathways resulting in hyperinflammation that

promotes the pathogenesis of bacterial infection-induced

carcinomas including gastric cancer, colorectal cancer, and lung

cancers (40). The succession of events up to chronic inflammation is

one of the hallmarks of the tumorigenesis process. The

overactivation of the inflammatory cells leads to the secretion of

growth and survival factors, overexpression of extracellular matrix

remodeling enzymes, proangiogenic factors, and other reactive

oxygen species (ROS) which in turn facilitate the mutagenesis,

tumor growth, and invasion (5). Initially, TLRs were discovered as

the component of the innate immune defense system but later on,

TLRs were found to be ligated with antibodies to induce the

expression of certain genes related to adaptive immune response

(41–44). As already outlined, the TLR-mediated inflammatory

pathways are routed through the MyD88-dependent and MyD88-

independent pathways leading to the transcriptional activation of

NF-kB signaling pathways (8, 9). Activated NF-kB (p65/p50 dimer)

acts as the transcription factor to induce the secretion of the major

proinflammatory cytokines like interleukin (IL)-1b, tumor necrosis

factor-a (TNF-a), and IL-6 which promote carcinogenesis as well

as metastasis (8, 9, 39). Apart from inducing inflammatory

responses, TLRs also exert an antiapoptotic effect on the tumor

cells that contribute to cancer progression (45–47). Apoptosis is an

ordered and orchestrated biological process regulating cellular

homeostasis by programmed cell death (48, 49). Immortalization

of cells through acquiring resistance to the apoptotic process is

another hallmark of cancer development (50). It is intriguing to

note that, NF-kB is known to regulate the expression of anti-

apoptotic genes and restricts the activation of pro-apoptotic

pathways. TLRs upon binding to their respective ligands can

directly activate NF-kB and/or the proinflammatory cytokines

like IL-1b and TNF-a. The cytokines produced upon activation

of the TLR signaling pathway also induce the activation of NF-kB,
which subsequently triggers the expression of apoptotic factors.

These factors have been found to promote the survival of tumor

cells across different types of cancers (6, 51). The schematic

representation of the cross-talks between the TLR signaling

pathways in the course of initiation and progression of cancer

cells is shown in Figure 1. The roles of different TLRs in promoting

cancer development for different types of human cancers are

discussed in the subsequent sub-sections.
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2.1 Brain and neural cancer

Brain and neural cancer are referred to the tumors associated with

the different parts of the central nervous system including both the

brain and the spinal cord. The different types of cancers associated

with the bra in inc lude astrocytomas , meningiomas ,

oligodendrogliomas, and mixed gliomas as the most common types,

while ependymomas, mixed glial and neuronal tumors, and primitive

neuroectodermal tumors as the less common ones (57). In this regard,

experimental evidence on the increased cell surface expression of

TLR1, TLR2, TLR4, TLR5, and TLR6 in astrocytoma samples

compared to non-neoplastic brain tissues clearly revealed the

involvement of these TLRs in the progression of astrocytoma (58).

In fact, the activation of the TLR canonical pathway through TIRAP-

MYD88 was found to induce the activation of NF-kB followed by the

activation of JUN, and SRF which function as critical transcription

factors to promote cellular proliferation (59). Earlier researchers have

documented TLR2, 4, and 9 for their role in promoting tumors in

glioma cells (60–62). In particular, the expression of TLR4 was

detected at a higher level in U118, U87, A172, and LN229 glioma

cell lines, and such high expression was linked with the regulation of

cell growth and survival of the tumor cells (62). However, TLR4

expression was observed to be lower in glioblastoma (GB) tumors

when compared to astrocytomas, and such downregulated level of

TLR4 was reported both in chemoresistant GB and in macrophages

co-cultured with GB cells (63). This behavior suggests the real strategy

for GB-associated immune escape by the reduction of phagocytic

functions of the macrophages that are normally induced by TLR4 (64).

Considering the intracellular TLRs, TLR9 expression was

detected in the TME after radiotherapy and this finding suggests

the beginning of the cancer recurrence process (65). In particular,

TLR9 is known to play a key role in the formation of glioma stem

cells (GSCs) (38). A study by Zang et al. (66, 67) demonstrated that

adenovirus (ADV) infection could increase GSC formations by

triggering the TLR9-MYD88 signaling in a STAT3-dependent way.

Considering the metastasis stage, TLR2 triggers the NF-kB
activation to signal the induction of the proinflammatory

responses and overexpression of type 1 matrix-bound

metalloproteinase (MT1-MMP) in microglia thereby activating

tumor-released MMP2 that promotes metastasis (60, 61).

In children, medulloblastoma is known as one of the primitive

neuroectodermal tumors with higher incidence and poor prognosis

(68). It is widely heterogeneous, and its histopathological

classification includes four subtypes such as classic, desmoplastic/

nodular, medulloblastoma with extreme nodularity, and anaplastic

(69). Interestingly, TLR7, TLR8, and TLR9 genes were found to

possess a differential expression pattern in most of the common

pediatric medulloblastoma histological subtypes (42). In contrast, a

significant reduction in the expression of TLR7 and TLR8 was

observed in the anaplastic subtype (42). The high expression of

TLR7 was reported to ensure the best survival outcome after 60

months of follow-up than the low TLR7 expression (70).

Considering the prominent and contrasting expression profiles,

TLR7 has been proposed as a prognostic factor of survival in

pediatric medulloblastoma patients.
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2.2 Head and neck cancer

Head and neck cancer includes the cancer subtypes associated

with the oral cavity, pharynx, larynx, nasal cavity, paranasal sinuses,

and salivary glands. Oral and pharyngeal cancer are jointly the sixth

most common type of cancers that occur through the prolonged use

of tobacco through chewing and smoking, and alcohol

consumption (71). In this direction, TLRs are known to play a

vital role in the initiation and progression of oral squamous cell

carcinoma and other cancers. TLR2 is expressed over the

keratinocytes in oral squamous cell carcinoma and this receptor
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particularly regulates the growth and survivability of the tumor cells

by promoting the immune-escape and inhibition of apoptosis (72).

Considering the extent of expression, TLR3 is overexpressed in both

head and neck carcinoma and squamous cell carcinoma (45).

Mutations in the TLR3 genotypes are also found to be linked to

the occurrence and development of carcinoma and are associated

with the poor survival of the affected patients (73). In addition to

TLR3, TLR4 has been reported to be a critical mediator of the

tumorigenesis process in head and neck cancer (43). In fact,

inflammatory cytokines, chemokines, and several other growth

factors generated through the signaling cascade originating
FIGURE 1

Toll-Like Receptors (TLRs) signaling pathways, intra-, and inter-signaling crosstalk circuits, and their regulatory loops. Cell surface expressed TLRs,
including TLR1, 2, 4, 5, 6, 10, and 11, and intracellularly expressed TLRs on endosomal membranes, including TLR3, 7, 8, and 9, recognize their
specific pathogen-associated molecular patterns (PAMPs) to activate their signaling pathways. Small molecules and/or microbial ligands, depicted on
the top of the cell surface expressed TLRs, occupy the extracellular domain of the TLRs. Upon activation, they induce conformational changes in the
intracellular domain to induce a signaling pathway by recruitment of the adaptor molecules (i,e., MyD88, TIRAP, TRIF, and TRAM) followed by
downstream signals leading to the activation of sevral transcriptions factors (i.e., AP-1, NF-kB, IRF-3 or IRF-7). These key transcription factors drive
the expression of several proinflammatory cytokines as well as antiapoptotic factors. Pro-inflammatory cytokines can promote cancer progression in
three ways; firstly through facilitating immortalization by activating the proapoptotic factors, secondly recruiting the immune cells for creating a
tumor-friendly microenvironment, and lastly by expanding the blood vessel to maximize the chances of metastasis (52–55). The image has been
created with Biorender.com (56).
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through the TLR4-MyD88-NF-kB axis regulate tumor growth as

well as infiltration of the immune cells (71). In oral carcinoma,

upregulation of TLR4 expression is found and such elevated level of

TLR4 drives the transition of epithelial to mesenchymal cells to

promote metastasis, cancer differentiation, and proliferation leading

to poor survival and increased disease severity (74). Several studies

suggested that the expression of TLR5, 7, and 9 is associated with

poor differentiation and poor prognosis of oral cell carcinoma (71,

75, 76).
2.3 Esophageal cancer

Esophageal cancer is the eighth most common cancer globally

with predominant cases of esophageal squamous cell carcinomas

(ESCC) and esophageal adenocarcinoma (EAC). The normal

human esophageal epithelial cells show a basal-level expression of

TLR2, 3, 4, and 7 (77). However, a significant increase in the

transcriptional expression of TLR3, TLR4, TLR7, and TLR9 is seen

in ESCC (50). On the other side, elevated expression of TLR1, TLR2,

TLR4, and TLR6 are usually observed in case of EAC (78, 79). Ex

vivo experiments have shown that LPS stimulation of TLR4 in

Barrett’s esophagus (BE) epithelial cell lines leads to an increase in

cyclo-oxygenase 2 (COX-2) activity and an inflammatory response

(65, 66, 80). Furthermore, activation of the TLR4-MyD88-TRAF6-

NF-kB axis has been found to increase cell proliferation in EAC (65,

66). A high expression level of TLR5 was also found during the

progression frommetaplasia-dysplasia to EAC, while the expression

of TLR9 was associated with advanced disease, poor differentiation,

and metastasis (81). Further, high TLR3, TLR4, and TLR9

expression were also observed in stromal cells of ESCC and these

were found to be associated with lymphatic metastasis, whereas the

increase expression of TLR7 and TLR9 were noted to be linked to

the advanced clinical stage of the disease (82, 83).
2.4 Lung cancer

Lung cancer is the most rapidly growing malignant tumor and

currently contributes to the second largest cancer-related death

worldwide. Non-small cell lung cancer (NSCLC) is the

predominant subtype of lung cancer and is associated with 80%

of cases (84). The physiological architecture of the transformed lung

tissue itself indicates the involvement of inflammation in the

oncogenesis process. Similar to other human cells, the airway

epithelial cells of human lungs also possess various TLRs in their

cell membrane and cytoplasm (14, 85, 86). These TLRs are known

to play a role in amplifying inflammatory processes that contribute

to tumorigenesis. The epigenetic regulation of TLR2 and TLR3 by

DNA methylation has been reported to cause transcriptional

activation leading to increased disease susceptibility and severity

in lung cancer patients (84). On the other side, activation of TLR4

stimulated by the LPS has been seen to induce the activation of

several vital cancer-critical signaling pathways that include the

primary TLR4/NF-kB signaling pathways for inducing anti-

apoptotic response and PI3K/Akt signaling pathways for
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uncontrolled cell division (37, 84). These signaling events are also

implicated in the increased proliferation of lung carcinoma as well

as poor disease survival (37, 84). The roles of different TLRs in the

development, progression, and immunopathology of lung cancer

have been extensively studied at the level of cytokines and

chemokines. It is intriguing to note that the tumorigenesis and

metastasis of different forms of lung carcinoma are principally

mediated by the TLR2, TLR4, and TLR9-guided production of

anti-inflammatory cytokines such as transforming growth factor-b
(TGF-b), and IL-10 and growth factors such as vascular endothelial

growth factor (VEGF) and fibroblast growth factor 2 (FGF2) (87).

Moreover, the extracellular matrix remodeling and EGFR-mediated

signaling axes induced by TLR2 and TLR4 create an optimal

condition for the progression and metastasis of lung carcinoma

(88). In particular, the ECM remodeling leads to the release of

proteins such as fibrin and hyaluronan that may act as DAMPs for

the PRRs including the TLRs to amplify the intensity of various

inflammatory responses (89). Experiments conducted using human

lung cancer in-situ and human lung cancer cell lines (e.g. A549)

revealed that two intracellular TLRs namely TLR7 and TLR8

primarily signal the activation of the NF-kB signaling pathway,

upregulation of the antiapoptotic protein Bcl-2 and the increase of

tumor cell survival and chemoresistance processes (90). Many

proteins, particularly NF-kB can regulate the non-canonical Wnt

pathway byWNT5A ligand that functions as a “bridge” between the

TLRs and Wnt signaling (91). Generally, WNT5A is an oncogenic

protein involved in invasion and metastasis processes that increases

its expression in human bronchial epithelial cells after exposure to

cigarette smoke (92, 93). At the same time, tobacco smoke could

induce the expression of TLRs in macrophages becoming both a

very potent inducer of lung cancer and a trigger factor contributing

to the unbalancing of Wnt/TLR (94, 95). TLRs have been discovered

to be potential prognostic markers for lung cancer. Particularly in

early-stage disease (i.e., stage 1), NSCLC and adenocarcinoma

(ADC) patients display high mRNA expression of TLR1-10 and

such overexpression is linked with improved overall survival of the

patients (96). Moreover, a study using NSCLC patient serum

demonstrated a significant correlation between the low level of

soluble TLR4 with the poor survival of early-stage NSCLC (63).

These aforementioned studies collectively support the proposition

of TLRs as critical mediators and prognostic markers for NSCLC

(97). In contrast, in advanced-stage NSCLC patients, an elevated

level of TLR7 was reported to be strongly associated with a poor

clinical outcome of NSCLC (64). Moreover, the outcomes of the

mentioned study suggested that TLR7 could promote an immune

suppressive microenvironment that facilitates the promotion of the

immune evasion capacity of the tumor cells (98). Furthermore,

elevated level of TLRs is also known to induce the expression of

several pro-tumorigenic microRNAs (miRNAs) in the lung tissues.

For example, a high level of TLR4 and TLR9 was found to be

correlated with an increase abundance of miR-21 and miR-26a

expression respectively (65). In fact, the upregulation of miR-21 and

miR-26a was found to promote and increase the weight and size of

the tumor mass in mice as well as the proliferation and migration of

primary human lung cancer (99). An opposite behavior was

observed for miR-15a/16 and TLR1 where overexpression of these
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miRNAs was seen to enhance the radiation sensitivity and

overcome the radioresistance of the lung cells by regulating the

TLR1/NF-kB signaling pathway (100). These results suggest the

possibility of devising novel therapeutic strategies for lung cancers

by either regulating the expression of the miRNAs by targeting

TLRs or by modulating miRNA expression.
2.5 Breast cancer

Breast cancer is the most common type of cancer in America

and is second in cancer-related deaths of women. It is a

heterogeneous disease with multiple characters and clinical

outcomes. Alike other cancers, mounting evidence suggests an

important association between TLRs and the occurrence and

development of breast cancer. TLRs play a predominant role in

the TME of breast cancer and its pathogenesis. Studies conducted in

malignant MDA-MB-231 cells suggest that the expression of TLR2

decreases up to 10-folds (67). However, breast cancer cells display

activation of NF-kB and upregulation of expression of IL-6, TGF-b,
VEGF, and matrix-metalloproteinase 9 (MMP9) (101). This

evidence does suggest the involvement of other TLRs in the

tumorigenesis process. In this context, TLR3 has been found to

play an immunosuppressive role in the progression of cancer and

survival, but its overexpression leads to increased metastasis (102).

Moreover, dysregulation of TLR2 has been reported as a prognostic

biomarker in breast cancer by implying a dual role in carcinogenesis

and chemoresistance (103). Experimental stimulation of TLR2 in

breast cancer stem cells (CSC) induces the activation of the MyD88/

NF-kB and Akt pathways following the secretion of several

cytokines (TGF-b and IL-6) and growth factors (epidermal

growth factor (EGF)) that enable the cancer cells to survive and

invade the nearby tissue or blood vessel (104). This behavior is in

line with another observation that showed an increase in the

expression of TLR2 in breast cancer lines endowed with high

metastatic ability (101). The chemoresistance ability of TLR2 is

expressed with a low relapse-time in anticancer chemotherapeutic-

treated breast cancer patients and with a decrease in the sensitivity

of several breast cancer cell lines to doxorubicin (103). In particular,

the doxorubicin-induced immunogenic cell death releases TLR2-

activating DAMPs, such as HMGB1, able to protects breast cancer

cells from chemotherapy and promotes metastasis formation (105).

Regarding TLR3, it plays an antithetical role in the progression of

breast cancer and survival (106). The overexpression leads to an

increase in metastasis and promotes both the CSC phenotype

through the activation of Wnt/b-catenin and NF-kB signaling

pathways and the mammosphere-like structure in breast cancer

cells (107). On the contrary, upon stimulation with its ligand Poly(I:

C), TLR3 induces a strong TRIF-dependent production of IFN-b,
NF-kB activation, and finally the release of the pro-apoptotic

cytokines and cytokine (IL-1b)-driven activation of the caspases

(e.g. caspase-1) (102). Notably, TLR4 is highly overexpressed in

breast cancer cells and promotes inflammatory response by

stimulation from cellular ligands (e.g. HMG1) and results in

increased cell proliferation, and lymph node metastasis, regulating

the expression of integrin avb3 results in the adhesion and
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invasiveness of metastatic breast cancer cells (108, 109). In

particular, it was observed that the expression levels of TLR4 and

MyD88 are related to the metastatic and invasive potential of the

breast cancer cell type. As we know TLR4/MyD88 signaling plays

vigorous roles in several cancers. Wu et al. (93) showed that the

expression levels of TLR4/MyD88 were positively correlated with

the metastatic potential of breast cancer cells and tumors. These

group further confirmed that the expression of the TLR4 is the key

regulatory factor that determines invasiveness of cancerous cells

from breast tissue (110). Additionally, the expression level of

MyD88 alongside TLR4 was also found to be positively correlated

with axillary lymph node metastasis and histological-grade breast

cancer development (110).
2.6 Pancreatic and Hepatocellular cancers

Pancreatic cancer is the most lethal type of gastrointestinal tract

cancer with the highest morbidity and mortality rate (111). The

primary risk factors of pancreatic ductal adenocarcinoma (PDAC)

include patient age, smoking status, obesity, diabetes, and status of

chronic pancreatitis. These, subsequently lead to chronic

inflammation which stimulates the TLR signaling pathways. TLR2

and TLR4 are usually found to be overexpressed in the pancreatic

carcinomas tissues leading to poor disease prognosis and increased

metastases (112). Apart from the cell surface TLRs, intracellular

TLRs also play a fate-deciding role in the oncogenesis of pancreatic

cancer. Viral infections cause stimulation of TLR7 and TLR8

through the viral ssRNA and/or other nucleotide ligands leading

to immune cell activation and proliferation (78). Notably,

inflammatory cytokines and other growth factors generated

through TLR7 and TLR8 resulted in increased progression of

metastatic cancer cells and downregulate the cell cycle regulators

including cyclin D1, p16, PTEN, and the upregulation of p27, p53,

p21, cyclin B1, PPARg, and TGF-b (113, 114).

Hepatocellular carcinoma (HCC) represents the most frequent

visceral neoplasm, occupying 70–90% of all primary liver cancer,

and is characterized by heterogeneous malignancy, which happens

via distinct pathway activation and molecular alterations (115, 116).

Actually, the major treatment strategies against HCC are surgery,

transplantation, and percutaneous ablations (117). The TME plays a

critical role in the initiation, growth, and dissemination of HCC

(118). An emerging evidence suggests a correlation between TLR

activation and immune cell infiltration in HCC (119).

Consequently, the dysregulation of the TLRs in HCC might

contribute to tumor progression as observed by Liu et al. (120),

where they identified several HCC-specific TLRs. In particular, a

TLR-based gene signature (including MAP2K2, IRAK1, RAC1,

TRAF3, MAP3K7, and SPP1) was identified in order to create an

advantage in tumor prediction and to assist clinicians in selecting

personalized therapy for HCC patients. To date, most studies have

focused on the involvement of TLR2, 4, and 9 in the development of

HCC. TLR4 and 9 have been reported as the critical factors in the

progression of non-alcoholic fatty liver disease (NAFLD) and

involve in mediating neutrophil dysfunction in cases of alcoholic

hepatitis (121). Despite not receiving a thorough investigation, the
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TLR2 plays a critical role in liver disease progression, HCC

development, and maintenance. Recently, a strong positive

correlation was reported between cell proliferation index, the

cytosolic expression, and nuclear translocation of TLR2 and

apoptotic marker Caspase-3 expression particularly in HCC

patients (121). Previously, it was shown how miR-143

downregulates TLR2 expression in hepatoma cells, leading to the

inhibition of hepatoma cell proliferation (122). Additionally, TLR2

and TLR9 are involved in alcohol-induced liver injury by inducing

CXCL1 and promoting infiltration of neutrophils (121).

Investigations of the role of TLRs have uncovered various

regulatory mechanisms that contribute to the increased

production of pro-inflammatory and oncogenic molecules like

cytokines (e.g., NANOG, Caspase-1, Ephrin-A1, NO, and BCL6).

Thus, dysregulation of TLR4 has been associated with invasiveness

and metastatic potential, as well as poor prognosis for individuals

with HCC (123–125). Recent research demonstrated that high

expression of TLR4 was associated with microvascular invasion in

HCC (126). These observations indicate that TLR4 displays critical

roles in HCC progression and the ability of miR-122 to modulate

the innate immunity by blocking TLR4, which underlines the

important role of this TLR in hepatocarcinogenesis (127).

Moreover, TLR4 mRNA expression has been shown positively

correlated with IL-6 and IL-10 mRNA expression and this

correlation was stronger in obese HCC patients (128).

Additionally, alongside TLR9, TLR7 has been identified as a

pivotal regulator in tumor progression and is highly regulated in

human HCC tissue (129). Their inhibition with oligonucleotide

IRS-954 or chloroquine could potentially be used as a novel

therapeutic approach for HCC development and/or progression.

Finally, the TLR5 could represent an independent prognostic

marker in HCC. Its localization, cytoplasmic or nuclear, is

associated with high or poor 5-year overall disease-specific

survival, respectively (130). These findings suggest a possible link

between the TLR5 expression and the prognostic risk factors Ki67

and p53 in HCC progression (131).
2.7 Gastric cancer

Despite the declining incidence, gastric cancer (GC) is one of

the most common malignancies worldwide. Helicobacter pylori (H.

pylori) is by far the most important risk factor for GC development

which is associated with early-onset cases (132–136). Although H.

pylori infection triggers chronic inflammation by mediating

immune regulators through pro-tumorigenic activities, its actual

molecular pathogenesis in GC development is largely unknown. It is

believed that H. pylori-associated carcinogenesis initiates gastric

mucosal disturbance followed by chronic gastritis through a

plethora of different signal transduction processes (137–139). In

this scenario, diverse ligands of microbial and host cells have been

identified to orchestrate various inflammatory responses leading to

an interplay between H. pylori-induced chronic inflammation and

the inflammatory milieu of the TME. Previous research has shown

that the gastric mucosal immunity reacts to H. pylori infection by
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inducing the expression of TLRs, resulting in an inflammatory

microenvironment generation (140, 141). Their involvement is

essential for H. pylori recognition and subsequent innate and

adaptive immunity against this bacterium. The human immune

system crosstalk with H. pylori through several PRRs has been

extensively reviewed by Cheok et al. (142).

Given their complexity roles in tumor immunity as either pro-

tumor, anti-tumor, or dual effects, several TLRs (i.e., TLR2, 3, 4, 5, 7,

and 9) have been reported to be dysregulated in human GC cells

(142). Among them, increasing expression levels of TLR2, 4, 5, and 9

have been reported to be associated with cancer progression from

normal gastric mucosa to pre-cancerous lesions, gastric dysplasia, and

ultimately to gastric adenocarcinoma. Their overexpression suggests

that TLRs may play a specific role in GC development (143).

Throughout the last decade, TLR2 and TLR4 have turned into an

emerging candidate, that acts as critical innate immune sensor to

trigger the inflammatory response to many ligands of microbial and

their targeted host. Notably, several studies have shown that TLR1,

TLR2, TLR4, and TLR10 gene polymorphisms are associated with

increased GC risk, and its expression is significantly raised in H.

pylori-positive gastritis patients as well as GC patients (144–147).

Some of these TLRs, TLR1, 2, 4, 5, and 6, recognize different

membrane components like lipids, lipoproteins, and proteins,

binding their ligands on the cell surface, while others, including

TLR3, 7, 8, and 9, play a major role in the recognition of microbial

nucleic acids, which are identified in the extracellular vesicles. It has

been shown that TLR2, 4, and 5 subtypes are critically involved in

immune responses to bacterial infections, being abundantly expressed

in immune cells. In general, TLR2 recognizes PAMPs mainly from

Gram-positive bacteria, TLR4 is the receptor for Gram-negative

bacterial lipopolysaccharide (LPS) and TLR5 recognizes bacterial

flagellin (148). Moreover, TLR3 (regarded as a potential therapeutic

target for multiple cancers), TLR5 (an effective target for antitumor

immunotherapy), and TLR9 (involved in both anti-tumor and pro-

tumor responses) are overexpressed in GC that lead to increased cell

proliferation, dysplasia, metaplasia, lymph node metastasis, and poor

survival (149, 150). Lastly, TLR7 and TLR8 were also shown to

recognize purified H. pylori RNA that mediates the IL-6/IL-12

response, whereas TLR9 recognizes unmethylated CpG DNAs.

Additionally, there is growing evidence that host-derived RNA

species (e.g., miRNAs) could interact with TLRs (151, 152). Being

involved in regulation at a post-transcriptional level as either

oncogenes or tumor suppressors, miRNAs can either inhibit the

translation or facilitate the cleavage of their targeted mRNA.

Moreover, miRNAs gained great interest for their potential use as

biomarkers in several human diseases (153–155). It has been

reported that induction of miRNAs by TLR ligands could affect

TLR pathway activation and initiate the signaling cascade of

immune response (e.g., through stimulating NF-kB signal

downstream to TLRs) (156, 157). Given the importance of LPS–

TLR interactions in H. pylori pathogenesis, miRNAs serve multiple

regulatory functions in infection pathogenesis. Accordingly,

differential expression of several miRNAs (e.g., miR-9, miR-105,

miR-146a, miR-132, and miR-212) have been reported to negatively

regulate TLR2-induced cytokine production, thereby fine-tuning
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the immune system (156–158). Therefore, the interactions between

miRNAs and TLRs as a common language of “cell-to-cell

communication” are associated with the prognosis for and

progression of multiple human diseases, including cancer.

As already outlined, H. pylori-associated pathogenesis is linked

to the severity of the host inflammatory response. Although the

actual role of TLRs in LPS recognition is still contradictory, the

binding of H. pylori LPS with TLR2 and TLR4 initiates the

proinflammatory responses to develop the early stages of GC.

After bacterial recognition, both TLR2 and TLR4 are activated in

cooperation with the adapter molecule MyD88, triggering the

MAPK signaling pathway. Thereafter, these signaling cascades

activate the transcription factor NF-kB and drive the secretion of

distinct cytokines i.e., proinflammatory cytokines including IL-1b,
IL-2, IL-6, IL-8, and IL-12 (140, 159). Smith et al. (160) reported

that as a classic TLR2 ligand, H. pylori LPS activates NF-kB and

transcription from the IL-8 promoter and induces expression of a

discrete pattern of chemokines such as CXCL1, CXCL2, CXCL3,

and CCL20 through pathways involving MyD88, MAL, IRAK1,

IRAK4, TRAF6, IKKb, and IĸBa (160).

TLR5 is well-known for its role in recognizing bacterial flagellin,

the bacterial structural protein that is expressed on the surface of

epithelial cells as well as some innate immune cells. This propriety

enables H. pylori to move between the mucus layer of the stomach

and the surface of epithelial cells, therefore playing a key role in

initial colonization (161). Previous research showed that live H.

pylori or its purified flagellin activates the NF-kB pathway through

binding to TLR5. Significant upregulation of TLR5 is also detected

in THP-1 cells following H. pylori infection, causing secretion of IL-

8 and TNF-a, which initiate inflammation (142).

The cag pathogenicity island (cagPAI) of H. pylori encodes a

type IV secretion system (T4SS) which is associated with the gastric

disease; being Cag3, CagM, CagT, CagX, and CagY proteins as the

T4SS core complex of this bacterium (162). The T4SS-pilus protein

CagL of H. pylori interacts directly with TLR5 (163). Enrolled in

bacteria–host cell interface, T4SS pilus, a needle-like surface

appendage is induced upon host contact resulting in better

bacterial proliferation and persistent colonization of the body

(164). Recent studies have reported that components of T4SS,

such as CagL and CagY, in pathogenic H. pylori strains can serve

as TLR5 agonists in driving the innate immune activation and

recruitment of T helper 1 (TH1) cells (15, 150). CagY, a pilus-

associated protein, has been identified as a strong flagellin-

independent agonist of TLR5 leading to fundamental innate

immune responses mediated by this pathogen (162). However,

due to the low intrinsic activity of H. pylori flagellin, demands

regarding which bacterial factors activate TLR5 are mounting.

In summary, GC is associated with heterogeneous

pathophysiological criteria concerning anatomical location and

histological subtypes. Among several associated factors (e.g.,

gastro-esophageal reflux, atrophic gastritis, male gender, smoking,

and diet), its interaction with H. pylori mediates the production of

inflammatory cytokines and chemokines. The binding of LPS of H.

pylori with TLRs (TLR2, 4, and 5) initiates the proinflammatory

responses that give rise to GC. Although their actual role in the

evolution of gastritis remains unclear, TLRs have been associated
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with several cellular processes such as increased cell proliferation,

dysplasia, metaplasia, lymph node metastasis, and poor survival in

GC (149, 150). Overall, the existence of diverse bacterial ligands

recognized by the TLRs, their complex role in innate and adaptive

immunity, microbial interactions with other epithelial receptors of

the gastrointestinal tract, host genetics, and environmental

variables, require more investigations to better understand the

causal role for specific TLRs in GC.
2.8 Colorectal cancer

Colorectal cancer (CRC) is the third most common cancer

worldwide and is second in causing cancer-associated deaths (165).

Chronic inflammation that maintains a favorable TME and

systemic immune response are the key factors in the neoplastic

transformation of colon tissue (111, 166). The intestinal epithelium

expresses several TLRs that play a dual role in pro-tumor and/or

anti-tumor activities in the case of CRC. Being enrolled in

microbial-induced proteins, several TLRs are shown to be

expressed in most epithelial cell lineages; among them, TLR1, 2,

and 4 bind to MyD88 followed by activation of NF-kB by binding to

interleukin-1 receptor-associated kinases (IRAK1, 2, and 4 (167).

So far, the dysregulated expression of several TLRs has been

reported in CRC patients either in cancerous or noncancerous

tissues (168). The upregulation of TLR2 and TLR4 genes has been

a subject of considerable interest in CRC research. Their expression

levels vary depending on the stage of the disease, with higher

expression levels being associated with more advanced stages of

CRC (169–171). TLR2 shows differential expression across the

different clinicopathological conditions of colon carcinoma. It

increases tumor formation by elevating the level of IL-6, IL-17A,

and STAT3 (51). However, in colitis-induced cancer, TLR2 shows

antitumor activities (172, 173). In this context, TLR4 plays an active

role in the colon by maintaining immune homeostasis. A study by

Wang et al. (174) suggested that the overexpression of TLR4 and

MyD88 in the gut tissue resulted in gut inflammation and

infiltration of immune cells that contributed to the tumorigenesis

and progression of CRC with a higher degree of metastasis and poor

survival. In stromal fibroblast, the expression of TLR4 is associated

with a poor prognosis of CRC (174).

As already outlined, TLRs, particularly TLR2 and 4, are highly

expressed in human rectal adenocarcinoma cells and serve as

receptors for PAMPs. These two TLRs are the best-characterized

PRRs which identify either invading pathogens outside the cell and/

or intracellular pathogens engulfed in the endosomes or lysosomes

(8, 152). Without going into the details of their pathogenesis, it has

been identified that colonic adenomas and adenocarcinomas are

colonized with diverse microbiota that play fundamental roles in

intestinal homeostasis and disease progression. Therefore, it is

believed that alterations in the gut microbiota followed by their

excreted metabolites are closely related to CRC progression (153,

167, 175, 176). Indeed, this alteration may affect the expression

pattern of TLRs on the epithelial cell surface leading to increased

intestinal permeability and distinct features of “microbial

dysbiosis”. Thus, any imbalance in the composition of the gut
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microbiota, as well as epithelial cells, may disturb immune

homeostasis such as TLR signaling pathways, leading to

uncontrolled inflammation and disease progression (40, 177–180).

For example, Enterotoxigenic Bacteroides fragilis, Fusobacteria spp.,

and pks+ E. coli have been identified in association with the

development of adenoma and/or CRC (26, 27, 181, 182).

However, regardless of accumulating evidence of microbial

composition in CRC pathogenesis, a better understanding of the

crosstalk between tumor-associated bacteria and TLRs is required

(40, 177). Overall, the mechanistic insights of the oncogenic

transformation of normal colon tissue to CRC via activation of

the TLRs still need some attention from the scientific communities.
2.9 Ovarian cancer

Ovarian cancer is a highly devastating and life-taking

gynecological cancer characterized by the neoplast ic

transformation of ovarian epithelial, stromal, or germline cells

(183). The ovarian cancer microenvironment is highly

immunosuppressive. It consists of elevated levels of IL-10, IL-4,

and TGF-b, thereby suppressing the macrophages and dendritic

cells and increasing VEGF (184). Several studies suggested the

overexpression of TLR2, 3, 4, 5, and 9 throughout the

carcinogenic ovarian epithelial cells which induce the metastasis

process (185–188). The TLRs are expressed over the normal ovarian

epithelial cells and induce inflammatory responses thereby eliciting

the neoplastic transformation of the ovarian tissues. TLR3 mediated

immune responses by triggering tumor cell growth and survivability

and are associated with cancer progression (184, 188). Instead,

TLR4 is stimulated through the binding of LPS over the tumor cells

to increase the production of inflammatory cytokines that lead to

inhibiting the ability of CTLs for cancer cell recognition and death

(185, 189). TLR4 overexpression is associated with its

immunosuppressive role in disease progression and increased

cancer cell survival (189). Studies showed that the increased

expression of TLR4 in ovarian cancer results in resistance to

several chemotherapeutic drugs, including Paclitaxel (187).

Moreover, the high expression of TLR9 in ovarian cancers leads

to increased disease severity, poor survival, increased tumor grade,

and metastasis (34, 186). The role of different TLRs across different

cancers is summarized in Table 1.

Intriguingly, TLR gene polymorphisms, which alter the activities

of the TLRs, result in the alteration of manifestations of many

infectious and inflammatory diseases, including cancer (8, 9). For

instance, the occurrence of GC has been associated with TLR4

polymorphisms viz., rs4986790 and rs4986791 (200). Similarly,

TLR3 polymorphism rs5743312 has been found to increase the

occurrence of oral cancer (201). A recent study by Hu et al. (202)

revealed a relationship between TLR4 polymorphism and pan-cancer

through an integrated omics approach describing that TLR4 gene

expression is remarkably correlated with the expression of DNA

methyltransferase 2 (DNMT2) and DNMT3B in the course of skin

cutaneous melanoma and stomach adenocarcinoma.
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2.10 Hematologic cancers

Hematologic cancers include several clonal malignancies (e.g.,

lymphoma, leukemia, and multiple myeloma) that arise from cells

of the immune system at different stages of their differentiation

process, starting from blasts to memory cells. Lymphomas are

proliferative diseases of lymph nodes or extra-nodal lymphatic

tissue, arising from B, T, or NK cells at distinct maturation and

differentiation stages (203, 204). Lymphomas are divided into non-

Hodgkin’s lymphoma (NHL), which contains the most prevalent

forms of lymphomas, and Hodgkin’s lymphoma (HL), which is

categorized into a classical (cHL) (represents approximately 95% of

patients) and a nodular lymphocyte predominant form (NLPHL)

(for only 5% of cases) (205, 206).

Accumulating evidence reported the aberrant expression of

TLRs on the transformed cells of the immune system to

contribute to the development of hematopoietic and related

malignancies (207, 208). TLR gene variants have been reported as

having potential functional relevance associated with lymphoma

etiology and prognosis. By meta-analysis study of TLR gene

polymorphisms in NHL, it was reported that variations in the

TLR10, TLR1, and TLR6 regions are associated with NHL risk. In

particular, two SNPs within the region, rs10008492, and rs4833103,

were significantly associated with NHL and correlated to TLRs

expression (194). Furthermore, the TLR2-rs4696480 variant has

been shown to increase the risk of follicular lymphoma (FL),

whereas it decreases the risk of chronic lymphocytic leukemia

(CLL) (195). TLR4 Asp299Gly SNP has been related to

lymphoma by elevating the risk for MALT lymphoma; an

increased risk of HL and T-NHL. Moreover, among several TLRs

expressed by Mantle cell lymphoma (MCL) cells, TLR4 is reported

among the highest-expressed molecules. LPS upregulates the

secretion of inflammatory cytokines leading to increased

proliferation of MCL cells. Therefore, TLR4 signaling could

trigger a signaling cascade resulting in MCL growth and evasion

from the immune system (197). Other studies have also shown that

TLR9-rs5743836 SNP is also associated with an elevated risk for

NHL (198). This SNP has been recently reported to be linked with

the Mutu-I and BJAB Burkitt lymphoma (BL), resulting in

enhanced NF-kB activation upon TLR9 triggering (199). The

association between TLR9-rs352140 SNP and cell death responses

of BL cells highlights its potency as a biological marker and an anti-

cancer agent (synthetic TLR9 agonists). Acute lymphoblastic

leukemia (ALL) is another hematologic malignant disorder of

lymphoid progenitor cells, and it is due to various significant

genetic lesions in B/T-precursor-stage lymphoid cells, including

mutations that induce aberrant cell proliferation and lymphoid

differentiation arrest (209–211). As the most common pediatric

malignancy, the B-cell precursor acute lymphoblastic leukemia

(BCPALL) expresses detectable alterations in costimulatory

molecule expression of TLR2, TLR7, and TLR9, being TLR2

ligands PAM3CSK4 and PGN, the most powerful effect on anti-

ALL immune responses (212). In another study, the SNPs analysis

on patients with newly diagnosed B-cell acute lymphoblastic
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TABLE 1 Involvement of TLRs in inducing susceptibility and resistance to different human cancers.

Cancer(s) Mode of involvement of TLRs
Associated

TLRs
Pathological consequences and

contributing factors
References

Brain and
Neural cancer

Activation of NF-kB signaling and modulation of p38/
MAPK pathway causing cell growth and viability;
induce overexpression of membrane type 1 matrix-
bound metalloproteinase (MT1-MMP) in microglia

activating tumor-released MMP2 leading to metastasis

TLR2
Increased expression in glioma biopsies; decrease

patient survival; promote tumor growth
(60–62)

Promotion of tumor growth mediated via the
inflammatory signaling pathways

TLR4

Higher protein expression in U118, U87, A172,
and LN229 glioma cell lines, regulation of cell

survival, immune infiltration, and tumor
progression

(62)

Trigger TLR9-MYD88 signaling in a STAT3-dependent
way

TLR9 Glioma stem cell (GSC) formation (67)

Head and neck
cancer

Expressed over the keratinocytes in oral squamous cell
carcinoma

TLR2
Overexpressed significantly across the primary

tumors, regulate apoptosis of tumor cells
(72)

The mutated genotype of TLR3 is associated with the
development of carcinoma

TLR3
Overexpressed in head neck and oral squamous

cell carcinoma; poor survival
(73)

Induction of signaling cascade mediated via MyD88
inducing secretion of inflammatory cytokine,

chemokines, and epithelial to mesenchyme transition
TLR4

Higher expression, tumor differentiation and
proliferation, poor survival, and disease severity

(71, 74)

Promotion of tumor growth mediated via the induction
of inflammatory signaling pathways

TLR5, 7, 9

TLR5 expression is associated with a lower grade
of tongue cancer; TLR7 is upregulated in oral
carcinoma showing poor differentiation and
prognosis; TLR9 shows higher expression in
primary oral cell carcinoma but lower across

squamous cell carcinoma

(71, 75, 76)

Esophageal
cancer

Expressed in esophageal squamous cell carcinoma
mediated through the activation of NF-kB

TLR3, 4, 7, and
9

overexpressed in esophageal squamous cell
carcinoma; TLR3, 4, and 9 associated with lymph
node metastasis; TLR7 and 9 expressions related to
poor histological grade; TLR4 stimulation by LPS

increases migration and adhesive properties

(79)

Stimulation of TLR4 with LPS resulted in NF-kB
activation and increased IL-8 secretion

TLR1, 2, 4 and
6

Overexpressed in EAC; TLR9 expression is
associated with metastasis, poor grade of

differentiation, and prognosis
(78)

Lung cancer

Epigenetic regulation and transcriptional activation.
Production of anti-inflammatory cytokines

TLR2, 3 Promotes tumor growth and proliferation (84)

Activation by LPS stimulation leads to activation of the
PI3K/AKT signaling pathway. Production of anti-

inflammatory cytokines. Extracellular matrix remodeling
and EGFR-mediated signaling

TLR4

increase in the proliferation of human lung
adenocarcinoma cell line A549; upregulating anti-
apoptotic protein Bcl-2 and downregulating pro-

apoptotic protein; increased metastasis

(37)

Activation of the NF-kB signaling pathway.
Upregulation of anti-apoptotic protein Bcl-2

TLR7, 8
Increase in tumor cell survival and

chemoresistance
(90)

Breast cancer

Promote tumor growth mediated via the inflammatory
signaling pathways. Activation of the MyD88/NF-kB

and AKT pathways. Release of TLR2-activating DAMPs,
such as HMGB1

TLR2

TLR2 shows ten-fold lower expression in
malignant MDA-MB-231 cells; TLR2 promotes the

survival, invasion of these cancer cells, and
induction of chemoresistance

(101–104)

Induction of strong TRIF-dependent production of IFN-
b, together with NF-kB activation. Activation of Wnt/b-

catenin and NF-kB signaling pathways
TLR3

Release of pro-apoptotic cytokines and activation
of caspases. For example, activation of caspase-1

from procaspase-1 is induced by IL-1b. Increase of
metastasis and promotion of the CSC phenotype

and mammosphere-like structure

(102, 107)

LPS triggered increased expression of TLR4 downstream
MyD88 signaling cascade to felicitate inflammatory

responses
TLR4

Overexpressed, increased cell proliferation, lymph
node metastasis; regulate expression of integrin
avb3-mediated adhesion and invasiveness of

metastatic breast cancer cells

(108)

(Continued)
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TABLE 1 Continued

Cancer(s) Mode of involvement of TLRs
Associated

TLRs
Pathological consequences and

contributing factors
References

Induction of inflammatory responses through binding of
TLR agonist(s)

TLR5, 9
Overexpressed breast cancerous cells promote

cancer progression and poor survival
(109)

Pancreatic
cancer

TLR2 binds with
HMGB1 and activate PI3K/Akt as well as Wnt/b-
catenin pathways for generating tumor-promoting

milieu

TLR2
Overexpression; poor progression of disease;

increased metastasis
(112)

Activation of NF-kB and modulation of gene expression
such as MMP2,9 in response to stimulation by LPS,

leading to the expansion of the tumor cells
TLR4

Upregulation of TLR4 resulted in cancer
proliferation, increased angiogenesis, metastasis,

and disease progression and severity
(114)

Stimulation by viral ssRNA and/or ligand leads to
immune activation and proliferation

TLR7, 8

Increased in the progression from PanINs to
metastatic cancer; downregulation of cell cycle

regulators including cyclin D1, p16, PTEN and the
upregulation of p27, p53, p21, cyclin B1, PPARg,

and TGF-b; resistant to chemotherapy

(113, 114)

Hepatocellular
cancer

Nuclear translocation and activation of VEGF and
Caspase-3 genes

TLR2
Upregulation of TLR2 increased cell proliferation

and expression of vascularization markers
(121)

Induction of stem-like features via activation of the
TLR4/Nanog pathway

TLR4
Upregulation of TLR4 increased microvascular

invasion
(126)

Activation of NF-kB pathway as well as p-Akt
expression

TLR7 and TLR9
Upregulation od TLR7 and TLR9 increased HCC

cell proliferation
(129)

Gastric cancer
Interact with Helicobacter pylori and mediate the
production of proinflammatory cytokines and

chemokines
TLR3, 4, 5, 9

Interact with H. pylori to induce gastric
carcinoma, overexpressed; increase dysplasia and

metaplasia; lymph node metastasis, poor
prognosis, and poor survival

(149, 150)

Colorectal
carcinoma

Formation of heterodimers with TLR1 and/or TLR6 to
initiate the signaling cascade for activating the
transcription factors like NF-kB and AP-1

TLR2
Increased tumor formation and increased levels of

IL-6, IL-17A, and STAT3; show antitumor
activities

(93, 94)

TLR4 is activated by bacterial LPS and lipoteichoic Acid
(LTA). Upon recognition by LPS Binding Protein (LBP),
it transfers to the differentiation-14 (CD14) receptor or
MD-2, which are the accessory proteins involved in the
ligand recognition, dimerization, and endocytosis of

TLR4

TLR4

Activation of NF-kB through the MYD88
pathway, leading to transcription of pro-

inflammatory cytokines as well as induction of
Nox-derived ROS, resulting in tumor cell

metastasis

(190, 191)

TLR9 is located in the cytoplasm and intracellular
endosomes recognize unmethylated CpG motifs in

bacterial DNA
TLR9

Involved in colitis−associated colorectal
carcinogenesis by regulating NF−kB expression

levels
(192, 193)

Ovarian cancer

Binds to dsRNA and analogs to initiate a signaling
cascade by activating NF-kB leading to the upregulation

of IFN-a and IFN-b, CTL, and NK cells
TLR3

Overexpression and tumor progression promote
cancer cell growth and survival; elevated

production of cytokines (IL-6) and chemokines
(184, 188)

Over the tumor cells, the LPS stimulates the TLR4 for
the increased production of IL-6, inhibiting CTLs for

cancer cell detection and death
TLR4

Overexpression in cancerous epithelial cells;
immunosuppression; increased cancer cell

survivability and tumor progression; development
of chemoresistance to Paclitaxel

(185, 187, 189)

Hypomethylated tumor DNA released from the tumor
cells binds to TLR9 to trigger the signaling cascade

promoting tumorigenesis
TLR9

Increased expression leads to disease severity, poor
survival, increased tumor grade, and metastasis

(34, 186)

Hematologic
Cancers

SNPs rs3804100 (S450S) and rs4696480 (16933T>A) TLR2

Associated with marginal zone lymphoma (MZL),
increases the risk of follicular lymphoma (FL), and
decreases the risk of chronic lymphocytic leukemia
(CLL). Its expression is also associated with poor

prognosis in CLL patients

(194–196)

SNP rs4986790 (A299G) TLR4

linked with an elevated risk for MALT lymphoma.
It could trigger a cascade resulting in Mantle cell
lymphoma (MCL) growth and evasion from the

immune system

(195, 197)

(Continued)
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leukemia (B-ALL) revealed the role of three specific TLR2 and TLR4

genotypes (TLR-2 Arg753Gln, TLR-4 Thr399Ile, and TLR-4

Asp299Gly) that could predict good B-ALL patients outcome

(213). Multiple myeloma (MM) is a fatal B-cell malignancy

determined by an accumulation of neoplastic plasma cells in the

bone marrow (214). MM accounts for 10% of all hematologic

malignancies and the incidence rate accounts for 0.8% of all

cancers and its death rate indicates 1.0% of all cancer deaths per

year worldwide (215). In addition to above mentioned myeloid

malignancy, a broad spectrum of TLRs expression has been

reported in MM patients. Among the most frequently expressed

TLRs, heterogeneous expressions of TLR3, 4, 7, and 9 on primary

myeloma cells have been reported (216). The canonical NF-kB
pathway followed by the expression of IL-6 is among the most

important growth and survival factors in MM cells (217). The

expression level of TLRs mediates the autocrine loop secretion of

IL-6 which has a pivotal role in the survival, growth, and drug

resistance of MM cells (216). On the other hand, dysregulated TLRs

could induce immune escape of MM cells through inhibition of NK

cells (218) as well as induction of NF-kB-dependent proliferation of

myeloma cells resulted in MM cell growth and proliferation (216).

Finally, B-cell chronic lymphocytic leukemia (B-CLL) is one of

the most entirely studied forms of hematologic malignancies

characterized by a progressive accumulation of monoclonal

CD5+/CD19+, CD23+, CD21+, CD40+ B cells with prolonged cell

survival and low proliferative index in the peripheral blood, bone

marrow, and lymphoid organs (219). The cellular origin of CLL

remains unclear, but numerous experimental data suggest that CLL

results from a multiplication of B lymphocytes selected during

clonal expansion through multiple exposures to antigens (220).

Data regarding the TLR expression spectrum in B-CLL is associated

with TLR2, 4, and 10. A lower percentage of CD19+/CD5+TLR2+

cells in patients with CLL compared to the control group was found

and mean fluorescence intensity (MFI) data indicated that low

TLR2 expression is associated with poor prognosis in CLL patients,

suggesting that TLR2 could become a potential biological marker

for the clinical outcome in patients with CLL (196). Skorka et al.

(221) observed a significantly lower expression of splicing variants

of TLR4 (TLR4 (1) and TLR4 (4)) in the peripheral blood

mononuclear cells (PBMC) in CLL compared to healthy

volunteers (HVs). They identified that the splicing variants of

TLR4 (3) could impact clinical outcomes in CLL. Moreover, this

group suggested a potential prognostic role of high expression of

TLR9 mRNA in the bone marrow in CLL due to shorter time to first

treatment (TTFT) in groups of CLL patients with high TLR9

expression in comparison to low TLR9 expression in bone
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marrow mononuclear cells (BBMC) (221). The TLR9 high

expression was confirmed in autologous plasma from patients

with CLL that contains a disproportionately high level of

unmethylated mtDNA, able to trigger TLR9 signaling (222).
3 Tumor microenvironment and
tumor immune microenvironment

TME is a feature obtained from an intimate communication

between stromal- (e.g., different types of immune cells, endothelial

cells, and cancer-associated fibroblasts (CAF)) and tumor cells.

Indeed, TME is the outcome of an effective and dynamic network

composed of chemokines, cytokines, soluble factors, adhesins, and

growth factor molecules. The natural characteristics of the TME

network may lead to tumor development via cell migration within

the tumor mass, extracellular matrix remodeling, and the growth of

aberrant lymphatic and vascular networks. As results show, the

existence of chemotherapy-resistant cancer cells within the TME

results in the occurrence of mutations which makes it an aggressive

tumor (223–225). In brief, the active communications between

immune biomolecules and tumor cells within TME support

cancer development and progression (226, 227).

Activation of TLRs may lead to the induction of a cascade of

biological activities such as TLRs signaling pathways and chronic

inflammation-induced tumorigenesis. As previous recorded reports

show, chronic inflammation is the pivotal stimulator of TME which

results in the induction of tumor cell proliferation, survival, and

suppression of anti-tumor immunity. Hence, the activation of

uncontrolled TLRs signaling pathways is the unfavor edge of the

TLRs double-edged sword (227–230). Indeed, a wide range of

diseases e.g., autoimmune diseases, infectious diseases, cancers,

etc. appear as a consequence of any dysregulations in association

with TLRs signaling pathways. Therefore, blocking the TLRs

involvement in inflammatory diseases and recruitment of TLRs

signaling pathways in opposition to cancers are effective options

that can be achieved through manipulation of TLR signaling

pathways. Due to this knowledge, TLR agonists are recruited as

vaccine adjuvants and antimicrobial agents; while the TLR

antagonists are exploited as immunosuppressive drugs (13, 231).

TLRs are important biomolecules that can be expressed in

different types of cells including immune cells, tumor cells, and

tumor tissues. In this regard, the expression of TLRs and the rate of

their expression within the human host body depending on the

progression and condition of different tumor cells and cancers vary,

entirely. TLRs have both pro-tumor (such as invasion, proliferation,
TABLE 1 Continued

Cancer(s) Mode of involvement of TLRs
Associated

TLRs
Pathological consequences and

contributing factors
References

SNPs rs5743836 (1237T>C) and rs352140 (2848 G/A) TLR9

Associated with an elevated risk for NHL and
linked with lack of cell death in the Mutu-I and

BJAB Burkitt lymphoma (BL) cell lines. It could be
a potential biological marker for the response to

BL treatment

(198, 199)
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1244345
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mukherjee et al. 10.3389/fimmu.2023.1244345
migration, cancerous stem cells maintenance) and anti-tumor

(induction of both innate and adaptive immune responses) effects

in TME which shows the TLRs dual role in opposition to each other

(62, 232, 233). Both necrotic cancerous cells and damaged epithelial

cells (with the normal condition) produce a considerable amount of

DAMPs (e.g., adenosine triphosphate (ATP) molecules, heat shock

proteins (HSPs such as HSPs 60 and 70), nucleic acids, uric acid,

HMGB1, Ca2+ regulatory S100 family protein) within the TME.

DAMPs are known as important inducers of TLRs which activate

the chronic inflammatory signaling pathways within the TME,

evoke regulatory T (T reg) cells, myeloid-derived suppressor cells

(MDSC), and M2 MFs as immunosuppressive response. In parallel

with the activation of chronic inflammation within TME, the

process of progression and development of the tumor is going on

via immune cells and in particular with the participation of the

TLRs (200, 234–236).

The chronic inflammation feature in TME makes TLRs an

effective inducer of inflammatory responses through the NF-kB
signaling pathway that promotes cancer cell stemness. In the

following, the appearance of further cancer stem cells promotes

the induction of NF-kB. This process results in the development

and progression of tumors. In addition, the triggered TLRs within

tumor cells activate a cascade of processes such as enhancement of

tumor cells proliferation, anti-apoptosis feature, enhancement of

tumor cells invasion, metalloproteinases- and integrins-mediated

metastasis, activation of biosynthesis pathways of pro-inflammatory

factors and immunosuppressive biomolecules, promotion of

cytotoxic lymphocyte-resistant tumor cells and increase in

immune evasion. As previous studies show, the interaction of

molecules involved in cellular energy metabolism in tumor cells

and tumor-infiltrating immune cells within TME are modulated by

TLRs. Moreover, regulation of TME occurs via the ubiquitination

feature within TLRs signaling pathways (227, 237–239).

On the other hand, TIME is known as the properties of

inflammatory responses and the composition of immune cells

within a tumor. TIME is classified into two categories infiltrative

exclusion (I-E) TIME (recognized as cold tumor because of

inactivation of adaptive immune responses) and infiltrative

inflammatory (I-I) (recognized as hot tumor because of high

invasion of PD-1 producing cytotoxic T-cells, and PD-L1

expressing leukocytes and tumor cells) (227, 231). As mentioned

about TEM, the released DAMPs via necrotic cells may induce

TLRs which results in immune cell activation within the TIME. The

DAMPs including HMGB1, HSPs, S100 proteins, etc. induce

inflammatory responses through the NF-kB signaling pathway.

The aforementioned DAMPs comprising HMGB1, HSPs, and

S100 proteins activate inflammatory responses through the NF-

kB signaling pathway through triggering the TLRs. This feature

results in the activation of immune suppressive cells into TIME.

Hence, DAMPs are able to support and induction of

immunosuppressive TIME. Our depth understanding of these

mechanisms and biological activities represents a bright promise

to obtain considerable strategies and solutions for effective and

powerful immunotherapeutics in association with different types of

cancers (240). The summary of the different TLRs expressing the

various immune cells across the TME is depicted in Table 2.
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4 Sex-related TLRs (TLRs 7 and 8)
in cancers
In accordance with sex chromosomal biology, men bear a

paired chromosome of XY while the female gender possesses an

XX chromosomal pair. Furthermore, in comparison with the Y

chromosome the X chromosome bears a higher number of genes.

This significant property of the X chromosome leads to the

occurrence of two-folded copy numbers of the majority of X-

dependent genes in women rather than men. Due to this

knowledge, the overloaded number of X-linked genes is usually

turned off to neutralize the imbalanced gene dosage in the cells of

the female gender of mammals. This process is done through the

activation of 1/2 of the female X chromosomes (243). In accordance

with the reported results, in both mammals, humans, and mice, the

TLR7 and TLR8 loci are located adjacent to each other. These genes

are mapped to Xp22.3 and Xp22 (upon the short arm of the X

chromosome), respectively. It seems that TLR7 and TLR8 genes are

duplicated features rooted in a united ancestral gene (11, 54,

243, 244).

The capacity of the X chromosome is 155 Mb involving >1000

genes encoding miRNAs and proteins that contribute to immune

responses. Recent reports reveal that in some cases e.g., B cells,

monocytes, and plasmacytoid dendritic cells (pDCs) in women,

TLR7 does not comply with the X chromosome inactivation rule

(243). According to the reported results, a limited portion (10%) of

X-linked genes bear inactivation codes in the form of variable

patterns. This heterogeneity leads to variation in X-dependent

gene expression in females. In other words, in some women, both

of the alleles (copies) will be expressed while in some others only

one of the alleles will be expressed and the other alleles will be

inactivated (245, 246). Moreover, TLR7 and TLR8 together with

TLR3 and 9 bind to viral ligands. Interestingly, TLR7 and TLR8 are

bi-zonal glycoproteins and are known as cell-surface and

intracellular TLRs (11).

The X chromosome bears a versatile of important genes (e.g.,

CD40 ligand (CD40L), C-X-C Motif Chemokine Receptor 3

(CXCR3), forkhead box P3 (FOXP3), TLR7 and TLR8) which

apparently or hidden contribute to immune responses against

microbial pathogens such as viruses (245, 247). As previous

studies show, the highly conserved content of the mammalian X

chromosome is an effective limitation for genetic exchanges

between the X-gender chromosome and the autosomal ones. In

this regard, X-linked inactivation is known as an effective regulatory

feature to balance the likewise levels of X-linked genes both in male

and female humans. Moreover, the upregulation of the X

chromosome (about two folds) supports a determined balance

between X chromosomal and autosomal gene expression. Thus

the key genes that contribute to the immune system are not

exchangeable between the X gender chromosome and the

autosomal ones (245, 248). The inactivation of the X

chromosome is known as an evolutionary mechanism for dosage

equalization of gene expression in both gender of females and males;

however, some genes including those that are involved in immune

responses escape silencing. This feature may lead to an increase in
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TABLE 2 Level of immune cell infiltration status mediated by the activation of TLRs in various cancers.

Cancer(s)
Associated
TLRs

Level of
expression

Type of TLR-producing immune cells in
tumor cells

References

Head and neck cancer
TLR3 ↑ NK cells, cDCs

(229)
TLR4 ↑ Neutrophils, cDCs, monocytes, eosinophils

Esophageal squamous cell
cancer

TLR3 ↑ NK cells, cDCs

(229)
TLR4 ↑ Monocytes, cDCs, neutrophils, eosinophils

TLR7 ↑ Monocytes, pDCs, eosinophils, neutrophils, B-cells

TLR9 ↑ pDCs, monocytes, eosinophils, neutrophils, B-cells

Lung cancer

TLR3 ↑ NK cells, cDCs

(229)

TLR4 ↑ Monocytes, cDCs, neutrophils, eosinophils

TLR7 ↑ Monocytes, pDCs, eosinophils, neutrophils, B-cells

TLR8 ↑
Monocytes, cDCs, neutrophils, T regulatory (Treg) cells,
T-cells

TLR9 ↑ pDCs, monocytes, eosinophils, neutrophils, B-cells

Breast cancer

TLR2 ↑ cDCs, NK cells, monocytes, neutrophils, B- and T-cells

(229)

TLR3 ↑ NK cells, cDCs

TLR4 ↑ Monocytes, cDCs, neutrophils, eosinophils

TLR5 ↑ NK cells, cDCs, neutrophils, monocytes, T-cells

TLR9 ↑ pDCs, monocytes, eosinophils, neutrophils, B-cells

Pancreatic cancer
TLR4 ↑ Monocytes, cDCs, neutrophils, eosinophils

(229)
TLR7 ↑ Monocytes, pDCs, eosinophils, neutrophils, B-cells

Hepatocellular cancer
TLR2 ↑ cDCs, NK cells, monocytes, neutrophils, B- and T-cells

(229, 241)
TLR3 ↑ NK cells, cDCs

Gastric cancer

TLR2 ↑ cDCs, NK cells, monocytes, neutrophils, B- and T-cells

(229)

TLR3 ↑ NK cells, cDCs

TLR4 ↑ Monocytes, cDCs, neutrophils, eosinophils

TLR5 ↑ NK cells, cDCs, neutrophils, monocytes, T-cells

TLR9 ↑ pDCs, monocytes, eosinophils, neutrophils, B-cells

Colorectal carcer

TLR3 ↑ NK cells, cDCs

(55, 242)

TLR4 ↑ Monocytes, cDCs, neutrophils, eosinophils

TLR7 ↑ Monocytes, pDCs, eosinophils, neutrophils, B-cells

TLR8 ↑
Monocytes, cDCs, neutrophils, T regulatory (Treg) cells,
T cells

TLR9 ↑ pDCs, monocytes, eosinophils, neutrophils, B-cells

TLR10 ↑ pDCs, monocytes, eosinophils, neutrophils, B-, T-, Treg cells

Myeloma

TLR1 ↑
Conventional DCs (cDCs), pDCs, monocytes, neutrophils, eosinophils,
NK cells, B-cells

(229)TLR4 ↑ Monocytes, cDCs, neutrophils, eosinophils

TLR7 ↑ pDCs, eosinophils, monocytes, neutrophils, B-cells

TLR9 ↑ pDCs, monocytes, eosinophils, neutrophils, B-cells

Liver cancer TLR4 ↑ Monocytes, cDCs, neutrophils, eosinophils (55, 229, 241)

(Continued)
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the level of immunoprotein production in the female gender.

Furthermore, the rate of mosaicism varies among female

populations. These data explain why the level of expression of X-

linked genes between females and males differ and even why the

expression of these immune genes varies between female genders. In

accordance with the reported results from previous investigations,

the mosaicism feature in females is an advantage associated with

deleterious mutations in X-linked genes and simultaneously

provides a wide range of biological activities and immune

responses among the mammalian female populations. Several X-

linked genes involved in the immune system are recognized as genes

with variable levels of expression in association with X chromosome

inactivation. In this regard, important and key genes such as NF-kB
activating protein (NKAP), IRAK1, and inhibitor of NF-kB kinase-g
(IKBKG) are recognized. As already discussed, the presence of clear

variability in patterns of gene expression results in the induction of

signaling pathways within the immune system which may lead to

different immune responses both in female and male individuals

(245, 246). According to the aforementioned characteristics of the X

chromosome, any changes and alternations in DNA sequences and

genes located on the X chromosome may lead to the occurrence of

autoimmune diseases; therefore, ~80% of patients with

autoimmune diseases belong to female individuals (249, 250).
4.1 Nucleic acid-sensing TLRs

Among 10 human TLRs (hTLRs), TLR3, 7, 8, 9, and 13 are

recognized as nucleic acid (NA)-sensing (NAS) TLR glycoproteins.

In this regard, a functional TLR3 is induced via a double-stranded

RNA (dsRNA) while the TLR7 and TLR8 are activated through

ssRNA fragments bearing determined and preferred sequences. In

contrast to TLR3, 7, 8, and 9 as a NAS TLR is activated by single-

stranded DNA-bearing motifs of unmethylated CpG. Thus, NAS

TLRs are the body’s effective arsenal of weapons to identify viruses.

All viruses encompass RNA or DNA molecules; the only detectable

features by the human innate immune system are glycoproteins of

NAS TLRs (10, 11, 251, 252). Although TLRs are useful weapons
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against strangers and pathogens, they sometimes are functional

against the host’s self-NAs which results in a wide range of

autoinflammatory disorders and autoimmune diseases e.g.,

systemic lupus erythematosus (SLE), rheumatoid arthritis,

psoriasis, etc. (245, 251, 253).

The NAS TLRs with uncleaved ectodomains can bind to their

related ligands. However, as per the previously reported results, the

activation of NAS TLRs should be achieved through proteolytic

cleavage processing. The proteolytic compartmentalization process

of NAS TLRs ectodomains is performed by specific protease

enzymes together with many others which may lead to the

occurrence of effective responses by these immunoglycoproteins

in the presence of their related ligands; because the proteolytic

cleavage processing of NAS TLRs ectodomain provides a stable

situation for TLR dimers and their activity in consequence (254–

258). As reported results show, the proteolytic cleavage processing

in NAS TLRs ectodomain structures is effectively done at acidic pH

within the lysosomal and endosomal structures. Moreover, the

trafficking process and the environment of the endoplasmic

reticulum make NAS TLRs non-functional biomolecules. This

condition decreases the induction of NAS TLRs activation against

the host’s self-NAs. Among NAS TLRs, the ectodomain structures

of TLR7 and TLR8 in the human body go through proteolytic

cleavage processing in pH 7. This process is done via furin-like pro-

protein convertase enzymes. Due to this knowledge, the activated

structures of hTLR7 and hTLR8 occur out of the acidic

environment of endosomes and/or lysosomes. Particularly, the

hTLR7 and hTLR8 are early-activated NAS TLRs in human

beings (245, 259, 260). The process of proteolytic cleavage in

immunoglycoproteins of TLR7, 8, and 9 is performed at the Z-

loop located on the extracellular ectodomain region between LRR14

and LRR15. The inactive form of TLR8 is dissimilar to TLR7 and 9

and the other hTLRS is in a dimeric form. The binding process of

ligands to TLR8 active binding sites changes the spatial structure of

inactive dimeric TLR8 into active dimeric TLR8 (261–263).

Up to now, four general mechanisms (e.g., internalization of

NAs as ligands (through different mechanisms); NA digestion (NAs

processing to generate ligands); NA digestion by nucleases such as
TABLE 2 Continued

Cancer(s)
Associated
TLRs

Level of
expression

Type of TLR-producing immune cells in
tumor cells

References

TLR9 ↑ pDCs, monocytes, eosinophils, neutrophils, B-cells

Ovarian cancer

TLR3 ↑ NK cells, cDCs

(229)
TLR4 ↑ Eosinophils, neutrophils, cDCs, monocytes

TLR5 ↑ NK cells, cDCs, neutrophils, monocytes, T-cells

TLR9 ↑ pDCs, eosinophils, neutrophils, monocytes, B-cells

Myelogenous leukemia

TLR2 ↑ cDCs, NK cells, monocytes, neutrophils, B- and T-cells

(229)
TLR3 ↑ NK cells, cDCs

TLR4 ↑ Eosinophils, neutrophils, cDCs, monocytes

TLR9 ↑ pDCs, monocytes, eosinophils, neutrophils, B-cells
The value of ↑ used in the table indicate upregulation/overexpression.
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DNA endonuclease of DNase I-like 3 (DNASE1L3) (as a negative

regulator to decrease the NA ligands availability); physically ligand

sequestration (out of the endosomal structures) are identified which

mediates the ligand availability for NAS TLRs as an effective

strategy against self- and non-self NAs (251).

In some cases, comprising macrophages (MFs) and dendritic

cells which are known as effective phagocytotic cells, the uptake of

microorganisms is achieved easily; while in many other cells

including B cells, the uptake of microorganisms and NAs (e.g.,

self-RNA and self-DNA) is associated with receptor-ligand

interactions. In this regard, the TLR7 and 9 together with B cell

receptors are involved in the synergistic activation of B cells

associated with self-RNA and self-DNA forming immune

complexes (251, 264, 265). In addition to the aforementioned

cases, the antimicrobial peptide of LL37 which is also recognized

as CAMP contributes to cellular uptake and complex formation

constructed by self-RNA and self-DNA with LL37. This complex

increases the endosomal uptake of condensed NAs and decreases

the nuclease-related NAs degradation (As it happens when a

protein like HMGB1 binds to self-NAs). In accordance with the

reported results, the LL37, self-RNA, and self-DNA complexes

induce the expression of IFN-I via TLR7 and 9 biomolecules in

pDCs (251, 266–269).

As neutrophils are effective sources for the expression of LL37 at

high levels and simultaneously are involved in extracellular traps.

The LL37, self-RNA, and self-DNA complexes detect the neutrophil

extracellular traps (NETs). The NETs are the probable main

resource of self-NAs which are involved in psoriasis and SLE

(267, 270, 271). Although the endosomal acidic environment

leads to microbial lyses and the release of their NAs, some

members of NAS TLRs including TLR8 are activated via

nuclease-processed NAs. In this regard, it is presumed that RNase

2 and RNase T2 belonging to lysosomal endoribonucleases

contribute to the recognition of TLR8-dependent RNA via

cleaving the left nucleotides rather than uridine residues to

generate specific TLR8 ligands obtained from some microbial

RNAs pertaining to pathogenic microorganisms (272, 273).

The occurrence of mutations in DNASE1L3 results in SLE in

children and autoimmunity development in mice that suffer from the

lack of DNASE1L3. Both TLR7 as an RNA sensor and TLR9 are

involved in this feature. The role of TLR7 as an RNA sensor may be

associated with its ability to respond to deoxyguanosine or its

contribution to a competition with the DNA sensor of TLR9 (274–

280). TLR7 and 8 are activated by the short fragments of ssRNAs or

single nucleosides. Thus, in the presence of these RNA biosensors

application of nucleases to digest NAs into short fragments is not a logic

solution to prevent the recognition of self-NAs (262, 263, 277, 281).

The NAS hTLRs similar to other hTLRs bear three sections in

their structures including an intracellular or cytosolic domain of

TIR, an extracellular domain of LRR, and a transmembrane helix.

The process of ligand binding which is performed via the

extracellular domain of TLR triggers TLR biomolecule to be

dimerized and in consequence, the related downstream signaling

pathways going to be activated. TLR7 can be activated by an ssRNA

ligand, and it requires a single guanosine nucleoside molecule at the
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first binding site and a trimeric ssRNA with a uridine dimer at the

second binding site to become activated. Therefore, similar to TLR8,

TLR7 also contains two functional binding sites. In contrast to

TLR7, TLR8 is activated by the presence of uridine within its first

binding site and a dimeric molecule of uridine and guanosine

within the TLR8 second binding site. These ligands have a

synergistic effect on TLR8 activation (11, 251, 262, 263, 282).

In accordance with evolutional characteristics, TLR7 and 8

immunoglycoproteins have a high rate of homology in both their

functional activities and structural sequences. Simultaneously, the

first binding sites belonging to TLR7 and 8 are conserved and bind to

a single nucleoside molecule; while the second binding site belonging

to TLR7 has a synergistic effect on the function of the first binding site

and has a different spatial structure rather than the second binding

site in TLR8. However, the uridine of both TLR7 and 8 are also able to

recognize imidazoquinoline compounds and guanosine analogs (e.g.,

7-thia-8-oxoguanosine, 8-hydroxydeoxyguanosine, ioxoribine and

deoxyguanosine) (11, 54, 262, 283). TLR7 and TLR8 bind to

natural ligands e.g., hepatitis C virus ssRNA (284), HIV type-1

(HIV-1) ssRNA (285), and influenza A virus ssRNA (286).
5 TLRs as therapeutic targets for
treating human cancers

As stated in the earlier sections, TLRs play a crucial role in

maintaining immune homeostasis within the human body. An

increase in the expression of TLRs or a positive modulation in the

activation status of the TLRs leads to the hyperactivation of crucial

transcription factors (NF-kB, AP-1, IRF-3) and secretion of several

pro- and anti-inflammatory cytokines resulting in early innate

responses and subsequent release of specific immune mediators.

TLRs play a dual regulatory role in the TME by the induction of

inflammatory responses within this area, which in turn contributes to

immune cell infiltration, recruitment, and proliferation to escape the

immune cells. On the other hand, the innate and adaptive responses

elicited by the TLRs could regulate the anti-tumor activities.

Recognition of activation mechanisms and computational

simulation of molecular dynamics are efficient techniques to gain

comprehensive insights into the structural and functional properties

of proteins like TLRs, which in turn aid in designing effective drugs.

Computational simulation of molecular dynamics represents a

suitable illustration to understand the properties of interactions

that can be occurred between receptors and their related ligands

(262, 287–298). These significant data and information provide us

with a promising opportunity to develop affordable, efficient, and

straightforward therapeutic procedures in this field.
5.1 TLRs-binding molecules as therapeutic
targets for treating human cancers

In the previous section, we have incorporated an overview of the

roles of different TLRs in different human cancer subtypes. This

highlights their possibility to play a critical regulatory role in
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chronic inflammation to induce immunosuppression and immune

evasion of the tumor cells. Alternatively, TLRs can activate the M1

macrophages which drive antitumor responses through indirect

antitumor activity, especially by direct cytotoxicity, antibody-

dependent cell-mediated cytotoxicity (ADCC), and transactivating

the CTLs (299). Overall, activation of TLR signaling presents a kind

of balance between tumor-promoting and antitumor activity (300).

Recognition of activation mechanisms and in-silico analyses are

presently considered effective tools for an in-depth understanding

of the structure-function relationship of TLRs to design effective

natural/synthetic/semi-synthetic agonists or antagonist molecules

(296). Many studies were focused on TLR agonists due to their easy

clinical applications in cancer therapy. In fact, the adjuvant

properties of TLR agonists in the activation of immune systems

joint with the possibility to use them in combination with other

anti-cancer treatments have shifted the attention to them instead of

the antagonist molecules (300).

The response of the TLR-mediated and/or TLR-influenced

signaling pathways has been found as the critical determinant in

the success of TLR-based immunotherapy against cancers (229).

However, the overt immune response in cancer and various

autoimmune diseases directed the researchers to focus on several

TLR antagonists for counteracting the overactivation of the TLR

signaling cascade and thereby regulating the innate immunity (301).

The TLR antagonists are mainly categorized into two different

types, direct inhibitor and indirect inhibitor. Herein, the direct

inhibitors are mainly the structural analogs of the TLR ligands/

agonists and thereby compete with the TLR ligands to bind with the

receptor and block the signaling cascade to alter the mode and

intensity of the immune responses (302). While the indirect

inhibitors are mainly the various anti-cancer agents that can

hinder the activation of the TLR signaling pathways (302).

Interestingly, a few published literatures are available regarding

the investigation of the efficacy of TLR antagonists through

preclinical/clinical trials for future use as therapeutic strategies

against cancer. In the recent past, studies on several gut-related

cancer types have documented the efficacy of a humanized anti-

TLR2 antibody namely OPN-301 in suppressing the inflammation-

driven tumorigenesis and proliferation of the gastric tumor cells in

accordance with the downregulation of the expression of CXCL2

and TNF-a in murine model (303). Another small molecule

inhibitor of TLR4 namely TAK-242 (Resatorvid) has been found

to bind to the TIR domain of TLR4 to inhibit the downstream

activation of the signaling molecules and transcription factors by

hindering the interaction of TLR4 with TRAM and/or TIRAP (304).

Studies have shown that TAK-242 have significant tumoricidal

properties against breast cancer and ovarian carcinoma that

majorly conferred through the regulation of the activation of NF-

kB signaling pathways and expression of the p53-dependent

apoptotic genes (305–307). Furthermore, this molecule can also

reduce the enzymatic activity of MMPs and can block the transition

of epithelial to mesenchyme for tumor formation in breast and

ovarian tumor cells respectively (305–307). Interestingly, a naturally

derived sesquiterpene lactone, Atractylenolide I (AO-1) has been

screened for its excellent efficiency in inducing conformation

change in TLR4-MD-2 complex resulting in the downregulation
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of the signaling molecules of MyD88-dependent NF-kB signaling

axis (293). Downregulated NF-kB further contributes to reduce the

secretion of IL-6, TGF-b1, VEGF, and IL-17A in tumor cell and

increase the level of regulatory T cells that collectively inhibits the

progression of epithelial ovarian cancer (308). Other TLR4

antagonists like paeonol (PAE) and CXC195 have shown

promises as potential anti-cancer drugs that function through

regulating the activation of the TLR4-MAPK/NF-kB pathway in

human osteosarcoma as well as hepatocellular carcinoma as derived

from their efficacy in cell culture experiments (309, 310). IMO-

8400, an oligonucleotide-based antagonists of TLRs 7, 8, and 9 has

also shown promising results in improving the severity of pathology

of B-cell lymphoma types, especially resulted from L265P mutation

in MyD88 (311, 312). This antagonist was found efficacious and safe

in both phase I and II clinical trials conducted in the patients with

different B-cell lymphoma types (312). However, Phase I trials with

this compound on lymphoma patients (NCT02252146) and

Waldenstrom’s macroglobulinemia (NCT02092909) were not

satisfactory and hence terminated (303). Collectively, from the

experimental and clinical trial data, TLR antagonists possess

lower therapeutic potency in comparison to the agonists

specifically treating the aggressive forms of various cancers.

Ultimately, the function of these modulatory molecules for TLRs

can be simplified to the concept that agonists serve as

immunotherapeutic or vaccine adjuvants in the treatment of

cancer, allergies, and infectious diseases, whereas antagonists hold

potential as therapeutic approaches for addressing chronic

inflammatory and autoimmune diseases (13).
5.1.1 TLR1/TLR2
One of the first agonists discovered for the TLR1/TLR2

heterodimer was the triacylated lipopeptide Pam3CSK4 that

allowed to initiate the signaling cascade (313). Successively, the

small molecule named CU-T12-9 (N-methyl-4-nitro-2-(4-(4-

(trifluoromethyl)phenyl)-1H-imidazol-1-yl)aniline) was developed

through a high-throughput screening (181). This molecule shows a

considerable overlap between its binding pocket and the binding

site for the amide-bound lipid of Pam3CSK4 (314). CU-T12-9 can

form stable hydrogen bonds with TLR1 and facilitates TLR1/2

heterodimer formation through hydrophobic interactions (13). A

similar binding mode as CU-T12-9 was observed with CU-CPT22

(3,4,6-Trihydroxy-2-methoxy-5-oxo-5H-benzocycloheptene-8-

carboxylic acid hexyl ester) molecule that acts as an antagonist able

to compete with Pam3CSK4 for binding to heterodimeric TLR1/2

complex. In addition to inhibiting TLR1/2 signaling, CU-CPT22

exerts no effect on other TLRs (315). After screening a synthetic

library of 14,000 compounds, the small molecule SMU-Z1 (2-(1-(2-

(Methy lamino) -5-n i t ropheny l ) -1H- imidazo l -4 -y l ) -5 -

(trifluoromethyl)phenol) was recently discovered as one of the

newest agonists (248). This molecule shows a strong antitumor

immunity against leukemia and could be a potential drug candidate

for TLR2-mediated antitumor immunotherapies (316). In anti-

tumor applications, the main TLR2 agonists are the Bacillus

Calmette–Guerin (BCG), the OM-174, and SMP105 molecules

and their functions are described in Table 3.
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5.1.2 TLR3
Agonists of TLR3 have the potential to be effective candidates

for antitumor therapies as they can activate the adaptive immune

system response (336). A unique candidate, CU-CPT4a was

detected between 1.2 million compounds in a different database.

Before this, no approval was given to small-molecule TLR3-binding.

Molecular docking analysis showed different binding points of CU-

CPT4a with TLRs characterized by the presence of asparagine

residues (337). Amongst the various agonist molecules used in

anti-cancer therapy, the most known molecules are the Poly(I:C),

Poly(I:C)12U, and poly-IC : LC which have shown encouraging

results in inducing tumoricidal responses alone and in combination

with radio- and chemo-therapy (338).

5.1.3 TLR4
Since TLR4 is potentially the most efficacious PRR in

regulating the growth and progression of various cancers,

several TLR4-modulating molecules have been developed so far.

In this context, TLR4 adjuvants are the primary contributors for
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developing various vaccine candidates (339). The US-FDA has

already approved the use of BCG as an initiator for the TLR4

signaling pathway to generate anti-tumor immune responses

against various types of cancers (340). BCG targets the binding

of LPS to the hydrophobic pocket of MD2, preventing the

dimerization of TLR4, and hindering the activation of the TLR4

signaling pathway (7). In this direction, bacterial derivatives such

as E. coli-derived lipid A (OM-174) as potential therapeutic

candidates are under the clinical trial phase for elucidating the

TLR4-induced immune response against melanoma (6). Other

TLR4 agonists like monophosphoryl lipid-A trigger the activation

of TLR4 and are used as a therapeutic agent against lung

carcinoma (341). TLR4 initiates an intracellular signaling

cascade and activates cytoplasmic signaling pathways, ultimately

resulting in the expression of PDL-1 (programmed death ligand-

1). This creates an anti-inflammatory response that helps to cease

the metastasis. In addition, the expression of TLR4 can influence

the proliferation patterns in cancer stem cells and glioblastoma

multiforme cells (342).
TABLE 3 Agonists and antagonists of TLRs and their application as anticancer drugs.

Name
of the
TLR(s)

Agonist/
Antagonist

Associated
cancer

Mechanism of action References

TLR1/
TLR2

MALP-2 (G) Pancreatic cancer Inhibits tumor growth and reverses tumor-associated immunosuppression (317)

Agonists:
Polysaccharide-K

(G)

Inhibits tumor growth and induces apoptosis in tumor cells (318)

Bacillus Calmette–
Guerin (BCG)

Bladder cancer Used in intravesical therapy; shows antitumor activity by induction of IFN-g and
IL-2. It increases the survival of the patients

(319)

Pam3CSK4 Lymphoma Reduces tumor load and increases the survival of the recipients (13, 320)

TLR3 Polyriboinosinic-
polyribocytidynic
acid (Poly I:C)

Gastric cancer Upregulates the pro-apoptotic genes and promotes apoptosis of the cancer cells (35)

Poly(A:U) Breast cancer Reduces the risk of recurrence and metastasis (102)

TLR4 Monophosphoryl
lipid A (MPLA)

Colorectal cancer Acts as a vaccine adjuvant (321)

Brucella lumazine
synthase (BLS)

Melanoma Induces the secretion of INF-g and increases the ratio of effector to regulatory cells (36)

Resatorvid (TAK-
242)

Breast cell carcinoma
and ovarian cancer

Regulate NF-kB signaling pathways and p53-dependent apoptotic genes, reduce
the enzymatic activity of MMPs and epithelial to mesenchyme transition

(305–307)

TLR7 R-837 (Imiquimod
or aldara)

Oral squamous cell
carcinoma

Decreases cell growth around the transformed tissue and increases apoptotic cell
death. It causes increased production of IFN-g and less IL-10

(6)

Breast cancer Inhibits the growth of cutaneous breast cancer cells (101)

Melanoma (Preclinical
phase)

Topical application of 5% imiquimod cream on primary melanoma results in an
increase in the number of CD4+ and CD8+ T cells in the skin

(322, 323)

R848 (resiquimod) Cutaneous
T-cell lymphoma

(PhaseI)

Topical administration of resiquimod affects the early stage of cutaneous T-Cell
lymphoma

(322, 324)

852A Breast-, Cervix-, and
Ovarian cancers
(Preclinical phase)

Enhances the expression of IP-10 and IL-13
(side effect: cardiac toxicity)

(322, 325)

(Continued)
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5.1.4 TLR5
Flagellin, a TLR5 agonist, is widely used in anti-cancer

treatment. Studies by Sfondrini et al. (343) have shown that the

generation of TLR5-flagellin nanoparticles imparts anti-tumor

function in an experimental animal model of cancer. In breast

cancer, the TLR5 agonist activates the intrinsic signaling pathway

leading to the upregulation of IFN-g and IL-4 population and

lowering of the proportion of regulatory T cells that results in cell

proliferation and suppressing the tumor growth (343).

5.1.5 TLR7/8/9
Agonists designed against the intracellular TLRs viz., TLR7, 8,

and 9 play an important role in modulating the signaling pathways

involved in the development of cancer. Among all the intracellular

TLRs, TLR7/8 has the highest immunomodulatory effects. They are

activated concurrently through the binding of ligands recognizing

the ssRNAs. The most important and well-evident agonists of

TLR7/8 include the guanine analogs like imiquimod. It has the

potential for restoring the functional efficiency of effector T cells,

and NK cells in the therapy against non-melanoma skin cancer. US-

FDA and European Medicine Agency (EMA) have already

approved the application of the imiquimod-based cream Aldara

for the treatment of basal cell carcinoma. A study by Liang et al.

(344) demonstrated the development of a novel adjuvant using the

neoantigen peptides that are released form the colon cancer cell line

for cancer immunotherapy. These peptides were charged with the

consecutive application of positively charged lysine to generate a
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cationic polypeptide that shows affinity with TLR9 agonist CpG

oligodeoxynucleotides (202).

In the aforementioned sections, we have discussed about the

efficacy of different classes of natural/synthetic compounds as

agonists and/or antagonists of TLRs in the context of developing

anti-cancer therapeutics. Most of the compounds/peptides showing

adequate efficacy in cell line and animal models have been tested for

their therapeutic promise in humans through different phases of

clinical trials. We have noted that the TLR agonists exhibit better

efficacy and safety as an anti-cancer agent as compared to the

antagonists. Taking this into the consideration, the current status of

various TLR agonists active and/or recruited in the different clinical

trials are listed in Table 4. These trials suggest that these

compounds/peptides can effectively induce the expression of pro-

inflammatory cytokines and stimulate the influx of effector T cells

into or around the tumor(s) by activating the TLRs-mediated

signaling circuit transforming “cold tumors” into “hot tumors”.

However, in terms of acceptability and safety of application, several

TLR agonists decipher a number of side-effects like flu-like

symptoms, allergic reaction, fatigue, and decreased blood

counts (345).
6 Advantages and limitations

Being TLRs the crucial components of innate immunity as well

as adaptive immunity, TLR-based therapeutic approaches have
TABLE 3 Continued

Name
of the
TLR(s)

Agonist/
Antagonist

Associated
cancer

Mechanism of action References

Lymphomatic leukemia
(Phase I/II)

Induces the expression of IgM and inflammatory cytokines (322, 326)

Melanoma (Phase II) Enhances the expression of IFN I and IP-10 within the serum (322, 327)

Loxoribine (guanine
ribonucleotide
derivative)

B-chronic leukemia
(Preclinical)

Increases the fludarabine (a purine analog) activity which leads to the induction of
apoptosis. Loxoribine together with fludarabine and mafosfamide exert a

synergistic effect for apoptosis induction

(322, 328, 329)

TLR8 R848 (resiquimod) Cutaneous
T-cell lymphoma

(PhaseI)

Topical application of resiquimod affects the early stage of cutaneous T-Cell
lymphoma

(322, 324)

VTX-2337 Lymphoma (Phase I) Enhances the expression of G-CSF, macrophage inflammatory protein-1b,
monocyte chemoattractant protein-1, and TNFa in the plasma

(330)

TLR9 CpG-ODN T-cell lymphoma
(Phase I)

PF-3512676 (formerly CPG 7909) as a TLR9 agonist exerts antitumor activity
against refractory cutaneous T-cell lymphoma

(330, 331)

Lymphoma (phase I/II) Triggers tumor-reactive memory CD8 T cells that lead to systemic antitumor
immunity

(330, 332)

Neoplastic meningitis
(Phase I)

Not determined (330, 333)

IMO Non-small cell lung
(Phase II)

IMO-2055 acts as a TLR9 agonist in combination with bevacizumab and erlotinib
and is capable to increase the anti-tumoral activity via stimulation of the immune

system

(330, 334)

1018 ISS Lymphoma (Phase II) Enhances antigen expression, antibody-dependent cell-mediated cytotoxicity, and
T helper cell type 1 shift

(330, 335)
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both positive and negative impacts. Selective targeting of different

TLRs with small molecules, chemical compounds, nanomaterials,

peptides, and antibodies can satisfactorily inhibit TLR-driven

inflammatory processes that are generally associated with

cancer-associated inflammation and metastasis (35, 114, 317).

At the same time, targeted stimulation of TLR activity can give

rise to sensitized tumor-associated macrophages and cytotoxic T

cells that kill cancer cells. However, the dose and duration of the

treatment are the two most important criteria for obtaining

beneficial outcomes. As the perturbation of TLR activity results

in immune homeostasis disruption, this could be detrimental for

the recipient. Nowadays, phytochemical-derived or natural

products-inspired pharmacophores are employed in clinical

trials. These molecules can fine-tune TLR activity in humans

and restrict the growth of tumors without hampering the

immune homeostasis of the recipient (346). Also, TLR

polymorphism is one of the crucial genetic components in

regulating the outcomes of different cancers. However, most of

the studies reported so far were conducted with a limited number

of participants. Therefore, to get meaningful conclusions about

the influence of different TLR polymorphisms a higher number of

study participants/subjects should be involved.
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7 Future perspective and conclusion

TLRs are cruc ia l components in the proces s o f

immunomodulation and immunotherapeutics against different

cancers. In this review, we have comprehensively presented the

overall role of TLRs in the pathogenesis of different cancers and

their role in the development of anti-cancer therapy. As crucial host

receptors and immune sensors in the innate immune system,

target ing the act iv i ty of TLRs through chemo- and

immunotherapies can be a promising approach for treating the

pathological manifestations of various cancers, especially the

inflammatory pathologies associated with metastasis and

angiogenesis. Uncovering new polymorphic variants of TLRs and

their association with increasing the risk of cancer and/or

conferring protection against the same has been a pathbreaking

achievement in recent times. Given the highly interconnected

nature of TLRs and their signaling pathways, as well as their

association with numerous physiological functions within the

human body, it is crucial to adopt a precise targeting approach,

otherwise, the treatment may cause fatal outcomes. In this direction,

our study explores the yin and yang of TLRs in the progression of

cancer to therapeutic intervention. In addition, the study of TLR
TABLE 4 Status of clinical trials with TLR agonists for therapeutic intervention of human cancers.

Targeting
TLR

Name of
Agonist/
Drug

Name of Cancer Intervention application Mechanism of action
Clinical
trial

number

Active/recruited in PHASE I trial

TLR3 Poly ICLC:
Hiltonol

Breast carcinoma In combination with vaccine, and
chemotherapy

Intramuscular application is active;
endogenous type I IFN inducer.

NCT02826434

NCT03362060

Glioma In combination with vaccine
(peptide) and surgery

Subcutaneous application is active;
Induction of CD8+ T-cell responses.

NCT02960230;

NCT02924038

NCT02549833

Prostrate cancer Combination with surgery Intramuscular recruiting trial;
increases IFN-b and IFN-a expression
in the circulating PBMCs.

NCT03262103

Multiple myeloma Combination with vaccine and
chemotherapy

Recruited in the trial; high degree of T
cell response.

NCT02886065

TLR 7 Imiquimod: R837,
Aldara, UGN-201

Bladder cancer Combination with surgery and drugs Intravesical recruiting trial NCT05375903

NCT05055050

Squamous cell carcinoma Combination with chemotherapy Topical recruiting trial NCT03370406

Solid tumors Combination with vaccine and drugs Topical recruiting trial NCT04116320

NCT03872947

Oral cancer Single-use drug Topical, recruiting trial NCT04883645

TLR7/8 BDB001 Solid tumors Single-use in combination with drug Recruited in the trial. NCT03486301

NCT04196530

TLR9 SD-101 Solids tumors Combination with BMS 986178 Intratumoral application is active. NCT03831295

(Continued)
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TABLE 4 Continued

Targeting
TLR

Name of
Agonist/
Drug

Name of Cancer Intervention application Mechanism of action
Clinical
trial

number

Lymphoma Combination with radiotherapy and Intratumoral application is active. NCT03410901

Pancreatic
adenocarcinoma

Combination with Nivolumab and
radiation

Intratumoral application is active. NCT04050085

CMP-001:
Vidutolimod,
ARB-
1598; CMP-001:
CYT-003

Colorectal cancer Combination with Nivolumab,
Ipilimumab and Radiotherapy

Subcutaneous and/or intratumoral
application is active.

NCT03507699

Completed PHASE I trial

TLR3 Poly ICLC:
Hiltonol

Acute myeloid leukemia,
myelodysplastic
syndrome

In combination with vaccine and
chemotherapy

Induces expression of tumor antigen
and induces cytotoxic T cells.

NCT01834248

NCT03358719

Solid tumors Vaccine adjuvants; chemotherapeutic
drug combinations

Elicits innate and humoral immune
responses; increases tumor-infiltrating
T cells.

NCT02721043

NCT02897765

NCT02544880

Pancreatic cancer vaccine Elevates the intensity and duration of
the immune responses.

NCT01677962

Lungs cancer vaccine Activation of anti-tumor immune
responses.

NCT03380871

Melanoma vaccine Increased T cell response in synergy
with vaccine candidate.

NCT01585350

TLR4 LPS Melanoma vaccine Induces immune-responses and
immunogenicity.

NCT01585350

GLA-SE: G100 Merkel cell carcinoma In combination with Surgery and
radiotherapy

Less toxicity and efficient clinical
acceptability.

NCT02035657

Melanoma vaccine Effective vaccine adjuvant and
increased immunopotency of vaccine.

NCT01585350

Sarcoma In combination with Radiotherapy Ameliorates local sarcoma and
induces proliferation of CD4+ T cell
response.

NCT02180698

GSK1795091
(CRX-601)

Solid tumors Intravenous administration with
immunoadjuvants

Inhibition of tumor growth with no
adverse side effects.

NCT02798978

TLR5 entolimod solid tumors Intramuscular/subcutaneous single
use

Reduces local tumorogenic responses. NCT01527136

TLR7 Imiquimod gastric cancer and
breast cancer

In combination with Vaccine and
chemotherapy

Topical application elevates anti-
cancer immune responses.

NCT02276300

Glioma In combination with Vaccine Stimulate immune responses by
increasing the proliferation of IL-17
and IDH1 specific T cells.

NCT02454634

Prostrate cancer Vaccine Induces strong immunogenic
response.

NCT02293707

TLR7/8 Resiquimod: R848;
S28463

Melanoma Vaccine Elicits humoral and CD4+ T cell
responses.

NCT00821652

TLR8 Motolimod: VTX-
378, VTX-
2337

Ovarian tumors In combination with chemotherapy Disease stabilization and amelioration
of tumor.

NCT01294293

TLR9 CMP-001:
Vidutolimod

Lungs carcinoma In combination with Radiotherapy Reduces disease burden. NCT03438318

(Continued)
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TABLE 4 Continued

Targeting
TLR

Name of
Agonist/
Drug

Name of Cancer Intervention application Mechanism of action
Clinical
trial

number

Active and/or recruiting PHASE II trial

TLR3 Poly ICLC:
Hiltonol

Brain tumors Combination with vaccine Active in trial NCT01204684

Melanoma Intradermal and/or subcutaneous
administration as vaccine adjuvant
and antibody treatment

Active in trial NCT02126579

NCT04364230

BO-112 Melanoma In combination with drugs Intratumoral application is active NCT04570332

TLR7 Imiquimod (R837,
Aldara, UGN-201)

Cervical intraepithelial
neoplasia

Single use with vaccine Recruited in the trial NCT02864147

Basal cell carcinoma Combination with surgery and drugs Recruited in the trial NCT03534947

Resiquimod (R848;
S28463)

Brain tumor Use with vaccine Active in trial NCT01204684

Melanoma Adjuvant for vaccine Active in trial NCT02126579

TLR9 SD-101 Prostrate carcinoma Used with radiation Recruited in the trial NCT03007732

Tilsotolimod
(IMO-2125)

Solid carcinomas Application with drugs Active in trial NCT03865082

Malignant melanoma Single application Recruited in the trial NCT04126876

CMP-001
(Vidutolimod,
ARB-1598, CYT-
003)

Melanoma Combination with surgery and drugs Recruited in the trial NCT04401995

NCT04708418

NCT04698187

NCT03618641

Breast cancer (triple
negative)

Combination with radiotherapy Recruiting trials NCT04807192

Completed PHASE II trial

TLR3 Poly ICLC
(Hiltonol)

Melanoma Single application as intratumoral
and/or intramuscular

Induce systemic immune response. NCT02873819

NCT01079741

Solid tumors Combination with vaccine and drugs Induction of tumor-specific immune
response.

NCT02873819

NCT02643303

Rintatolimod
(Ampligen,
Atvogen)

Metastatic colorectal
cancer

Used in chemokine modulation Elicits anti-tumorigenic response. NCT03403634

TLR4 IDC-G305 Multiple cancers:
melanoma, renal-cell
carcinoma, ovarian cancer

Single intramuscular dose Efficacious therapeutic potential to
generate antigen-specific immune
response.

NCT02015416

TLR7 Imiquimod (R837,
Aldara)

Stage 2 and 3 Cervical
intraepithelial neoplasia

In application with surgery Endorses the regression of cervical
high-grade intraepithelial lesions.

NCT03233412

NCT02130323

Breast cancer In combination with radiation and
chemotherapy

Reduces disease burden NCT01421017

NCT00899574

Prostrate cancer Used as vaccine and incomplete
Freund’s adjuvant

Triggers high immunogenic response. NCT02293707

TLR9 SD-101 Solid tumors and
lymphoma

applied with drugs and radiotherapy Enhances antigen-specific immunity. NCT02254772

NCT03322384

CpG7909 Mantle cell lymphoma,
recurrent lymphoma

In combination with a vaccine,
several drugs, and chemotherapy

Induce anti-tumor CD8 T cell
immune response to reduce the
clinical outcomes.

NCT00490529

(Continued)
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networks of interaction could enhance our comprehension of TLR’s

intimate functions. Activation of the TLR by administrating various

agonists resulting in the downstream signaling cascade can

potentially covert the “cold tumors” into “hot tumors” that can

promote activities of various immune checkpoint inhibitors to

mitigate the tumor (345). Several novel TLR agonists are being

investigated as monotherapy, chemotherapy, and vaccine adjuvants

in different patients with a range of cancers due to their potential to

induce direct anti-tumor responses as well as to increase the clinical
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efficacy of the existing immunotherapeutic drugs. However, there

are only a few publications and trials on the role of TLR antagonists

as anti-cancer agents are available in the public domain. However,

based on the available data, TLR agonists are found to be more

efficacious than that of antagonists. Furthermore, the use of

advanced tools (e.g., caging strategies, molecular dynamics,

appropriate gene expression tools, and multiomics analyses at the

genomics, transcriptome, and proteome levels), can provide further

insight into the dynamics of TLR signaling. This comprehensive
TABLE 4 Continued

Targeting
TLR

Name of
Agonist/
Drug

Name of Cancer Intervention application Mechanism of action
Clinical
trial

number

Multiple
TLRs: TLR2, 4
and 9

Bacille
CalmetteGuérin
(BCG)

Bladder cancer Applied with vaccine and drugs Intravesical application triggers anti-
tumor immune response

NCT01373294

NCT02015104

NCT02792192
FIGURE 2

Scheme depicting the possible routes of chemotherapeutic/immunotherapeutic intervention of cancers through selection of appropriate TLR(s) and
their pattern of expression.
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approach could significantly advance our understanding of the role

of TLRs in diseases and their potential as prognostic markers (347–

349). This review article is therefore expected to provide a wealth of

information to the scientific communities to improve the

understanding of the use of TLR-directed therapeutic strategy in

combating different human cancers and to promote this strategy for

field application to save the lives of unfortunate patients. A scheme

on the possible approach for TLR directed chemo- and

immunotherapy has been given as Figure 2.
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Glossary

ALL Acute lymphoblastic leukemia

B-ALL Acute lymphoblastic leukemia

ADC Adenocarcinoma

ATP Adenosine triphosphate

ADV Adenovirus

ADCC Antibody-dependent cell-mediated cytotoxicity

AO-1 Atractylenolide I

BCG Bacillus Calmette–Guerin

BE Barrett’s esophagus

B-CLL B-cell chronic lymphocytic leukemia

BCPALL B-cell precursor acute lymphoblastic leukemia

BBMC Bone marrow mononuclear cells

BLS Brucella lumazine synthase

BL Burkitt lymphoma

cagPAI cag pathogenicity island

CSC Cancer stem cells

CAF Cancer-associated fibroblasts

CD40L CD40 ligand

CLL Chronic lymphocytic leukemia

CRC Colorectal cancers

CXCR3 C-X-C Motif Chemokine Receptor 3

COX-2 Cyclo-oxygenase 2

DAMPs Damage/danger-associated molecular patterns

DNMT2 DNA methyltransferase 2

dsRNA Double-stranded RNA

EGF Epidermal growth factor

EAC Esophageal adenocarcinoma

ESCC Esophageal squamous cell carcinomas

EMA European Medicine Agency

FGF2 Fibroblast growth factor 2

FOXP3 Forkhead box P3

GC Gastric cancer

GB Glioblastoma

GSCs Glioma stem cells

HBV Hepatitis B virus

HCV Hepatitis C virus

HCC Hepatocellular carcinoma

HL Hodgkin’s lymphoma

HIV Human immunodeficiency virus

(Continued)
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HPV Human papillomavirus

hTLRs Human TLRs

IKBKG Inhibitor of NF-kB kinase-g

IRF-3 Interferon regulatory factor-3

IL-1b Interleukin

IARC International Agency for Research on Cancer

LRR Leucine-rich repeats

LPS Lipopolysaccharide

MCL Mantle cell lymphoma

MMP9 Matrix-metalloproteinase 9

MAMPs Microbial/microbe-associated molecular patterns

miRNAs MicroRNAs

MAPKs Mitogen-activated protein kinase

MPLA Monophosphoryl lipid A

MM Multiple myeloma

MAL MyD88 adapter-like

MyD88 Myeloid differentiation factor 88

MDSC Myeloid-derived suppressor cells

NKAP NF-kB activating protein

NLPHL Nodular lymphocyte predominant form

NAFLD Non-alcoholic fatty liver disease

NHL Non-Hodgkin’s lymphoma

NSCLC Non-small cell lung cancer

NF-kB Nuclear factor-kB

NA Nucleic acid

NAS Nucleic acid-sensing

PAE Paeonol

PDAC Pancreatic ductal adenocarcinoma

PAMPs Pathogen-associated molecular patterns

PRR Pattern recognizing receptors

PBMC Peripheral blood mononuclear cells

pDCs Plasmacytoid dendritic cells

Poly I:C Polyriboinosinic-polyribocytidynic acid

ROS Reactive oxygen species

T reg cells Regulatory T

SLE Systemic lupus erythematosus

TH1 T helper 1

TTFT Time to first treatment

TIRAP TIR domain-containing adapter protein

TRIF TIR-domain-containing adapter-inducing interferon-b
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TLRs Toll like receptors

TGF-b Transforming growth factor-b

TRAM TRIF-related adaptor molecule

TME Tumor microenvironment

TNF-a Tumor necrosis factor-a

MT1-MMP Type 1 matrix-bound metalloproteinase

VEGF Vascular endothelial growth factor

WHO World Health Organization

XAMPs Xenobiotic-associated molecular patterns
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