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Single-cell sequencing of
tumor-associated macrophages
in a Drosophila model

Dilan Khalili 1†, Mubasher Mohammed1†, Martin Kunc1,2†,
Martina Sindlerova1, Johan Ankarklev1 and Ulrich Theopold1*

1The Wenner-Gren Institute, Department of Molecular Biosciences, Stockholm University,
Stockholm, Sweden, 2Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
Introduction: Tumor-associated macrophages may act to either limit or

promote tumor growth, yet the molecular basis for either path is poorly

characterized.

Methods: We use a larval Drosophila model that expresses a dominant-active

version of the Ras-oncogene (RasV12) to study dysplastic growth during early

tumor progression. We performed single-cell RNA-sequencing of macrophage-

like hemocytes to characterize these cells in tumor- compared to wild-type

larvae. Hemocytes included manually extracted tumor-associated- and

circulating cells.

Results and discussion:We identified five distinct hemocyte clusters. In addition

to RasV12 larvae, we included a tumor model where the activation of effector

caspases was inhibited, mimicking an apoptosis-resistant setting. Circulating

hemocytes from both tumor models differ qualitatively from control wild-type

cells—they display an enrichment for genes involved in cell division, which was

confirmed using proliferation assays. Split analysis of the tumor models further

reveals that proliferation is strongest in the caspase-deficient setting. Similarly,

depending on the tumor model, hemocytes that attach to tumors activate

different sets of immune effectors—antimicrobial peptides dominate the

response against the tumor alone, while caspase inhibition induces a shift

toward members of proteolytic cascades. Finally, we provide evidence for

transcript transfer between hemocytes and possibly other tissues. Taken

together, our data support the usefulness of Drosophila to study the response

against tumors at the organismic level.

KEYWORDS

Drosophila melanogaster, macrophages, tumor model, hemocyte, single-cell
transcriptomics, ScRNA-seq
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1 Introduction

When cellular homeostasis is impaired, affected cells may limit

the damage by inducing either cellular arrest or cell death. Best

characterized in this context is the tumor suppressor p53, which—

depending on the amount of DNA damage or other forms of

cellular stress—induces cellular senescence, apoptosis, or

alternative forms of cell death (1–3). Collectively or individually,

these responses will prevent malfunction at the tissue/organ and

organismic levels. Notably, this may also prevent the transition

from benign to more aggressive forms of tumor growth by

eliminating or silencing damaged cells locally in the tumor

microenvironment (TME) and at an early stage of tumorigenesis

(1). Cell cycle arrest is usually expected to prevent this transition on

its own, while apoptosis involves the clearance of apoptotic bodies

by phagocytic neighboring cells or professional phagocytes such as

macrophages, which migrate into the TME (2, 3).

While apoptosis thus acts as a tumor suppressor mechanism,

tumor cells have been found to evade cell death, and in several tumors

with poor prognosis, high levels of apoptosis are detected (4). This

raises the question of whether apoptosis, both when occurring

naturally or as part of anti-cancer treatments, is fully beneficial (4).

Tumor progression depends on factors that act both locally in

the tumor microenvironment and on the communication with

tissues in trans, which modulate physiological and immune

responses towards tumors. Key actors in the TME are tumor-

associated macrophages (TAMs), which may affect tumor

progression both positively or negatively. In vitro activated

macrophages have been roughly classified as either classically

activated (M1-type macrophages) or alternative (M2 macrophages

(5)). M1 macrophages are pro-inflammatory and are involved in

anti-viral, anti-bacterial, and anti-tumor responses, whereas M2

macrophages are anti-inflammatory, contribute to anti-helminth

and tissue repair responses, and are considered pro-tumoral (6, 7).

Additional in vitro and in vivo data led to further subdivision, in

particular of M2 macrophages, and show that their activation state

is only partially reflected by the M1/M2 classification (6, 8).

Faci l i tat ing the communication within the tumor

microenvironment, which includes tumor cells, non-tumor stroma,

and TAMs, extracellular vesicles (EVs) have gained increasing

attention in recent years (4). EVs include (a) tumor-derived

apoptotic fragments, (b) microparticles, which are shed from the cell

surface, and (c) exosomes, which are released through the fusion of

multivesicular bodies with the cell surface (9). EVs may have tumor

and metastasis-promoting capacity both within the TME (4) and

systemically. Apoptotic bodies contain nuclear fragments (including

DNA and primary transcripts), while the content of microparticles and

exosomes is derived from the cytosol and therefore contains mature

RNAs. Potential intermediaries of EV-mediated communication

include proteins, lipids, and different types of RNA, including long

non-coding RNAs (lncRNAs) (9, 10).

Despite lacking adaptive immunity in a mammalian sense,

insects possess a highly effective innate immune system. This

comprises both humoral and cellular elements. Humoral

components are secreted into the hemolymph—the insect

equivalent of blood—primarily from the fat body, which fulfills
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functions of both the mammalian fat body and liver. In Drosophila

melanogaster, one of the major models for insect immunity, the

cellular branch comprises three classes of cells collectively called

hemocytes (11) (1): plasmatocytes, which are functionally

equivalent to both mammalian macrophages and white blood

cells; (2) crystal cells, which contain prophenoloxidases, the

precursors for key enzymes involved in antimicrobial and wound

responses; and (3) lamellocytes, which are absent in naive animals

but produced in response to wounding and invasion by large

intruders such as parasitoid eggs. Recent hemocyte transcriptome

profiling at the single-cell level revealed a much higher diversity, in

particular among plasmatocytes (11–14).

The interplay between fly tumors and hemocytes was first

studied in a pioneering work by Pastor Pareja et al. (15), where it

was shown that upon recognition of damage to the basement

membrane, hemocytes are recruited to tumor tissue with tumor-

limiting effects. Conversely, when in subsequent work tumors were

induced in a background expressing a dominant-active version of

the Ras oncogene (RasV12), tumor-associated hemocytes (TAHs)

were instead involved in a positive feedback loop that involved JNK

signaling and promoted tumor growth (16, 17). Thus, similar to

what is found in mammals, the effects of TAHs appear to be in

many cases tissue- and tumor stage dependent. In a previous work,

we found that expression of dominant active RasV12 in larval

Drosophila salivary glands (SGs) induced ductal hypertrophy (18)

similar to what is observed in ductal tumors in humans. In SGs, this

led to (1) the loss of cellular integrity, (2) nuclear disintegration and

caspase activation, (3) loss of the SG lumen and of secretory activity,

(4) damage to the basement membrane, (5) induction of fibrotic

lesions including activation of the flies’ coagulation system, and (6)

recruitment of TAHs (18–20). Despite the presence of hallmarks of

apoptosis and activation of JNK signaling, SG cells were not

eliminated (18, 20), although SG cell fragments were released into

the hemolymph (18). Surprisingly, forced expression of the

antimicrobial peptide Drosomycin (Drs) across whole SGs

reverted the majority of tumor-associated phenotypes through

negative regulation of JNK signaling (19, 20).

Here, to identify genes that are differentially expressed in

hemocytes from tumor larvae, we profiled the transcriptome of

circulating single-cell hemocytes from wild-type and tumor larvae

and from TAHs, which were extracted manually from tumorous

salivary glands (Figure 1A). In contrast, there are too few hemocytes

to allow profiling of TAHs attached to wild-type SGs. Since we had

previously observed strong activation of caspases in RasV12-

expressing SGs (20), and in light of the bi-edged nature of

caspase activation and apoptosis in cancer (see above), we

included larvae where effector caspases were inhibited by the

expression of the specific inhibitor p35.
2 Materials and methods

2.1 Fly strains and sample preparation

w1118, BeadexMS1096-Gal4 (referred here as Bx: 8860/Bl),

BeadexMS1096-Gal4; EaterDsRed, w1118, w1118;p35 (5072/Bl), w1118;
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UAS-RasV12(4847/Bl), w1118;p35;UAS-RasV12,;Arc1esm18; (37530/Bl),

and Bx;Arc1esm18;,;Arc1esm18;RasV12 flies were used in the

experiments. Flies were cultured in a 25°C, 12-h dark/light cycle

room. Female virgins were collected for 5 days and crossed with

respective males on day 7. Progeny larvae were kept as described in

(20). Approximately 20–30 salivary gland pairs were fixed in 4%

paraformaldehyde (PFA) for 20min. Samples for extracellular staining

were washed 3 × 10 min with 1× phosphate-buffered saline (PBS).
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2.2 Immunohistochemistry

Antibodies against P1 (Plasmatocytes, 1:50), L1 (Lamellocytes,

1:50), and C4 (Crystal cells, 1:50) were incubated for 1 h at room

temperature in PBS and subsequently washed 3 × 10 min in PBS.

For intracellular proteins, the samples were incubated overnight at

4°C in anti-pJNK (1:250), anti-Idgf3 (1:50), or anti-CC3 (1:400)

diluted in PBST (1% TritonX-100) and subsequently washed 3 ×
B

A

FIGURE 1

Classification of tumor-associated hemocytes. (A) Tumor-associated hemocytes were labeled using plasmatocyte (P1), crystal cell (C4), and
lamellocytes (L1)-specific antibodies. (B) The frequency of the three hemocyte classes is shown in the lower part for wild type and RasV12-SGs.
*, marks the cropped area of the figure.
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10 min in PBS. The samples were incubated with secondary

antibody anti-mouse-546 (1:500, Thermo Fisher #A11030), anti-

mouse-488 (1:250, Thermo Fisher #A11001), anti-rabbit-568

(1:500, Thermo Fisher #A21063), and anti-rabbit-488 (1:500,

Thermo Fisher #A11008), or 4’,6-Diamidino-2-phenylindole

dihydrochloride (DAPI) (1:500, Sigma-Aldrich D9542) for 1 h at

room temperature and washed 3 × 10 min with PBS before

mounting in Fluoromount-G (Thermo Fisher, 00-4958-02).
2.3 Proliferation assay

Drosophila larvae at 120 h after egg deposition (AED) were bled

into 10 µL of PBS, and the sample was incubated for 5 min at room

temperature. The sample was fixed in 4% PFA for 20 min and

washed 3 × 5 min with PBS. The sample was stained with antibody

against pH3 (phosphorylated histone 3, 1:800, Sigma-Aldrich 06-

570) and H2 (Hemese, 1:5 kindly provided by Istvan Ando, Szeged)

overnight in 4°C. After incubation, the sample was washed 3 ×

5 min with PBS and stained with secondary antibodies anti-rabbit-

568 (1:500, Thermo Fisher A-21069), anti-mouse-488 (1:250,

Thermo Fisher A-11001), and DAPI (1:500, Sigma-Aldrich

D9542) for 2 h in room temperature. Subsequently, the sample

was washed 3 × 5 min with PBS and mounted in Fluoromount-G

(Thermo Fisher, 00-4958-02). A total of 15 samples per genotype

were prepared and photographed using a tile scan at a confocal

microscope Zeiss LSM780 (Zeiss, Germany), and the count of cells

was evaluated in ImageJ (version 1.53t). Statistics and graph

plotting were performed in Prism software (GraphPad Software,

9.3.0, USA).
2.4 Image acquisition and analysis

Whole salivary glands were photographed using a Zeiss

Axioscope II (Zeiss, Germany) microscope, and images were

exported as.tiff files. The intensity was measured using ImageJ

(version 1.53t), and representative pictures were obtained from a

confocal Zeiss LSM780 (Zeiss, Germany) microscope. Statistics was

performed in Prism software (GraphPad Software, 9.3.0, USA).
2.5 Micro-manipulation of
attached hemocytes

A total of 10 pairs of salivary glands per genotype were dissected

into individual droplets of 200 µL PBS. A fluorescent microscope

Leica DMi8 (Leica, Germany) was used to locate the attached

hemocytes at the surface of the salivary gland. The hemocytes

were collected using a micromanipulator TransferMan NK2

(Eppendorf, Germany) with ø 7 µm collection capillary and

separated by a piezo-vibrator PiezoXpert (Eppendorf, Germany).

Single-cell state hemocytes were individually transferred to 2.3 µL of

lysis buffer (21), and each sample library was prepared as

described below.
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2.6 cDNA synthesis and library preparation
for attached hemocytes

cDNA libraries of single attached hemocytes were generated

using a modified version of the Smart-seq2 protocol (21). In short,

cDNA synthesis was performed using universal primers, and PCR

amplification was carried out over 24 cycles. cDNA products were

subsequently purified using CA beads (Sigma; catalog no. 81260)

for size selection using 8.8% polyethylene glycol 6000 (PEG 6000) to

exclude primer dimers and nonspecific amplicons with sizes <150

bp. Combinatorial indexing via tagmentation was carried out in 96-

well plates using 200 pg (measured in a Qubit fluorometer) of

amplified cDNA, for a final volume of 10 mL/well. cDNA

fragmentation using Tn5 transposase was carried out for 20 min

on ice using the Illumina Nextra XT DNA sample preparation kit.

Ligation and amplification of adaptors were carried out over 15

cycles in a final volume of 25 mL/well. Primer indices were used in

the reaction from Illumina (Nextera index primers i7 and i5, catalog

no. FC-131-1001). Tagmented and barcoded amplicons were then

purified using CA beads for size selection. Quality control and

fragment size distribution of the cDNA libraries were performed on

a Bioanalyzer with the Agilent high-sensitivity DNA chip (catalog

no. 5067-4626). Concentrations of each sample of cDNA libraries

were measured on a PicoGreen 96-well plate NucleoScan

fluorometer using a high-sensitivity double-stranded DNA

(dsDNA) (HS assay kit; catalog no. Q32851). To perform library

dilutions, the average fragment sizes of all cDNA libraries were

measured for a final concentration of 2 nM in each sample. Finally,

cDNA libraries were pooled and sequenced using Illumina NextSeq

with 75-bp paired-end reads.
2.7 Cell sorting and cDNA library
preparation for circulating hemocytes

A total of 10 larvae per genotype were bled into 500 µL of PBS,

and the cells were sorted. The sorting was performed with a MoFlo

Astrios EQ (Beckman Coulter, USA) cell sorter using a 488- and

532-nm laser for excitation, 100 µm nozzle, sheath pressure of

25 psi, and 0.1 µm sterile-filtered 1× PBS as sheath fluid. Flow

sorting data was interpreted and displayed using the associated

software, Summit v 6.3.1.

To test the precision of the adjustments made to center the drop

in each well, a colorimetric test mimicking the sort was done based

on (22). A 1.5 mg/µL solution of horseradish peroxidase (HRP)

(catalog no. 31490, Thermo Fisher Scientific) with one drop of flow

check beads (Beckman Coulter, USA) was sorted into each well of

an Eppendorf 384-well plate (Cat no 34028, Thermo Fisher

Scientific). A color change after sorting indicated that the drop

hit the sort buffer and that the precision was adequate.

Single hemocytes were sorted directly into a 384-well plate

containing 2.3 µL of lysis buffer (Eppendorf twin.tecTM PCR plates)

using a CyClone™ robotic arm and at highly stringent single-cell

sort settings (single mode, 0.5 drop envelope), and cDNA libraries

were generated by the Eukaryotic Single Cell Genomics Facility at
frontiersin.org
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SciLifeLab, Stockholm using a slightly modified version of Smart-

seq2 as previously described (21), but where we used 20 cycles for

cDNA amplification. The plate and sample holder were always kept

at 4°C during the sort. After the sort, the plates were immediately

spun down and put on dry ice.
2.8 Single-cell RNA sequencing

Single-cell libraries were sequenced at the National Genomics

Infrastructure, SciLifeLab Stockholm, using the HiSeq2500 platform

(Illumina) for 56 bp single-end sequencing. We sequenced a total of

384 single cells from the circulating hemocytes (negative controls,

n=2, per plate) and 79 from attached hemocytes.
2.9 Mapping, annotation, and filtering of
low-quality cells

A reference genome D. melanogaster (Dm6 v r6.37) was

indexed, raw fastq files were used in mapping to the genome

using STAR v 2.7.2 (23), and gene expression was measured using

featureCounts v 2.0.0 (24), using default settings. The expression

matrix was filtered to obtain high-quality cells using the following

criteria: cells with >5% mitochondrial transcripts (stressed/dead/

dying cells), <200 genes (low-quality cells), and those expressing

more than 4,000 features (genes) (potential doublets or triplets)

were removed in each replicate, and the remaining cells were

subjected to subsequent computational analysis. A total of 380

and 61 single cells have passed the computational filtering from the

circulating and the attached hemocyte, respectively, and are used for

the data integration.
2.10 Normalization, dimensionality
reduction, and clustering

The main computational analysis of read-count matrices

was performed using the Seurat package (v 4.0.3) (25) in

R (v 4.1.0). The complete R workflow can be assessed and

reproduced in the R markdown (see code availability section). We

used the default processing pipeline, https://satijalab.org/seurat/

v3.2/pbmc3k_tutorial.html. First, count matrices and metadata

were loaded. A mitochondrial gene count above 10% was filtered.

Quality filtering was performed, and cells with a minimum of 200

genes expressed were kept for further processing. Subsequently,

reads were normalized for sequencing depth using the

“NormalizeData” function in the Seurat toolkit, selecting the top

2,000 variable genes. Thereafter, dimensionality reduction was

performed using Principal component analysis (PCA) computing

the first 50 Principal components (PCs). The first 10 PCs from the

analysis were then subjected to shared-nearest-neighbor (SNN)

inspired graph-based clustering via the “FindNeighbors” and

“FindClusters” functions. For modularity optimization, the

Louvain algorithm was used, and clustering was performed at a

resolution of 0.4 for clustering granularity, resulting in five clusters.
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After clustering, a UMAP dimensionality reduction was performed

using the first 10 dimensions of the PCA.
2.11 Differential gene expression analysis

Differential gene expression analysis (DGEA) of genes in

identified clusters was performed using the function

“FindAllMarkers” from the Seurat package (v. 4.0.3). Following the

default option of the method, differentially expressed genes for each

cluster were identified using a non-parametric Wilcoxon rank sum

test. Differentially expressed genes in a cluster were defined by setting

initial thresholds above a logarithmic fold-change of 0.5 and being

present in at least 25% of the cells belonging to the same cluster.

Representative marker genes with an adjusted p-value below 0.05 for

each cluster were further selected. p-Values were adjusted using a

Bonferroni correction including all genes in the dataset. To find

representative marker genes with elevated expression in comparison

to the remaining clusters, only positive log fold-changes were

considered. For individual analyses such as gene enrichment

analysis (see “Gene set enrichment analysis (gsea)”), threshold

values for differential gene expressions were modified and will be

described in detail in the respective sections of the Material and

methods and Results. To identify DEGs between specific clusters of

interest, the “FindMarkers” function in Seurat was used, and the

identities were set to the respective clusters of interest. The same

thresholds as stated above were used to define DEGs.
2.12 Biological pathways and GSEA

To track tests for top functional class enrichment among the

global clusters, we used “ClusterProfiler” package v 3.16 (26) tool to

conclude the enriched ontology terms as previously mentioned

specifying the database “Org.Dm.db” to calculate the top 5

biological pathway enrichment. The gene set enrichment analysis

(GSEA) was performed on top differentially expressed genes over

the identified clusters in regard to gene expression profiles

“Log2FC” as input in cluster profiler v 3.18.1 and ggupset

package v 0.3.1 with a p-value cutoff of 0.05, minGSSsize of 3,

maxGSSize of 800, and scoreType of “pos” to estimate for biological

process ontology across clusters.
2.13 Computational summary

The read alignment and gene count matrix generation were

performed as previously described in Material and methods

(Section 2.9) (27). The single-cell gene count matrix cells with

fewer than 250 UMIs, more than 10,000 UMIs, reads mapping to

more than 7,000 genes, or more than 10% of read counts mapping to

ribosomal genes were excluded. Each single-cell transcriptome was

mapped to its original time window from which it was extracted by

using the RT barcode. We performed standard processing of the data

split by experiments as recommended by Seurat v4 documentation

including NormalizeData, FindVariableFeatures (with the method set
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to “vst”), ScaleData, RunPCA, RunUMAP (with dims set to 1:50 and

n.components to 2), FindNeighbors (with reduction set to UMAP

and dims set to 1:2), and FindClusters. This version uses the first 10

principal components, along with pN of 0.2 and pK of 0.005. This

version uses the first 10 principal components, along with pN of

0.2and pK of 0.005 for dimensionality reduction, clustering, and

identification of cluster-specific marker genes. The standard Seurat

processing pipeline, as described in the previous section, was

performed on each non-overlapping inferred age window

separately. We found that the default Seurat clustering resolution

parameter did not capture the dynamics of the presence of different

cell types. For each batch, we clustered the data with a variety of

resolutions (from 0.1 to 1.5 in increments of 0.3) and then computed

the Silhouette score for finding the best resolution for clustering, we

found that 0.4 resolution provides the best Silhouette score for each

single-cell fitting in cluster community, as increasing the resolution

resulted in lower number of cells per clusters and insignificant results

when performing differentially expressed genes text. Finally, we

integrated and clustered the data, and from these clusters, we used

Seurat’s FindMarkers to iteratively loop through all clusters and

identify marker genes.
2.14 RNA velocity and lineage interference

To interpret the global transcriptional progression of hemocytes

and their cell fate decision, we established the cell continuum of cell

differentiation and data layers of unspliced and spliced mRNA for the

entire data generated with Velocyto CLI (v.0.17.17) according to the

CLI usage guide (Velocyto run-smartseq2). The output loom files were

combined using “loompy.” The merged loom file was imported into

the scVelo package (v1.0.6) (28, 29). The unspliced and spliced mRNA

counts of cells from clusters C0–C4 were extracted. We used the

“merged.utilis” function in the scVelo pipeline, where cells with low

pre-mRNA counts were removed as part of the filtering. In short, the

gene-specific velocities are obtained by fitting a ratio between

unspliced and spliced mRNA abundances and then computing how

the observed abundances change from those observed in a steady state.

The ratio of “spliced,” “unspliced,” and “ambiguous” transcripts were

calculated, and data were pre-processed using functions for detection

of minimum count number, filtering, and normalization using

“scv.pp.filter_and_normalise” and followed by “scv.pp.moments”

function. The gene-specific velocities were then calculated using

“scv.tl .velocity” with mode set to “deterministic” and

“scv.tl.velocity_graph” function to generate velocity graph and

visualization using “scv.pl.velocity_graph” function. In addition, we

used the “scv.tl.recover_latent_time” function to infer a shared latent

time from splicing dynamics and plotted the genes along the time axis.
2.15 Data availability

The raw processed data generated for this study have been

deposited on Zenodo repository under accession number 7997643

and can be accessed via https://zenodo.org/deposit/7997643 and
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interactively on https://mubasher-mohammed.shinyapps.io/Sc-

drosophila/. The custom code scripts used to analyze data for this

study are available at https://github.com/ANKARKLEVLAB/

Single-cell-P.f-gametocyte.
3 Results

3.1 Single-cell profiling of tumor-
associated hemocytes reveals
transcriptional heterogeneity

We initially characterized the population of TAHs that attach to

RasV12 salivary glands (SGs) and found that they consist mainly of

plasmatocytes and the occasional lamellocyte (Figures 1A, B). To

identify genes that are differentially regulated in hemocytes (DEGs)

from tumor larvae, we profiled the transcriptome of single

circulating hemocytes from wild-type and tumor larvae and from

TAHs, which were extracted manually from tumorous SGs.

Additionally, to characterize the contribution of effector caspases

to tumor progression, we analyzed larvae in which the effector

caspase inhibitor p35 was co-expressed with RasV12: p35;Ras. We

had previously shown that similar to Drosomycin (Drs), the

expression of p35 in Ras-SGs restores the spherical nuclear shape

that is disturbed upon sole Ras expression, although SGs from both

combinations show the same size increase as RasV12 larvae (20) and

(Figures 2A–D, quantified in Figure 2E). In contrast to Drs (20), co-

expression of p35 still led to hemocyte recruitment (Figures 2A’–D’

quantified in Figure 2F). This allowed us to compare TAHs both

between wild-type and tumor larvae and in settings with and

without active caspases downstream of JNK signaling. TAHs and

circulating hemocytes were selected for expression of the

plasmatocyte-specific marker Eater (Figure 3A, see Material

and Methods).

Collectively, hemocyte transcriptomes displayed additional

plasmatocyte markers indicating successful purification of these

macrophage-related cells (Figures 3B–H). Plasmatocyte markers

include Nimrod C1 (NimC1), serpent (srp), Hemolectin (Hml), and

spätzle (spz), several of which have been used as pan-plasmatocyte

markers and more recently as markers for specific plasmatocyte

subpopulations (30). As expected, the crystal cells and lamellocytes

markers lozenge (lz) and Atilla, respectively; were not detected

(Figures 3C, D). Crystal cell prophenoloxidase 1 (PPO1) was

detected in a few cells (Figure 3H) (see also below).

Clustering analysis revealed true variation between the single

cell transcriptomes for the identified five clusters (at p<0.05 and a

difference in expression >2 if not stated otherwise; Figures 4A–C,

middle panel), three of which included tumor cells (clusters C0, C2,

and C3 (Figures 4C, D). Cluster C2 overlaps largely with TAHs

(Figure 4A). Gene Ontology analysis for biological processes of

upregulated genes in the clusters highlighted several gene sets that

overlapped between clusters but also some cluster-specific sets

(Figure 4E). The latter category included genes involved in cell

motility (cluster C1), translation (C0), protein folding (C4), and

immune response genes for cluster 2 (attached cells) and several
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categories specific for cell division (C3, circulating cells from both

tumor models). Taken together, despite the technically limited

number of cells compared to other studies (30), we identified

subpopulations of plasmatocytes whose signatures differed

significantly depending on genotype (tumor versus wild type) and

cell status (attached versus circulating).
3.2 The expression of signature genes
for the different clusters differs
between tumor models

To obtain more detailed insight into the gene categories that

specified the clusters, we identified the genes whose expression

significantly specified the clusters (Supplementary Tables S1-S5). In

parallel, we compared expression strengths between genotypes

focusing on the three populations that comprised cells from the

tumor models (clusters 0, 2, and 3 in Figures 4D, 5A–C). For

attached hemocytes (C2), the list of the most strongly expressed
Frontiers in Immunology 07
genes varied between the two tumor models (Figure 5A). To follow

this up, we scanned cluster 2-specific genes for gene set enrichment

and identified two enriched categories (1): pupal adhesion and (2)

immune response (Supplementary Figures S1A, B). Pupal adhesion

was due to the presence of genes that code for salivary gland secretions

(Supplementary Figure S1B). Since these genes are hardly expressed

outside salivary glands (FlyAtlas (31)), we interpret their presence in

hemocytes as being passenger transcripts (32), i.e., transcripts that

have been taken up by TAHs by way of cellular fragments released

from the glands. Alternatively, SG transcripts may have been co-

purified together with TAHs during extraction. This latter explanation

implies that expression of p35 partially prevented the release of SG

fragments from RasV12 SGs in line with its anti-apoptotic function.

The second category (immune genes) contains genes that are most

strongly (although not mutually exclusively) expressed in either tumor

model (Supplementary Figure S1A). Taken together, we show that

hemocytes in both tumor models differ qualitatively from hemocytes

in control larvae and that inhibition of effector caspases in tumors

reveals additional quantitative differences.
FIGURE 2

Characterization of SGs from the used genotypes. (A–D) SGs from wild type (w1118), p35 expressing larvae, RasV12 larvae, and p35;RasV12 larvae were
stained with phalloidin and a plasmatocyte-specific antibody (Hemese, H2, (A’–D’)). SG size for the different genotypes was quantified shown in (E)
and hemocyte attachment in (F). Whisker length min to max, bar represents median. p-value quantified with ANOVA.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1243797
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Khalili et al. 10.3389/fimmu.2023.1243797
3.3 The response towards tumors differs
between the two models

Generally, TAHs in the Ras model show strong expression of

AMPs including Dpt(Diptericin)A and B, Att(Attacin)C, and Cec

(Cecropin)C. In contrast, p35;RasV12 TAHs show higher levels of all

three phenoloxidases PPO1–3 (Supplementary Figure S1A). This is

in line with the previously identified function of the TGF-like

protein dawdle (daw), which promotes AMP activation (33) and,

indeed, daw clusters with AMP expression in our hands

(Supplementary Figure S1A). A second TGF member (dpp) with

immune-regulatory function (33) is less expressed in tumors

compared to wild-type hemocytes. Similarly, the M1 marker

iNOS is more strongly expressed in p35;RasV12 TAHs, while the

M2 marker Arginase (Arg) peaks in Ras TAHs.
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For both clusters 0 and 3 (Figures 5B, C), the same set of genes was

more strongly induced in circulating tumor compared with circulating

wild-type hemocytes, although the majority showed stronger

expression when effector caspases were repressed (p35;RasV12)

compared to the tumor-only (Ras) model. Gene set enrichment

analysis fully confirmed the enrichment for genes involved in cell

division (Figure 4E) in cluster 3 (circulating cells from both tumor

models) but failed to deliver significant returns for the category

“Biological process” for cluster 0. In line, the quantification of

hemocyte proliferation fully confirmed an increase in cell divisions in

both tumor models including the additional increase in the p35;RasV12

model (Figure 5D). This may contribute more to the differentiation of

TAHs rather than circulating cells, which show similar counts (18).

Finally, when searching for pathways compatible with

expression in the five clusters using the Reactome database
B C D

E F G

A

H

FIGURE 3

Extraction and initial characterization of circulating hemocytes and TAHs from wild-type and tumor larvae. (A) Upper panel: circulating hemocytes
were extracted from larvae and individualized using cells sorting. Lower panel: TAHs were extracted from salivary glands using capillary suction,
individualized and processed for single-cell RNA sequencing. See text for further details. (B–H) Classification of single hemocytes confirms their
plasmatocyte identity and the absence of lamellocytes (Atilla) or crystal cell (Lozenge) markers.
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(https://reactome.org), an enrichment for genes involved in

neutrophil degranulation was found for cluster 0 (Supplementary

Figure S1C), which, when using a split analysis, also indicated that

this pathway was more strongly expressed in p35;RasV12 hemocytes.

Pseudotime analysis using RNA velocity (Figures 6A–D) indicated

that TAHs and circulating hemocytes from both tumor models

follow distinct pathways, although due to the restricted number of

TAHs, a rarer intermediate population may have been missed.
3.4 Transcript transfer between hemocytes
and other tissues

Recently, we and others have characterized the activation of crystal

cells and the subsequent release of leaderless PPO2 into the extracellular

environment via cell rupture (34, 35). Functionally, crystal cell

activation bears similarities to pyroptotic cell death in mammals,

including its dependence on caspase activity, which can be inhibited

by p35 (36). While our findings explained how PPO2 was released into
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the hemolymph, themechanism for secretion of PPO1, which also lacks

a signal peptide, remained obscure. Since we found that PPO2 was

enriched in TAHs (Figure 7A, Supplementary S1A), we wondered

which secretion mechanism led to their spread to other plasmatocytes.

In line with crystal cell rupture and similar to passenger transcripts

from SGs, the mRNA encoding PPO2 was detected in plasmatocytes

both as a mature (spliced) form and as a non-spliced (nuclear)

immature mRNA (Figures 7C, D). This indicates that phagocytic

hemocytes had access to both the nuclear and the cytosolic fraction

of ruptured crystal cells. In contrast, PPO1 transcripts were only

detected in their mature form (Figure 7B). We conclude that PPO2

transcripts in TAHs originate either from pyroptotic crystal cells or

TAHs, which have acquired crystal cell characteristics, while PPO1

mRNA originates from live crystal cells. Taken together, this explains

why both PPO1 and PPO2 had been located on Ras SGs (19) despite

the apparent absence of crystal cells (Figure 1).

In addition to PPO1, two transcripts (CG 13962, and the

transcription factor Relish) were detected only in their mature

form, indicating a possible origin outside TAHs.
B C

D E

A

FIGURE 4

Clustering analysis of hemocytes. Circulating single cells (Genotype: w1118, RasV12 and p35;RasV12) were processed using Smart-seq2. For manually
extracted TAHs (Genotype: RasV12, p35;RasV12), libraries were generated according to the Smart-seq2 protocol. (A) UMAP projection of single-cell
transcriptome integrated datasets overlaid with batch labels. (B) Louvain clustering analysis based on the first 10 PCs shows the biological variation
of the data and cell communities’ assignments. (C) UMAP projection overlaid with single-cell-specific genotypes. The global transcriptome
similarities and differences were assessed based on k-nearest neighbors (kNN) force-directed graph with a true signal variation of the single-cell
transcriptome on the integrated datasets. (D) Relative frequency of w1118, RasV12, and p35RasV12 hemocytes within the five identified clusters.
(E) Gene set enrichment analysis (GSEA) (biological processes) of upregulated genes in a minimum of 25% of the cells in each cell community with a
cutoff of 0.25 log fold-change threshold, comparing different cell communities (clusters) and highlighting the various biological processes’
heterogeneity. Color scale indicating the corrected p-values, where blue is less significant and red is highly significant. Black circular dots indicate
the gene ratio in comparison to the universal background gene list. Numbers in brackets indicate the gene numbers overlapping the ontology terms
for a specific cluster.
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4 Discussion

To our best knowledge, we provide the first transcript profile of

TAHs—the invertebrate equivalent of mammalian tumor-

associated macrophages (TAMs). Relying on a molecularly

induced early stage of tumor progression that affects the salivary

glands (18, 20), we find that TAHs display some features of

mammalian M2-like macrophages, which have been implicated in

regenerative processes. These include the presence of members of

the chitinase-like proteins (IDGFs in Drosophila), which are among
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the most abundant proteins in activated macrophages and are used

as markers for M2 macrophages (37) (Supplementary Figure S1C).

Notably, TAHs show a clear signature of immune activation, which

includes several antimicrobial peptides and members of clotting

systems including IDGF3, Fondue, and phenoloxidases

(Supplementary Figure S1A). Although both effector branches are

activated in the TAHs from both tumor models, there are

differences (Supplementary Figure S1A): AMPs appear to

dominate the TAH response in Ras-SGs, whereas clotting factors

are more strongly expressed in p35;RasV12 SGs. AMP induction
B C

D

A

FIGURE 5

Contribution of the three genotypes to clusters 2 (A), 3 (B), and 0 (C). Expression intensity was analyzed for the most significantly enriched genes in
the respective clusters using the visualization tool created for this project (see: https://mubasher-mohammed.shinyapps.io/Sc-drosophila/). (D) The
enrichment of genes involved in cell division in cluster 3 (see also Figure 4E) was functionally confirmed using anti-phospho Histone 3 labeling to
detect proliferating cells. Whisker length min to max, bar represents median. p-value quantified with ANOVA.
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may be in line with the presence of SG (passenger) transcripts in the

Ras-alone model (Figure 8, right part) and may serve to degrade

tumor fragments during efferocytosis including cytosolic and

nuclear parts. In contrast, inhibition of caspases appears to

activate immune reactions that are more akin to the formation of

mammalian granulomas (Figure 8, left part). Bifurcation in

hemocyte differentiation is reminiscent of the division of labor

between Drosophila hemocytes shown previously, which depends

on two members of the TGF family (the BMP-like member Dpp

and the Activin-like member Dawdle (33)). In line with Dpp’s role

in suppressing antimicrobial responses, we find that two receptors

for BMP-like TGFs (thickveins; tkv and saxophone; sax) are

strongly expressed in p35:RasV12 hemocytes but not in Ras or

control hemocytes (Supplementary Figure S2). While the

difference in responses between Ras larvae and larvae that co-

express the caspase inhibitor p35 may be explained by a lack of

apoptosis downstream of caspases, we prefer alternative

explanations that include non-apoptotic form of cell death or

non-apoptotic functions of caspases (38, 39). Taken together, our
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results identify targets for modifier screens that address the

contribution of TAH-DEGs to tumor development using both

classical and molecularly induced tumor mutants.

Additionally, our work points toward a potential communication

network that links TAHs, SG tumors, and non-tumor tissues

(Figure 8). This likely includes efferocytosis of apoptotic bodies

derived from hyperplastic SGs (18), leading to an extended

presence of SG transcripts (passenger transcripts) in TAHs before

their degradation. While most of the DEGs in TAHs are genuine

TAH transcripts, we find exceptions. These include two

prophenoloxidases (35), which are known to be exclusively

expressed in crystal cells (40) and not in the plasmatocytes that we

sequenced and the NF-kappaB-like factor Relish. While the

mechanism for this cell’s non-autonomous presence of transcripts

in TAHs is unknown, we hypothesize that exosomes may be likely

candidates (Figure 8, dashed arrows). Alternatively, plasmatocytes

may transdifferentiate and express transcripts that are more specific

for crystal cells and lamellocytes (41, 42) (Figure 8, solid arrows).

Supporting an exosome origin, two long non-coding RNAs (CR
B

C D

A

FIGURE 6

Delineating splicing kinetics through generalizing RNA velocity to cell population clusters. (A) Projecting velocities across the wild type, RasV12, and
p35;RasV12 hemocytes. (B) Across conditions (attached and circulating). (C) Identified Seurat clusters. (D) Pseudotime inference of integrated datasets
shows the root cells composed mainly of cluster 3 cells (mixture of p35;RasV12 and RasV12 larvae) and trajectory depicting pseudotime units
assignment with terminal state composed mainly of cluster 1 (wild type and RasV12 larvae).
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34335 and R 40469) that we found in TAHs have been identified

among the 10 most abundant non-ribosomal RNAs in exosomes

released from Drosophila cell lines (43). Additionally, in the same

study, Arc1 was shown to be among the most abundant mRNAs in

exosomes from one of the two cell lines used (43). Notably, in the

flies’ nervous system, Arc1 is involved in the formation of capsid-like

vesicles, which also contain Arc1 transcripts that are recruited

through the binding of Arc1 protein to the 3′ end of the Arc1

transcript (44). Both Arc1 and its human equivalent derive from

retroviral Gag proteins (44–46) and mediate neuronal plasticity. A

function for Drosophila Arc1 in immunity has so far not been

suggested, although it is expressed in non-neural tissues (FlyAtlas

(31)) and we find it is enriched in TAHs (Figure 5A, Supplementary

Figure S3A). When combined with our Ras model, Arc mutants

alleviate some of the Ras-associated phenotypes: SG size, pJNK

activity, and expression of Idgf3 in SGs are reduced in Arc1;Ras
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larvae. Notably, we recently showed that Idgf3 is involved in several

tumor phenotypes in the Rasmodel (47). A similar trend is observed

for caspase activity (Supplementary Figures S3B–E). It should be

noted though that a reduction for the first three phenotypes was also

observed in Arc1 SGs, although with lower significance

(Supplementary Figures S3B–D). To more specifically study

transcript transfer from TAHs to SGs, we chose the transcription

factor Relish, whose transcript we only detected in its spliced form

(see above). Indicating TAH-SG transfer of the transcript, Relish

protein is detected in Ras- but not in wild-type SGs. This is inhibited

in Arc1 mutants, although hemocytes still attach (Supplementary

Figures S3F, G). Further supporting a function for hemocytes, we had

previously failed to detect differences in Rel expression between wild-

type and Ras SGs at 96 h when hemocytes had not attached (20).

Future work using tissue-specific knockdowns will identify the tissue

of origin for Rel transcripts. Of note, similar to tumor-associated
B

C D

A

FIGURE 7

Non-autonomous distribution of crystal cell derived prophenoloxidase transcripts. (A) UMAP visualizes transcripts analysis showing the strongest
presence of mature (spliced) mRNA of crystal cell-derived prophenoloxidase 1 (PPO1) across attached hemocyte TAHs condition corresponding to
RasV12 larvae. (B) Scatter plot shows the absence of immature transcripts (unspliced) reads across conditions (attached and circulating). (C) UMAP
visualizes transcripts depicting cell-derived prophenoloxidase 2 (PPO2) in attached hemocyte TAHs condition. (D) Scatter plot indicates the exclusive
presence of mature and immature (spliced vs. unspliced) PPO2 transcripts in plasmatocytes (higher ratio of unspliced across circulating condition), in
contrast to PPO2, which is released from crystal cells through cell rupture and subsequently taken up by plasmatocytes most likely through
phagocytosis.
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macrophages, extracellular vesicles have been shown to display both

pro- and anti-tumor potential. Taken together, our findings on

macrophage-like cells from an invertebrate provide targets that

may turn out useful to steer tumor therapy even in humans (2).
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