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Background: Regulatory T cells (Tregs), are a key class of cell types in the

immune system. In the tumor microenvironment (TME), the presence of Tregs

has important implications for immune response and tumor development.

Relatively little is known about the role of Tregs in lung adenocarcinoma (LUAD).

Methods: Tregs were identified using but single-cell RNA sequencing (scRNA-

seq) analysis and interactions between Tregs and other cells in the TME were

investigated. Next, we used multiple bulk RNA-seq datasets to construct risk

models based on marker genes of Tregs and explored differences in prognosis,

mutational landscape, immune cell infiltration and immunotherapy between

high- and low-risk groups, and finally, qRT-PCR and cell function experiments

were performed to validate the model genes.

Results: The cellchat analysis showed that MIF-(CD74+CXCR4) pairs play a key

role in the interaction of Tregs with other cell subpopulations, and the Tregs-

associated signatures (TRAS) could well classify multiple LUAD cohorts into high-

and low-risk groups. Immunotherapy may offer greater potential benefits to the

low-risk group, as indicated by their superior survival, increased infiltration of

immune cells, and heightened expression of immune checkpoints. Finally, the

experiment verified that the model genes LTB and PTTG1 were relatively highly

expressed in cancer tissues, while PTPRC was relatively highly expressed in

paracancerous tissues. Colony Formation assay confirmed that knockdown of

PTTG1 reduced the proliferation ability of LUAD cells

Conclusion: TRAS were constructed using scRNA-seq and bulk RNA-seq to

distinguish patient risk subgroups, which may provide assistance in the clinical

management of LUAD patients.

KEYWORDS

lung adenocarcinoma, regulatory T cells, TME, immunotherapy, prognosis
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1244144/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1244144/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1244144/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1244144/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1244144/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1244144/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1244144&domain=pdf&date_stamp=2023-08-21
mailto:linshengrong123@163.com
mailto:wangwei15261883958@163.com
https://doi.org/10.3389/fimmu.2023.1244144
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1244144
https://www.frontiersin.org/journals/immunology


Zhang et al. 10.3389/fimmu.2023.1244144
1 Introduction

With a significant global incidence and continuing to be a

prominent contributor to cancer-related deaths, lung cancer (LC)

encompasses two major pathological classifications: small cell lung

cancer (SCLC) and non-small cell lung cancer (NSCLC), with

NSCLC being the prevailing type. Within the NSCLC category,

lung adenocarcinoma (LUAD) stands out as the primary

histological subtype, constituting roughly 40% of LC cases (1). In

the past decade, significant attention has been focused on early

surgical intervention for LC, leading to improved survival outcomes

for patients with early-stage disease. Despite advancements in our

understanding of LC, the invasiveness and associated risks of LUAD

continue to impact patient survival and prognosis. In recent years,

targeted therapies utilizing biomarkers have shown promising

results in improving survival outcomes for LC patients (2).

However, the widespread implementation of this treatment

modality requires further exploration. Therefore, exploring

additional insights related to LUAD and identifying novel factors

associated with patient survival prognosis are crucial for enhancing

patient outcomes.

The tumor microenvironment (TME) plays a crucial role in

determining tumor development, progression, and patient

prognosis (3–5). Tumor growth relies on the presence of a

permissive TME, formed through interactions between tumor

cells and the stroma, composed of immune cells, fibroblasts,

endothelial cells, and extracellular matrix (6). Several studies have

described immune characteristics of tumor stroma and defined

immune cell subpopulations associated with the prognosis of

NSCLC (7–9). Regulatory T cells (Tregs), characterized by the

expression of Foxp3 and CD25, have emerged as key players in

shaping the immune landscape of the TME. Through their

immunosuppressive properties, Tregs impact various aspects of

anti-tumor immune responses. They possess the ability to control

various types of inflammatory responses by modulating the activity

of different cells in both the innate and adaptive immune systems.

This wide-ranging control over immunity and inflammation is

achieved through the diverse molecular and cellular targets that

Tregs interact with (10).

Single-cell RNA sequencing (scRNA-seq) is a high-throughput

genomic technology that enables sequencing of the entire genome

or transcriptome of individual cells, providing genetic information

for each cell (11, 12). With advancements in high-throughput

sequencing, scRNA-seq has become a crucial tool in studying

cellular heterogeneity and development in the life sciences. Its

advantages lie in identifying potential cell subpopulations within

a cell population and determining specific gene expression patterns

for each subpopulation. Furthermore, it helps elucidate key cellular

processes such as cell differentiation, cell cycle, and apoptosis,

thereby driving progress in biomedical research and clinical

diagnostics. Due to its ability to identify cellular heterogeneity at

the single-cell level and avoid the averaging effects of traditional

sequencing methods, scRNA-seq has garnered significant attention

in fields like oncology, neuroscience, developmental biology, and

immunology. The emergence of scRNA-seq has made personalized
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treatment for cancer patients possible, serving as an effective

approach to study tumor heterogeneity and explore underlying

mechanisms.

Therefore, we employed scRNA-seq and bulk RNA-seq analysis

to detect TME features in LUAD samples, exploring the role of

Tregs in the TME. A Tregs-associated score (TRAS) was developed

in order to predict the prognosis and response to immunotherapy in

patients with LUAD. The findings of our study offer fresh

perspectives on the involvement of Tregs in LUAD, thus aiding in

the advancement of prognostic biomarkers and the identification of

novel molecular therapeutic targets for the treatment of LUAD.
2 Methods

2.1 Dataset source

The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) was utilized to obtain bulk RNA-seq data,

mutation data, and clinical characteristics of patients diagnosed

with LUAD. For the scRNA-seq dataset GSE131907 (13), tissues

from 20 LUAD patients, including 11 surgically resected tumor

tissue samples, four puncture biopsy samples, and five pleural

effusions, were acquired from the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo/). Additionally,

external validation cohorts (GSE13213, GSE26939, GSE29016,

GSE30219, and GSE42127) were collected from the GEO

database. To ensure data comparability, the expression data was

converted to the transcripts per million (TPM) formats. Addressing

any batch effects was performed using the “combat” function of the

“sva” R package (14). Furthermore, the TCGA database provided

bulk sequencing data, mutation data, and clinical details of LUAD

patients, which underwent a log2 transformation for standardized

data format prior to analysis.
2.2 scRNA-seq data analysis

The cell clustering and dimension reduction steps were

conducted using the R package “Seurat” (15). Cells were excluded if

they exhibited an expression of more than 7,000 or fewer than 300

genes, or if the proportion of unique molecular identifiers (UMIs)

derived from the mitochondrial genome exceeded 10%. The dataset’s

dimensionality was reduced by applying principal component

analysis (PCA) to the variably expressed genes. Subsequently,

cluster analysis was performed using the “FindClusters” function,

using the top 20 PCA components, and after repeated adjustments, a

resolution of 0.8 was selected to better distinguish subgroups. The

resulting two-dimensional representation of cell clusters was then

annotated using canonical marker genes to identify known biological

cell types. To determine the marker genes associated with cell clusters,

the Seurat “FindAllMarkers” function was utilized to compare cells

within a specific cluster to cells in all other clusters. The “cellchat” R

package (16) was used to infer communication networks between

cell subpopulations.
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2.3 Building a high-performance TRAS

Prognostic key genes were identified by conducting univariate Cox

regression and lasso regression analyses. Subsequently, a refinement

process was performed to select the genes and determine their

corresponding coefficients using multivariate Cox regression. The

risk score for LUAD patients was calculated using the following

formula: Risk score = on
k=1Coef(k) �  Expr(k). Coef (k) represents

the abbreviation for regression coefficients, and Expr (k) denotes the

expression level of prognostic model genes (17). The risk score

calculation was applied to LUAD patients in the dataset, stratifying

them into high- and low-risk groups based on the median risk score.

The predictive performance of the model was evaluated using receiver

operating characteristic (ROC) curves (18, 19), with exceptional

performance indicated by area under the curve (AUC) values

exceeding 0.65. PCA analysis was employed to visually illustrate the

distribution of patients across different risk groups (20, 21).
2.4 Nomogram construction

By amalgamating the risk score and clinical characteristics, an

enhanced and more precise nomogram was devised utilizing the ‘‘rms’’

R package (22–24), thereby augmenting the prognostic predictive

prowess. Stratified analyses grounded on age, pathological T, N, and

clinical stage were conducted to evaluate the predictive significance of

both the risk score and clinical features.
2.5 Enrichment analysis

Gene set variation analysis (GSVA) and gene set enrichment

analysis (GSEA) were employed to evaluate the biological

characteristics (25, 26). The ssGSEA approach was employed to

quantify the enrichment scores of 29 immune signatures (27, 28).
2.6 Mutation analysis

The somatic mutations present in the high- and low-risk cohorts of

LUADwere thoroughly examined using the “maftools” R package (29–

31). The mutation annotation format (MAF) was generated based on

the data obtained from the TCGA database. The tumor mutation

burden (TMB) of each patient with LUAD was assessed. Visual

representation of the mutation landscape and immune infiltration

scores was achieved using the “ComplexHeatmap” R package (32).

TCGA-LUAD patients were stratified into four distinct groups based

on median risk score and median TMB, and their survival disparities

were compared based on the median risk score and TMB.
2.7 The TME and immunotherapy

Seven immune infiltration algorithms were utilized to evaluate

the immune cell content by accessing the timer 2.0 database (http://

timer.comp-genomics.org/). Heatmaps were employed to visually
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represent the variances in immune cell infiltration across different

risk groups. Additionally, the immunological scores, stromal scores,

and ESTIMATE scores of LUAD patients were calculated using the

“estimate” R package (33). To forecast the responsiveness to

immunotherapy, the Cancer Immunome Atlas (TCIA) database

was explored for Immunophenoscores (IPS) associated with

TCGA-LUAD. A comparison of IPS was carried out between the

high-risk and low-risk groups in this study (34). The “oncoPredict” R

package was used to predict potentially effective chemotherapeutic

agents between the risk groups (35).
2.8 Cell lines culture and qRT-PCR

Ethical approval (Approval No. 2019-SR-156) was obtained

from the Medical Ethics Committee for tissue specimens acquired

from the First Affiliated Hospital of Nanjing Medical University.

These specimens were stored at a temperature of -80°C. A total of

ten pairs of samples were collected from LUAD patients who

underwent tumor resection, including tumor tissue (T) and

precancerous tissue (N). Normal human lung epithelial cells,

known as BEAS-2B cells, as well as human LUAD cell lines

represented by A549 and H1299 cells, were procured from the

Cell Resource Center of Shanghai Life Sciences Institute. The cells

were cultured in F12K or RPMI-1640, supplemented with 10% fetal

bovine serum (FBS), 1% streptomycin, and penicillin. Maintained

under conditions of 37°C, 5% CO2, and 95% humidity, the cell

cultures were established (26, 36, 37). Total RNA from LUAD cells

or tissues was isolated using the TRIzol reagent by Thermo Fisher

Scientific, based in Waltham, MA, USA. The cDNA synthesis was

carried out according to the manufacturer’s protocol, utilizing the

RevertAid™ First Strand cDNA Synthesis Kit provided by Thermo

Fisher Scientific. Subsequently, a qRT-PCR assay was performed on

a StepOne Real-Time PCR system, also manufactured by Thermo

Fisher Scientific, using a SYBR Green PCR kit from Takara Bio in

Otsu, Japan (38). The quantification of relative gene expression

levels was conducted using the 2-△△CT method.
2.9 Colony formation

A transfection was conducted on 1000 cells, which were then

placed in 6-well plates for approximately 14 days. After a period of

two weeks, the cell clones were visually inspected without

magnification. Subsequently, the cells were washed and subjected

to fixation in 4% paraformaldehyde (PFA) for 15 minutes. Staining

with crystal violet from Solarbio, China, was performed for 20

minutes, followed by air drying at room temperature. The cell count

per well was subsequently calculated.
2.10 Statistical methods

R, specifically version 4.2.0, was employed for the statistical

analyses and data processing procedures. To establish statistical

significance, Kaplan-Meier curves were utilized for survival analysis
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(39), and the log-rank test was employed. The generation of all

survival curves was accomplished using the “survminer” R package

(40). Heatmaps were created utilizing the “pheatmap” R package.

For variables exhibiting a normal distribution, quantitative

differences were assessed using either a two-tailed t-test or a one-

way analysis of variance (41, 42). In the case of non-normally

distributed data, the implementation of the Wilcoxon test or the

Kruskal-Wallis test was conducted (41, 43). All statistical analyses

were performed within the R environment, considering a p-value

threshold of< 0.05 as indicating statistical significance (44).
3 Results

3.1 The scRNA profiling of LUAD

The flowchart pertaining to the study was presented in Figure 1.

Following a meticulous evaluation encompassing the proportion of

cellular signatures and the expression of mitochondrial and

ribosomal genes, a grand total of 73,813 cells displaying exemplary

quality were discerned as suitable for subsequent scrutiny.

Supplementary Figures S1A, B delineate the expression

characteristics exhibited by each individual sample. Noteworthy

fluctuations in cell cycles were absent from the principal

component analysis (PCA) reduction plot as evidenced in

Supplementary Figure S1C. Figure 2A vividly portrays

characteristic indicators for distinct cell types. The bubble diagram

(Figure 2B) visually encapsulates the expression level of the marker

gene associated with each cluster. Figure 2C showed the percentage of

cell types in the early and advanced LUAD samples. Figure 2D

illustrates the distribution of various cell types as a percentage in the

20 LUAD samples derived from diverse sources. A pervasive

uniformity was noted in the cellular distribution within each

sample, implying the conspicuous absence of discernible batch

effects that could potentially exert an influence on subsequent

investigations (Figure 2E). Subsequently, the employment of

dimensionality reduction methodologies, particularly t-distributed

Stochastic Neighbor Embedding (tSNE), culminated in the

categorization of all cells into twelve discrete clusters

(Supplementary Figure S1D). A tSNE plot was used in Figure 2F to

show the distribution of each cell population. A UMAP figure in

Supplementary Figure S1E depicted the distribution of each cell

group. Supplementary Figure S1F displayed t-SNE plots depicting

the distribution of cells at various stages of development.
3.2 Cell-cell interactions

Within the TME, there are robust cellular interactions involving

regulatory T cells (Tregs) and various components, such as

epithelial cells, fibroblasts, and myeloid cells (Figure 3A). These

interactions play a crucial role in shaping the immune response and

tumor progression. Epithelial cells and fibroblasts are capable of

communicating with Tregs through the interaction of MIF-(CD74

+CXCR4) pairs (Figure 3B). Similarly, investigations have revealed

that Tregs can engage in interactions with B cells via MIF-
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(CD74+CXCR4) pairs (Figure 3C). This suggests that the MIF-

(CD74+CXCR4) axis might be a critical signaling pathway in

facilitating the crosstalk between Tregs and various cell

populations within the TME. The expression levels of CD74,

CXCR4, and CD44 genes were found to be significantly

upregulated in Tregs (Figure 3D). This upregulation may indicate

an increased capacity of Tregs to respond to signaling cues from

neighboring cells, reinforcing their role as key regulators of the

immune response within the TME. Of particular significance,

macrophage migration inhibitory factor (MIF) appears to play a

pivotal role in mediating these intricate interactions between Tregs

and other cell populations within the TME (Figure 3E). MIF is

known to be involved in modulating immune responses and

inflammation, and its involvement in the TME may have far-

reaching implications for tumor immune evasion and

progression. Notably, Tregs cells seem to predominantly function

as receivers in this context, actively receiving signals from various

neighboring cells (Figures 3F, G). This highlights their ability to

sense and respond to the cues provided by other cell types, allowing

them to orchestrate immune tolerance and suppress anti-tumor

immunity. The significance of these cell-to-cell communications lies

in their potential to influence the immune landscape within the

TME. By interacting with epithelial cells, fibroblasts, myeloid cells,

and B cells, Tregs may contribute to immune suppression, tumor

immune evasion, and tumor progression. Understanding these

complex interactions could offer new insights into the

development of immunotherapeutic strategies aimed at disrupting

these suppressive signals and restoring anti-tumor immune

responses. GO and KEGG enrichment analysis of Tregs cells

marker genes showed that main enriched pathways were the

interaction between cytokines and the activation of T cells

(Supplementary Figures S2A, B).
3.2 Constructing TRAS

The six datasets utilized in the analysis were subjected to de-

batching procedures to account for any batch effects (Figures 4A,

B), with the TCGA cohort serving as the reference cohort for the

model construction. The marker genes of Tregs cells were

intercrossed with bulk sequencing data genes, and a total of 298

genes overlapped (Supplementary Figure S2C). Prognostic models

incorporating Tregs marker genes were developed through the

application of COX and Lasso regression analyses. The

methodology employed for identifying essential prognostic

variables is illustrated in Figures 4C, D. Figure 4E provides the

hazard ratio (HR) values associated with each variable included in

the model, while Figure 4F showcases the corresponding coefficients

of specific variables. (Supplementary Figure S2D) demonstrates that

TRAS is an independent prognostic model (P<0.001).
3.3 Model evaluation

The calculation of the risk score for each patient was performed

by multiplying the model gene expression with the corresponding
frontiersin.org
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coefficients. Subsequently, the patients were categorized into high-

and low-groups based on the median value of the risk score.

Notably, the high-risk groups of both the TCGA and the five

GEO cohorts showed a poor prognosis, and the PCA analysis

showed that the high- and low-risk group samples could be

clearly divided into two clusters, thus demonstrating the accuracy

and stability of the proposed model (Figures 5A–H). The ROC

curves demonstrate the exceptional predictive ability of TRAS in
Frontiers in Immunology
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prognosticating outcomes (Supplementary Figures S3A–F). Based

on the expression levels of model genes, patients with LUAD were

categorized into high- and low-expression groups. Among these

groups, patients with elevated expression of LTB and PTPRC genes

exhibited a more favorable prognosis, whereas those with

heightened expression of BIRC3, PTTG1, ACTB, ANP32B, and

RHOF experienced improved survival rates (Supplementary Figures

S4A–G).
FIGURE 1

Flow chart of all analyses.
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3.4 Clinical correlation and
nomogram construction

A heatmap was devised to depict the distribution of clinical

characteristics among distinct risk groups by amalgamating clinical

information and the high- and low-risk subgroups (Figure 6A). The

high-risk cohort exhibited an association with relatively advanced

T-stage, N-stage, and clinical stage, thereby indicating a relatively

unfavorable prognosis for patients belonging to this group
Frontiers in Immunology 06
(Figure 6B). To assess the risk of TCGA-LUAD patients, a

nomogram was formulated by integrating the clinical features and

risk groups. Figure 6C visually portrays the stage, age, and risk score

of the patients, thereby providing a valuable tool for a more precise

risk assessment and guiding future treatment decisions. In terms of

performance, the nomogram scores were found to surpass other

clinical features and risk scores, as demonstrated by the C-index

curves (Figure 6D). Both the calibration curve and the decision

curves indicated that the Nomogram score had good predictive
B

C

D

E F

A

FIGURE 2

Flow chart of single cell analysis. (A) Multiple tSNE plots showing the expression of classic cell type marker genes. (B) Bubble plots showing the
expression of marker genes corresponding to each cluster. (C) A histogram of the percentage of cellular components showing the changes in the
proportion of different cellular subpopulations at early and advanced LUAD. (D) A histogram showing the variation of cell proportions between
different samples. (E) A tSNE plot showing the distribution of cell samples from different LUAD tissues. (F) A tSNE plot demonstrating the distribution
of different cell types.
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performance (Supplementary Figures S5A, B). Moreover, the

prognostic ROC analysis was employed to evaluate the accuracy

of the nomogram, revealing significantly superior performance in

comparison to other clinical features and risk scores. It is important

to note that the AUC values for 1, 3, 5, 7, and 10 years were 0.772,

0.752, 0.721, 0.731, and 0.756, respectively (Figures 6E–I).
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3.5 Mutation landscape

The impact of somatic mutations on the outcomes of cancer

immunotherapy exhibits variability. The mutational profile of

TCGA-LUAD was scrutinized, and the findings are delineated in

Figure 7A. Furthermore, a comparative analysis of the disparities in
B

C D

E F

G

A

FIGURE 3

Cellular interactions analysis. (A) Showing the number and intensity of interactions between different cell populations in the TME. (B, C) Bubble plots
showing the possible ligand-receptor pairs between Tregs and other cell subpopulations in the TME. (D) Expression of key ligand-receptor pair
genes in cell populations. (E) Heatmaps demonstrating the strength of outgoing and incoming signaling pathways in different cell subpopulations.
(F) The roles played by different cell populations in the tumor microenvironment in the MIF signaling pathway network. (G) A scatter plot showing
the distribution of different cell populations in the intensity of outgoing and incoming signaling interactions.
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TMB between the high- and low-risk groups revealed relatively

augmented mutation rates in the high-risk cohort of LUAD

(Figure 7B). A significant positive correlation between TMB and risk

score was identified through Spearman correlation analysis (R = 0.22,

P<0.05, Figure 7C). Based on the median values of TMB and risk score,

patients were categorized into four groups. The analysis revealed that

patients with high-mutation and low-risk LUAD exhibited the most

favorable prognosis, while those with low-mutation and high-risk

LUAD demonstrated the poorest prognosis (Figure 7D).
Frontiers in Immunology 08
3.6 Enrichment analysis

The GSVA analysis revealed significant pathway enrichments in

the high-risk group, including E2F targets, the G2M checkpoint,

and mTORC1 signaling (Figure 8A). Additionally, the GSEA

enrichment analysis visually depicted notable pathway

enrichments in the high-risk group, such as the Attachment of

spindle microtubules to kinetochores, Chromosome segregation,

and Mitotic sister chromatid segregation (Figures 8B, C). On the
B

C D

E F

A

FIGURE 4

Construction of a stable risk model. (A, B) Sample distribution characteristics of multiple bulk RNA-seq cohorts before and after removal of batch
effects. (C) Forest plot showing the results of univariate COX analysis. (D) LASSO regression screening for significant variables affecting prognosis. (E)
Circle plot showing genes included in the risk model after multivariate regression analysis. (F) Distribution of coefficient values of model genes. #
represents p<0.05; ## represents p<0.01; ### represents p<0.001.
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other hand, the low-risk group showed prominent enrichment in

the Immunoglobulin production pathway (Supplementary Figure

S5C). Immunoglobulin production is a vital process through which

the immune system generates antibodies, essential proteins

produced by B cells to defend the body against pathogens and

foreign substances. Furthermore, the ssGSEA analysis indicated that

the low-risk group exhibited a higher abundance of infiltrating

immune cells, specifically B-cells and antigen-presenting dendritic

cells (aDCs) (Figures 8D, E). These findings collectively suggest that

patients in the high-risk group are characterized by significant

alterations in key cellular pathways associated with cell cycle

regulation and signaling, while the low-risk group appears to have
Frontiers in Immunology 09
a heightened immune response indicated by increased levels of

infiltrating B-cells and aDCs, and enriched Immunoglobulin

production pathway activity.
3.7 Immune infiltration assessment

The disparities in immune infiltration between the high- and low-

risk groups in TCGA-LUAD were assessed by utilizing the data

obtained from seven immune infiltration algorithms in the TIMER

database. The analysis revealed that the low-risk group exhibited

relatively higher levels of immune infiltration (Figure 9A).
B

C D

E F

G H

A

FIGURE 5

Survival curves and sample distribution of high- and low-risk groups. (A–H) The survival differences and PCA sample distribution of different risk
groups in TCGA-TRAIN, TCGA-TEST, TCGA-ALL, GEO13213, GEO23939, GEO29016, GEO30219 and GEO42127, respectively, were presented.
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Furthermore, the levels of immune infiltration in the distinct risk

groups were validated using the ESTIMATE method, which allows for

the estimation of tumor purity and stromal fraction in the TME. The

Spearman correlation analysis was performed to investigate the

association between the risk score and the immune infiltration score,

revealing a significant negative correlation (R = -0.28, FDR< 0.001,

Figure 9B). This correlation suggests that as the risk score increases,
Frontiers in Immunology 10
there is a decrease in the extent of immune cell infiltration in the TME.

To gain further insights into the immune landscape of the different risk

groups, we evaluated the immune scores derived from the ESTIMATE

method. Higher immune scores were observed in the low-risk group

compared to the high-risk group (P< 0.05, Figures 9C–F). The immune

score represents the abundance of immune cells within the TME, and

the higher immune score in the low-risk group suggests a higher
B

C D

E

F G H I

A

FIGURE 6

Clinical correlation analysis and construction of the nomogram. (A) A heatmap was constructed by combining clinical features and model gene
expression to demonstrate the distribution of clinical features and model genes in high- and low-risk groups. (B) Bar plots showing the proportion of
T-stage, N-stage, age group, and clinical stage in the high- and low-risk groups. (C) A nomogram was constructed by combining age, risk score and
clinical stage. (D) Concordance index curves showing the performance comparison of clinical characteristics, risk scores and nomogram scores.
(E–I) ROC curves showing AUC values for clinical characteristics, risk scores and nomogram scores at 1-, 3-, 5-, 7-, and 10-years, respectively. Note:
***P < 0.001.
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proportion of immune cell infiltration in this group. The association

between risk score, immune infiltration, and the immune scores has

important implications. The negative correlation between risk score

and immune infiltration indicates that the high-risk group,

characterized by unfavorable gene expression patterns, is associated

with a reduced immune cell presence in the TME. This could

potentially create an immunosuppressive microenvironment,

hampering anti-tumor immune responses and promoting disease
Frontiers in Immunology 11
progression in LUAD patients. On the other hand, the low-risk

group, which exhibits a more favorable gene expression profile,

shows higher immune scores and increased immune cell infiltration

in the TME. This suggests a more immune-active microenvironment,

which may facilitate anti-tumor immune responses and improve the

efficacy of immunotherapy in these patients. Taken together, these

findings underscore the association between the risk score, immune

infiltration, and the immune microenvironment in LUAD.
B C D

A

FIGURE 7

Mutation landscape in high- and low-risk groups. (A) Heat map of sample mutation differences between high- and low-risk groups. (B) Boxplots of
the difference in TMB windiness between high and low risk groups. (C) Scatter plot of correlation between risk scores and TMB. (D) Survival curves
showing the difference between survival among four subgroups (high-risk and high- mutation, high-risk and low-mutation, low-risk and high-
mutation, low-risk and low-mutation).
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3.8 Immunotherapy and
chemotherapy drugs

The application of immune checkpoint blockade has been widely

utilized in advanced LUAD patients. The relationship between well-

established immune checkpoints and risk scores in the TCGA-LUAD

cohort was analyzed. It was observed that higher expression of almost

all immune checkpoint genes (ICGs), such as CD48, CD40LG, and
Frontiers in Immunology 12
CD27, was found in the low-risk group (Figure 10A). Bubble plots were

used to visualize the correlation between model genes, risk scores, and

ICGs (Figure 10B), where blue indicated negative correlation and

orange indicated positive correlation. Interestingly, a positive

correlation was observed between the expression levels of model

genes and most immune checkpoints, while risk scores exhibited a

negative correlation with the expression levels of certain common

immune checkpoints, including ADRA2A, BTLA, BTNL2, CD160, and
B

C

D E

A

FIGURE 8

Enrichment pathways between different risk groups. (A) GSVA enrichment analysis demonstrates the enrichment of hallmark gene sets between
different risk groups. (B, C) GSEA enrichment analysis demonstrating the enrichment of differential genes to GO pathways between high- and low-
risk groups. (D, E) ssGSEA enrichment analysis demonstrating the enrichment of immune cell infiltration and immune-related pathways between
high- and low-risk groups.
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CD244. These findings provide valuable insights into the potential of

immune checkpoint blockade therapy for LUAD patients. In order to

evaluate the potential benefits of immunotherapy among different risk

groups, the IPS scores were compared across various risk groups to

identify patients who may derive greater advantages from

immunotherapy. The tumor samples from these individuals were

predicted to exhibit favorable immune responses to PD-L1 or
Frontiers in Immunology
 13
CTLA4 inhibitors, or both (Figure 10C). Significantly higher IPS scores

were observed in the low-risk group, indicating that they would derive

the most benefit from this type of immunotherapy. Drug sensitivity

analysis indicates that AZD8055 and BMS-754807 potentially exhibit

enhanced efficacy in the low-risk group, whereas BI-2536 and

ERK_2440 demonstrate superior sensitivity in the high-risk

group (Figure 10D).
B

C

D

E

F

A

FIGURE 9

Immune infiltration assessment. (A) Heat map demonstrating the differences in immune cell infiltration between high- and low-risk groups assessed
using seven algorithms. (B) Scatter plot of correlation between risk score and stromal score, immune score, ESTIMATE score, and tumor purity.
(C–F) Boxplots of differences between risk groups in stromal score, immune score, ESTIMATE score and tumor purity.
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3.9 Experimental validation

LTB, PTPRC, and PTTG1 were significantly different between

normal and tumor samples from TCGA-LUAD, whereas the other

model genes were not (Figures 11A, E, I; Supplementary Figure S6A).
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To validate our findings, we performed qRT-PCR validation using

surgically resected tumor and healthy lung tissue. The results showed

that LTB and PTTG1 genes were significantly up-regulated in tumor

tissues, while PTPRC expression was increased in normal tissues

(Figures 11B, C, F, G, J, K). Gene validation through
B

C

D

A

FIGURE 10

Immune checkpoint and immunotherapy analysis. (A) Boxplots showing the difference in immune checkpoint expression between high- and low-
risk groups. (B) Correlation scatter plots showing the correlation between model genes and risk scores and immune checkpoint expression. (C) TCIA
analysis showing the difference in IPS scores between different risk groups to infer the possible benefit of receiving PD-1 and CTLA-4 treatment in
different risk groups. (D) Boxplots demonstrating the possible sensitivity of chemotherapeutic agents between different risk groups. Note: *P < 0.05,
**P < 0.01, ***P < 0.001.
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immunohistochemistry using the Human Protein Atlas database was

performed (Figures 11D, H, L). PTTG1 is highly expressed in tumor

tissues and has the highest HR value. Furthermore, Supplementary

Figure S4D indicates that LUAD patients with high PTTG1 expression

have poor survival outcomes. In addition, experiments showed that
Frontiers in Immunology 15
A549 and H1299 LUAD cells exhibited higher PTTG1 expression

compared to normal lung cells. Knockdown of PTTG1 resulted in a

significant reduction in the number of cell clones in LUAD cell lines

(Figures 11M, N). These findings strongly suggest that high expression

of PTTG1 can promote LUAD cell proliferation.
B C D
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A

FIGURE 11

Experimental validation of model gene. (A) Boxplots showing the differential expression of LTB between tumor and normal tissues in TCGA-LUAD.
(B–D) Relative expression of LTB gene in 10 pairs of cancer and paracancer samples, respectively; the HPA database shows the expression of LTB
gene in LUAD and normal tissues (E) Boxplots showing the differential expression of PTPRC between tumor and normal tissues in TCGA-LUAD.
(F–H) Relative expression of PTPRC gene in 10 pairs of cancer and paraneoplastic samples, respectively; the HPA database shows the expression of
PTPRC gene in LUAD and normal tissues. (I) Boxplots showing the differential expression of PTTG1 between tumor and normal tissues in TCGA-
LUAD. (J–L) Relative expression of PTTG1 gene in 10 pairs of cancer and paraneoplastic samples, respectively; the HPA database shows the
expression of PTTG1 gene in LUAD and normal tissues. (M, N) Cloning experiments showed that PTTG1 knockdown could significantly reduce the
proliferation capacity of LUAD cells. Note: *P < 0.05, **P < 0.01, ***P < 0.001.
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4 Discussion

Immune system plays important role in the development of

cancers (45), including Tregs in LC. These specialized immune cells

possess immunosuppressive properties and are known to modulate

immune responses within the TME. In LC, Tregs can infiltrate the

tumor site and suppress the activity of effector T cells, which are

responsible for recognizing and eliminating cancer cells. By

dampening the immune response, Tregs contribute to the

establishment of an immunosuppressive environment that

allows tumor cells to evade immune surveillance and promote

tumor progression. Inflammatory factors play important

functions in disease (46, 47). Tregs exert their suppressive effects

through various mechanisms, including the secretion of

immunosuppressive cytokines such as interleukin-10 (IL-10) and

transforming growth factor-beta (TGF-b). These cytokines inhibit

the activation and function of effector T cells, thereby impairing the

immune system’s ability to mount an effective anti-tumor response.

Additionally, Tregs can directly interact with other immune cells,

such as dendritic cells and natural killer cells, further hindering

their anti-tumor activities. This intricate network of immune cell

interactions orchestrated by Tregs ultimately contributes to

immune evasion and tumor immune tolerance in LC.

Understanding the role of Tregs in LC is crucial for developing

effective immunotherapeutic strategies. Targeting Tregs or

modulating their suppressive function holds promise as a

potential approach to enhance anti-tumor immune responses and

improve the outcomes of LC patients.

Single-cell analysis provides an unparalleled degree of

resolution for examining intratumoral heterogeneity, cellular

differentiation trajectories, and intercellular communication,

thereby presenting promising avenues for applications (48).

Through the analysis of cell clustering in scRNA-seq datasets, we

have identified genes that are differentially expressed specifically in

tumor cells, thereby redirecting the emphasis from comparing

tumors to normal tissues, as observed in prior database analyses,

towards exploring distinctions among tumor cells themselves (49).

In this investigation, we employed scRNA-seq data to discern

pivotal marker genes of Tregs. Through the integration of

multiple bulk NRA-seq datasets, we devised a prognostic

signature comprising seven genes. Subsequently, we computed

risk scores to classify patients with LUAD into high-risk and low-

risk categories. Comparative analysis of survival curves between the

high-risk and low-risk cohorts within the TCGA cohort unveiled

enhanced prognoses for individuals belonging to the low-risk group

(P<0.05). Analogous survival outcomes were observed across the

TCGA-test group, TCGA-train group, and GEO verification group

(p<0.05). ROC curve analysis corroborated the elevated accuracy of

the devised prognostic signature in appraising the prognostic

outlook of LUAD patients at 1, 3, 5, 7, and 10-year intervals,

encompassing both the TCGA and GEO cohorts.

Functional enrichment analysis revealed a significant

enrichment of TRAS within cell cycle-related pathways, such as

mTORC1-signaling and G2M-checkpoint pathways. Inhibition of
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TBK1 resulted in impaired proliferation, migration, drug resistance,

and tumor growth in CRC cells. Furthermore, TBK1 overexpression

suppressed the activation of mTORC1-signaling in CRC (50).

While concrete evidence regarding the involvement of mTORC1-

signaling in the progression of LUAD is lacking, it can be speculated

that this pathway also plays a pivotal role in LUAD. The G2M-

checkpoint pathway similarly assumes significance in other related

malignancies, including pancreatic cancer (51), colorectal cancer

(52), breast cancer (53) and more. Manipulating the G2M-

checkpoint pathway may also impact the progression of LUAD.

A comprehensive examination of the tumor-infiltrating immune

cells can elucidate the mechanisms underlying immune evasion in

cancer, thereby offering opportunities to devise innovative therapeutic

strategies (54). Through the assessment of immune cell infiltration in

high-risk and low-risk groups, this study unveiled a more pronounced

abundance of immune cell infiltration in the low-risk group relative to

the high-risk group. Previous investigations have established a

correlation between the expression levels of immune checkpoint

genes and the efficacy of immunotherapy (55). Differential analysis

in immune checkpoint gene expression between the high-risk and low-

risk groups implied that the low-risk group could derive benefits from

treatments targeting additional immune checkpoints. Therapeutic

interventions focusing on the TME have emerged as promising

modalities in cancer management, given the pivotal role of the TME

in modulating tumor progression and response to conventional

therapies (56). The TME scoring revealed a higher immune score

within the low-risk group compared to the high-risk group, exhibiting

a statistically significant disparity. This observation implied that

patients belonging to the low-risk group may display heightened

susceptibility to immunotherapy.

Leukotriene B4 (LTB) is a key mediator in the cascade of

complement, lipid, cytokine and chemokine responses that

mediate inflammatory diseases (57). It has been found that LTB

canmediate the airway inflammatory response and thus promote the

progression of LC, and can be used as a diagnostic marker for LC

(58). Pituitary tumor transformation gene-1 (PTTG1), a gene related

to DNA repair, was found to be a diagnostic marker for LUAD (59).

Protein tyrosine phosphatase receptor type C (PTPRC) may be a

potential prognostic marker for LUAD, and it may affect the

function of gdT cells and other immune cells by being involved in

the regulation of TME immune status (60). In our study, we verified

that LTB and PTTG1 were highly expressed in tumor tissues and

PTPRC was highly expressed in normal tissues using clinical surgical

resection samples, but further mechanistic experiments are needed

to verify the specific functions of these model genes.

The constructed TRAS in this study facilitates the prognostic

prediction of LUAD patients and unveils potential avenues for the

implementation of immunotherapy. Nevertheless, additional

experimental investigations are imperative to authenticate these

discoveries. Furthermore, the migratory capacity of tumor cells is

closely associated with adverse prognosis and tumor recurrence

(61), while drug resistance, metabolic reprogramming, and

epigenetic alterations also play crucial roles in the progression of

tumor patients’ prognosis (62, 63). Our study lacks analysis in this
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area. In future investigations, we will focus on exploring the impact

mechanisms of Tregs in these aspects within lung cancer.
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