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Neonatal brain injury and associated inflammation is more common in males.

There is a well-recognised difference in incidence and outcome of neonatal

encephalopathy according to sex with a pronounced male disadvantage.

Neurodevelopmental differences manifest from an early age in infancy with

females having a lower incidence of developmental delay and learning difficulties

in comparison with males and male sex has consistently been identified as a risk

factor for cerebral palsy in epidemiological studies. Important neurobiological

differences exist between the sexes with respect to neuronal injury which are

especially pronounced in preterm neonates. There are many potential reasons

for these sex differences including genetic, immunological and hormonal

differences but there are limited studies of neonatal immune response. Animal

models with induced neonatal hypoxia have shown various sex differences

including an upregulated immune response and increased microglial activation

in males. Male sex is recognized to be a risk factor for neonatal hypoxic ischemic

encephalopathy (HIE) during the perinatal period and this review discusses in

detail the sex differences in brain injury in preterm and term neonates and some

of the potential new therapies with possible sex affects.
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Introduction

Neonatal brain injury is associated with long-term neurodevelopmental disability and

is more common in boys. There are many factors, pre-, peri- and post-natal, genetic and

metabolic factors, which can interact and result in brain injury in the neonatal period (1).

Neonatal encephalopathy (NE) occurs in an estimated 3 in 1000 infants born at term and is

a result of a wide variety of eitiologies (2) and the incidence is higher in preterm infants at

4–48 per 1000 preterm births (3) and preterm birth is the leading cause of neonatal

mortality worldwide. The global incidence of NE is 1.15million (4) and approximately half

of infants with NE will have adverse outcomes including cerebral palsy, intellectual
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disability, and learning disabilities. Sex differences are especially

obvious in preterm babies with differences in crown rump length

and placental gene expression (5), nutrition, growth and

metabolism in males versus female infants (5).

Inflammation in the perinatal period results in the activation of

the innate immune system and increased production of cytokines

and some of the causes include chorioamnionitis, hypoxia-

ischaemia and preterm birth (3). The activation of the immune

system involves both systemic and cerebral inflammation that can

result in brain injury and lead to persistent adverse effects on the

developing brain (6).

Cytokines modulate inflammation and repair after

inflammation-related brain damage. Altered cytokines have

previously been described in infants with NE versus healthy

control infants (4). The cytokines Interleukin-1 (IL-1),

Interleukin-6 (IL-6) and Tumour necrosis factor-alpha (TNF-a)
may be influential in the initiation of inflammation, recruitment of

other cytokines and leukocytes. TNF-a, IL-1, IL-6, and IL-8 both

attract and stimulate leucocyte adhesion, which cause immune

reaction and activate phagocytosis (7). Increased circulating pro-

inflammatory cytokines can, by crossing the blood brain barrier,

activate microglia and astrocytes (8).

This ongoing inflammatory “hit” augments the activation of

resident immune cells in a process which prolongs the original

inflammation and activates a secondary process of brain injury. The

innate immune cells of the brain, microglia, become activated,

monocytes, macrophages and neutrophils become activated and

increase the release of proinflammatory cytokines. The blood-brain

barrier becomes compromised and cross-talk occurs with the

peripheral immune system leading to an ongoing inflammatory

response (9).

The tertiary phase of brain injury follows, spanning

weeks to years after the initial insult and is characterized by

persisting neuroinflammation, excitotoxity, and endogenous

neuroregeneration and repair (10). Persistent inflammation has

been described in children with cerebral palsy school-age children

following preterm neonatal brain injury (11–13) which shows

altered persistent systemic inflammation and may provide a

window of opportunity in relation to anti-inflammatory therapies.

MRI is the standard neuroimaging technique used to measure brain

injury and a study by Nı ́ Bhroin et al. showed MRI scoring systems

in the first two weeks of life correlate with outcome at 2yrs of age in

infants with NE (14).
Sex and brain injury

Male infants are at a higher risk of adverse outcome compared

to females and have higher rates of morbidity and mortality

compared to their female counterparts. This marked sexual

dimorphism for outcome and mortality is especially pronounced

in preterm infants (15). There is a sexual dimorphism that exists

with respect to neuronal injury and very premature males appear to

be more vulnerable to white matter injury and intraventricular

haemorrhage (IVH) than females. Important neurobiological

differences exist between the sexes with respect to neuronal
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injury (16, 17). Male children have a higher incidence of

neurodevelopmental delay, autism, attention-deficit-hyperactivity

disorder, and cerebral palsy (18–20). However, the mechanisms

underlying these sex differences are elusive and studies are still

required to uncover the pathways and molecules involved. Some

major pathways known to be involved through studies to date

include hormones, oxidative stress, cell death and the activation

state of microglia (21). There are many potential mechanisms for

these sex differences although three key potential mechanisms of sex

differences in inflammation and brain injury lie in steroid

hormones, the X chromosome and inflammatory pathways. Sex

hormones affect the immune response and may contribute to sex-

differences in immune responses postnatally (22). 17-b Estradiol

(E2) and progesterone (Pg) have been shown to have

neuroprotective effects in rat models of brain injury with similar

effects on male and female rat pups using E2 and more pronounced

long-term tissue protection in males with Pg (23, 24). Despite a

small number of animal studies, there are very few examining

steroid hormone levels that stratify by sex leaving large gaps in our

knowledge. Many of the immune related genes can be found on the

X chromosome and naturally the XX phenotype of females confers a

greater immune advantage to this sex, although is also the

predominant cause of a higher incidence of autoimmune disease

in females. The X chromosome is polymorphic and also in the

female displays unique mosaicism which may play an important

role in their innate immune response (25). There are also many

studies on inflammatory pathways but little on systemic postnatal

samples and although we know that male sex is associated with

increased risk of neonatal infections further research data is

required in this area.
Preterm inflammation

There is a marked difference in immune response between

males and females throughout life (26) with an increased male

susceptibility to sepsis (27). Multiple clinical and epidemiological

reports continue to suggest the strong association of both maternal

immune system dysregulation and foetal inflammation with

preterm birth, brain injury and adverse neurodevelopmental

outcome (28–31). Neonatal sepsis is the leading cause of infant

mortality with additional risks of adverse neurodevelopmental

outcome with early- and late-onset sepsis (29, 32) and

bronchopulmonary dysplasia (BPD) increasing in those with

infection (33) and the risk of necrotizing enterocolitis (NEC) (34,

35). Vulnerability and susceptibility of the foetal brain to such

inflammatory events can profoundly alter its natural development

and selectively damage the white matter (36) which is the most

commonly observed type of brain injury on routinely collected

neuroimaging studies (37). Preterm infants also have reduced

growth and complexity of cortical and subcortical grey matter

structures at term equivalence compared with their term

counterparts (38). Abnormalities in white matter have also been

reported in preterm infants and microstructural changes on MRI

could be related to neurological disability in later life (39). Many

clinical and laboratory studies on neonatal immune function did
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not stratify by sex resulting in a paucity of immunological study on

postnatal sex-differences in neonates.

Neonates largely depend on a developing immune system for

mediating immune responses as their adaptive immune response

and memory to pathogens develops rapidly over the first 3 months

of life (40–42). Neonatal immune responses are generally skewed

towards the Th-2 helper T cell responses, enabling immune

tolerance to maternal antigens instead of providing defence from

microbial infections (43, 44). A significant reduction in phagocytic

activity and enhanced production of reactive oxygen species,

defective neutrophil amplification and attenuated pro-

inflammatory cytokine responses of monocytes after bacterial

stimulation are all distinctive features of innate responses

especially pronounced in preterm infants (38, 43, 45). In animal

models, increased permeability of the blood-brain barrier (BBB) to

pro-inflammatory cytokines, chemokines such as IL-1b and TNF-a
and the direct leak of bacterial products such as lipopolysaccharide

(LPS) and bacterial lipopeptide (BLP), that activate microglia to

release inflammatory mediators, induce preterm brain damage.

Results from animal models (38, 46, 47) suggest that prolonged

postnatal inflammation as well as hyperoxia strongly attenuate

oligodendrocyte cellular dynamics involving apoptosis and

developmental arrest. Both, oligodendrocyte death and

developmental arrest result in hypomyelination and a disturbed

white matter microstructure.

Leviton et al. demonstrated that repeatedly elevated

concentrations of inflammation-related proteins such as tumour

necrosis factor-a (TNF-a), tumour necrosis factor-a-receptor-1

(TNFR1), interleukin-8 (IL-8), intercellular adhesion molecule-1

(ICAM-1), interleukin-6 (IL-6), E-selectin, and insulin-like growth

factor binding protein-1 (IGFBP-1), during the first 2 postnatal

weeks (48) led to an increased risk of a cerebral palsy diagnosis 2

years later (49). This group also described elevated levels of IL-6 and

IL-8 and, to a lesser extent, TNF-a and IL-1b measured during the

first 3 weeks of life that most consistently predict poorer

performance across neurodevelopmental outcomes (50, 51).

Additionally, these authors reveal that persistent inflammation,

three weeks post birth, more reliably predicts long-term

neurodevelopmental impairment than transient inflammation and

suggest that assessment of systemic inflammation and

neurodevelopment should include multiple measures rather than

relying solely on single time point measure of elevated blood

cytokines/chemokines. Further, work by Zareen et al. on

persistent inflammation in children post-NE at birth has shown

increased IL-2, IL-6, IL-8, TNF-b and GM-CSF levels correlates

with neurodevelopmental outcomes (12).
Systemic inflammation in the
term infant

Neonatal encephalopathy (NE) is the most common cause of

neonatal brain injury occurring in term and near-term infants >35

weeks gestational age (52). NE encompasses many possible

aetiologies including hypoxic-ischemic (HI) injury, perinatal

infections, placental abnormalities, metabolic disorders, brain
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malformations, vascular injuries (including stroke) and other

causes (2, 53). The pathophysiology of NE can be divided into

three distinct phases (54). The primary energy failure phase occurs

after initial insult due to decreased cerebral blood supply (55). The

latent phase occurs after cerebral reperfusion. Reperfusion will

trigger a secondary injury between 6 and 72 hours related to

secondary energy failure including depletion of adenosine

triphosphate (ATP) reserves and production of lactate and

reactive oxygen species (ROS) and mitochondrial dysfunction.

The majority of cell death and clinical seizures occur during this

period (56). The tertiary phase involves persistent inflammation

and epigenetic changes that persist over months and years (10,

12, 57).

Inflammatory molecules secreted to allow communication

between cells have been shown in multiple studies to be altered in

infants with NE (58, 59). In the context of neonatal brain injury,

these will activate cytotoxic T cells and natural killer cells, the

clinical endpoint of which is white matter changes and

neurodevelopmental impairment. IL-6, IL-8, and vascular

endothelial growth factor (VEGF) have been seen to be higher in

infants with NE at varying timepoints after brain injury, when

compared to term controls (59, 60) and also in infants with severe

NE compared to the milder phenotype (57, 61, 62). O’Dea et al.

have published studies on cytokines and their correlation with MRI

and developmental outcomes in term infants with neonatal

encephalopathy. This study examined, at baseline and also upon

endotoxin stimulation, pro and anti-inflammatory cytokines and

showed that infants with NE have an altered inflammatory state

compared to control term infants which may prove important in

further management of these infants, as understanding these

cytokine responses will underpin the development of new

adjunctive therapies in the future (4, 62, 63).
Sex in preterm infants and brain injury

Clinical studies in preterm and term infants are less frequently

reported to animal studies on sex differences in brain injury, a recent

review article details sex specific differences in brain injury and repair in

infants (64). Inflammatory changes are also evident in preterm infants,

pro-inflammatory cytokines such as Interleukin-1B (IL-1b) and

Tumour necrosis factor alpha (TNF-a), among others, have been

shown to have increased expression after neonatal brain injury (65).

Smith et al. found higher behavioural scores in premature females and

in postnatal day 7 rodents, male deficits in behavioural tasks including

spatial and non-spatial memory tasks, rapid auditory processing tasks

and performance IQ were significantly different to that of the female

(66). Research has also reported significant differences in the incidence

and severity of respiratory distress syndrome in infants and in a study

of very low birth weight infants the main outcomes measured,

mortality or major morbidity including bronchopulmonary dysplasia

(BPD) and necrotizing enterocolitis (NEC), were higher in males than

females (67). Animal studies with the Rice -Venucci model (68) has

uncovered sex differences in behavioural tasks of a preterm rat model

with male deficits (66) while female microglia have a more robust

immune response to neuronal injury and a higher level of neurogenesis
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in term rodents. The male mice in this study also displayed more

cognitive defects compared to females following similar brain injury in

both sexes (69). Sanches et al. showed marked structural differences in

the brain structures between the sexes in postnatal rodents (70).

O’Driscoll et al. described sex differences in outcome in preterm

infants with males having poorer outcomes and a higher

susceptibility to pulmonary hypertension, respiratory distress

syndrome (RDS) and inflammation (15, 22). Preterm males have a

higher incidence of Intraventricular haemorrhage (IVH) and

periventricular leukomalacia (PVL), and increased severity of brain

lesions with follow-up data suggesting that major cranial abnormalities

on neuroimaging are more common in males (18, 71). Sanches et al.

demonstrated that histological damage was sexually dimorphic in

specific brain structures (70) and after HI at postnatal day 3, (which

mimics HI injury in preterm infants) female rats exhibited larger

histological damage when assessed at adulthood (72).

Despite the higher incidence of such abnormalities in males, it

has been suggested that extremely preterm male infants also have a

higher risk of adverse neurological outcome in the absence of severe

IVH or PVL (73). A recent meta-analysis on the male disadvantage

has shown that preterm infants have an increased risk of severe

IVH, PVL, BPD, NEC and retinopathy of prematurity (ROP) (74)

and these complications can increase the risk of brain injury.

Preterm males are reported to have greater proinflammatory

responses, oxidative stress and increased infection rates and

specific immune cell phenotypical differences (22).
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Sex in term infants and brain injury

Neonatal encephalopathy is a complex disease occurring in the

perinatal period caused by a number of aetiologies such as hypoxia

ischaemia, perinatal infection, neonatal stroke, infection and

placental abnormalities (2, 75). In terms of males and females,

much of our knowledge of sex differences lies in animal models.

Many animal studies have used the Rice-Vanucci model of HIE to

induce neuronal injury and have reported results mainly in preterm

but also in term rodents. In mice sex differences in brain injury with

early activation of caspase-dependent pathways in female mice were

demonstrated and activation of inflammatory cascades in both sexes

which then persists in female mice (76). In a term mouse model of

HIE injury, female mice displayed less seizures and a smaller infarct

size compared to males by day 3 post injury. Similarly, at this

timepoint they showed sex differences in the levels of microglia and

inflammatory markers (IL1-b and TNF-a) present between the sexes.
There were significantly more monocyte and lymphocyte infiltration

in male versus female brains 3 days after HIE (77). In a more recent

study, regulatory Tregs from neonatal female mice provide

endogenous neuroprotection with increased cerebral Treg

infiltration, coinciding with elevated chemokine receptor

expression. Depletion of regulatory T cells in these HI-induced

mice aggravated brain tissue injury, short-term motor deficits, and

long-term deficits in exploratory activity in the female mice and

endothelial activation and leukocyte infiltration (78) (Figure 1).
FIGURE 1

Immune differences in males and females with brain injury. Sex differences presents in many aspects of the brain. While male neonates have
increased seizure burden, cognitive defects and larger infarct sizes, females have increased Treg cells, chemokine levels and immune-regulating
genes on the X chromosome. Created with BioRender.com.
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Sex, inflammation and brain

Sexual disparities are prominent with respect to immune

function and preterm birth (15, 22). There is a more robust sepsis

response in female neonates, that male neonates are more

commonly affected, they have distinct endotoxin responses and

hormones may modulate their immune responses (15). Male sex is

associated with increased risk of almost all forms of commonly

encountered neonatal infections including community-acquired

sepsis (79), group B streptococcus (GBS) sepsis (80) and sepsis

secondary to drug-resistant or atypical bacteria (81). In addition,

sepsis related mortality in males is higher than females (82–84).

There is a more pronounced proinflammatory state among males in

human studies where umbilical cord blood from male infants

exhibits higher IL-6 and IL-1b following endotoxin stimulation

than females (85).Females may have an immune advantage

conferred by their XX genotype (86). Several genes encoding key

metabolic and regulatory proteins reside on the X chromosome,

including members of the apoptotic cascade, hormone homeostasis,

glucose metabolic enzymes, superoxide-producing machinery, and

the toll-like receptor/nuclear factor B/c-Jun N-terminal kinase

signalling pathway. The X chromosome encodes many immune

related genes and this may confer females with an immune

advantage over males. Some genes on the X-chromosome encode

for several components of the Toll like receptor (TLR)-4 pathway

that are essential for Nuclear factor kappa B (NFkB) signaling e.g

Interleukin 1 receptor associated kinase 1 (IRAK1) and a subset of

genes with specific roles in innate immunity. The main function of

IRAK1 is its critical role in regulating an immune response against

pathogens. IRAK1 is expressed at higher levels in females versus

male neonates (87). Another possible mode of immune activation in

the brain is the role of TLR7, a key regulator of innate and adaptive

immune responses, which is highly expressed in females in contrast

to males, males also display higher angiotensin-converting enzyme

2 (ACE2) than females and the nuclear fertility restorer gene (RF5)

which drives interferons, is higher in females. Klein et al. (26) detail

the distinct differences between males and females and their

immune responses with differing numbers of innate immune

cells, receptors and cytokines and distinct differences in adaptive

immunity between males and females and also detailed by Lenz

et al. (88) specifically the brain and microglial differences and

development and by Mallard et al. (89), as such the detail of these

sex differences in the immunes cells will not be expanded further

within this review.
Potential treatments affected by sex

Modulating innate immune responses may prove to be vital in

the search for adjuvant treatments to improve outcome –

medications under investigation at present include allopurinol,

melatonin and erythropoietin (1). The ongoing inflammatory

response following HI results in a secondary stage of

inflammation which may be vital in immunomodulation therapy.

There is mounting evidence that suggests regulating the immune

response will provide more positive outcomes in cases of brain
Frontiers in Immunology 05
injury at birth. A recent study in rat pups have shown that of 25

potential new neuroprotective agents, eight of these significantly

improved brain area loss following HI injury (90). We have

detailed some current therapies in neuroprotection trials and

review those showing sex specific responses for preterm and

term infants.
Preterm infant therapies

Caffeine

Clinical studies have shown that caffeine has neuroprotective

effects in premature infants by alleviating hypoxia-induced white

matter damage, and by improving ventilation function and brain

self-regulation (91, 92). In addition, caffeine has been shown to

reduce the apoptosis of developing brain neurons, ventricular

enlargement, and white matter loss caused by hypoxia (93).

Animal models of preterm birth show the beneficial effects of

caffeine on brain injury (94) and one study reported that

intermittent hypoxia significantly increases the number of apneas

in male but not in female preterm rat pups. Moreover, caffeine and

erythropoietin (EPO) in males prevented the increase of apneas

induced by intermittent hypoxia, and the administration of both

drugs together did not provide a cumulative beneficial effect. These

effects were not seen in the comparative female group (95).

Concerns for caffeine use have arisen with one high dose trial

reporting statistically significant increases in abnormal neurological

outcomes compared with standard dose (96). Results from a

randomised double-blind placebo controlled study showed the

initiation of early caffeine did not reduce the age of first successful

extubation, rates of BPD, or the duration of need for supplemental

oxygen when compared with the placebo group and this trial was

halted due to a non-significant trend towards an increased mortality

rate in the caffeine group (97).
Indomethacin

The Trial of Indomethacin Prophylaxis in Preterm Infants

(TIPP) used low-dose indomethacin on very low birth weight

infants to determine if improvement in survival without cerebral

palsy or developmental problems at 18 to 22 months of age could be

achieved. The study results show that indomethacin reduced the

incidence of patent ductus and of severe periventricular and

intraventricular haemorrhage (98). Ment et al. suggested that

indomethacin reduced white matter damage through an anti-

inflammatory effect that is more pronounced in the more

vulnerable male cells and halved the incidence of intraventricular

haemorrhage, eliminated parenchymal haemorrhage, and was

associated with higher verbal scores at 3 to 8 years in boys (99).

A secondary analysis was performed in the entire TIPP cohort

suggested a weak differential treatment effect of indomethacin by

sex. Using a composite of outcome variables including, death and

one or more of cerebral palsy, cognitive delay, blindness and

deafness, the authors found that the effect of indomethacin
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differed between males and females (p=0.048). This primary

composite outcome of death or severe neurodisability was more

frequent in males than females, with more male deaths or survival

with impairment, in particular those treated with indomethacin

(100). More recently though this study has shown that the added

prophylactic indomethacin resulted in a higher frequency of the

primary outcomes of death or severe neurodisability than

placebo (101).
Estrogen and analogues

Trotter et al, investigated the use of 17b-Estradiol and Progesterone
in female preterm infants. These hormones rise dramatically in the final

trimester and preterm infants lack this exposure. The initial scope of the

work was to investigate if these hormone levels could be replenished

with exogenous hormones (102). A randomized trial was conducted on

the benefits of estradiol supplementation in preterm infants (n=30),

only female infants were included as uterine growth was selected as the

indicator for the biological effectiveness of the E2 and Pg replacement.

This study found E2 and Pg replacement via IV and trans-epidermal

routes can maintain plasma levels as high as those in utero with

biological effectiveness (103). A further study on replacement E2 and Pg

in preterm infants included both male and female infants and found no

benefit in replacement therapies for the incidence of BPD and death

(104). Follow up on these infants, with development outcome

measured, reported a higher psychomotor score, within normal

range, on the Bayley Scales of Infant and Toddler Development

(BAYLEY II) scale in the treated group compared with the below

average score in the untreated control group which shows the potential

for sex steroids to benefit the preterm developing brain (105–107).
Term infant therapies

Therapeutic hypothermia

Therapeutic hypothermia (TH) is the only available treatment

in cases of neonatal encephalopathy. However, studies show it is

effective in only 50% cases and adverse outcomes such as death,

neurodevelopmental delay and severe disability occur in in the

other half of cases (108). Recent data suggests that therapies may

need to be sex-specific to have their maximal effect and the best

possible outcome in these infants. TH has not been evaluated in a

sex-specific manner in the treatment of perinatal asphyxia (109,

110), neither have more recent studies into the evaluation of this

therapy (111, 112). More recently, the use of TH and sex differences

has been reviewed by combining several animal studies from one

centre and showed that the effect of TH on neuroprotection was

greater in females than males (113).
Allopurinol

Allopurinol is commonly used in the treatment of gout

in adults. Animal studies have shown some promising data
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in relation to its potential in reducing the level of brain

injury following perinatal asphyxia by reducing the number of

oxygen radicals and combined with TH may benefit the

neurodevelopmental outcome (114). In a Cochrane Systematic

review, Chaudhri (2012) found the three RCTs on this drug to

have insufficient data with no clinically significant beneficial effects

of combined TH and allopurinol as the patient numbers were too

small n=114 (115). The ongoing randomised control trial, Effect of

Allopurinol for Hypoxic-ischemic Brain Injury on Neurocognitive

Outcome (ALBINO) trial is underway by Maiwald et al. which will

analyse the safety and efficacy of allopurinol combined with TH to

improve outcomes (114). There are few studies which take sex

differences into account although research has shown that male

infants have worse outcome than females. In a rodent model of TH

with allopurinol dual therapy confers greater neuroprotection than

TH alone after a HI injury. The improvements found, both at the

molecular level and histologically, were more important in females

than in males (116).
Zenon gas

Zenon is a noble gas with an excellent safety profile in animal

studies (117). Its use was investigated in combination with TH and

in a rat model showed that there was functional improvements that

were greater than in the TH alone group and that this was sustained

over time (118). This is one of the only studies which could be found

in relation to sexand adjunctive therapies to TH as on further

exploration of this study, the authors found that females have better

motor scores following this treatment than males but no change on

histology (119). No studies have yet shown that Zenon is an

affective adjuvant therapy in infants with HI at birth.
Further potential - therapies in trials

There are various other therapies being designed to improve

outcome for neonates with brain injury. In combination with TH,

these therapies may play an important role in altering the

inflammation seen in these infants as inflammation plays a critical

role in the pathogenesis of neonatal brain injury. Erythropoietin

(Epo) has anti-inflammatory, anti-oxidant and anti-apoptotic effects

and promotes neurogenesis and angiogenesis. There are trials

underway to determine its potential as a therapeutic agent in

preventing adverse outcome in neonates with brain injury and

inflammation. The Preterm Erythropoietin Neuroprotection Trial

(PENUT) is a Phase III of high dose Epo for neuroprotection in the

preterm infant that looked at a sex effect and found no difference in

the treatment groups in relation to sex (120). A phase III trial, the

High-Dose Erythropoietin for Asphyxia and Encephalopathy

(HEAL) trial, recruiting term or near term infants with moderate

or severe HIE has recently published their data and reported that

there was no added benefit to the administration of Epo with TH than

TH alone. This study found that the additional treatment of EPO did

not result in lowering the risk of death or neurodevelopmental

outcome than placebo and was also associated with a higher rate of
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serious adverse events (121). Further therapies are in trials for the

treatment of neonatal brain injury such as cell-based therapies e.g

mesenchymal stem and autologous umbilical cord cells (122, 123)

and N-acetylcysteine (124), melatonin (125) and pentoxifylene (126).

To date we could not source information on these treatment effects

and sex differences, but it is important to consider this as a variable in

the treatment of neonates with brain injury. Males and females differ

in respect to immunotherapies in the setting of cancer, autoimmune

disorders and infectious disease (127) and these differences may also

translate into paediatric disorders therefore individualised care must

be considered with current therapies on trial.
Conclusions

There are gaps in our knowledge within this topic. The first of

these is that many clinical and laboratory studies have not reported

results by sex, therefore limiting our insights into the potentially

important differences in neonatal immunity between the sexes,

future studies would benefit in reporting results with sex as a

biological variable in all neonatal studies. Another important

deficit in scientific investigation is the lack of study on postnatally

acquired samples in neonates. At present much of our human data

is from umbilical cord blood which, while easily obtainable, does

not mirror the more clinically important postnatal immune system.

There are a multitude of studies that show clear differences between

males and females in their brain structure, response to hormones

and response to treatments in terms of brain injury. The

mechanisms responsible for these observed differences are still

elusive. In terms of care of the newborn, particularly those with

HI, it must be of importance in the treatment and interventions

used, to take this sexual dimorphism into account to have optimal

outcome for the infant (128, 129). Research funding bodies are now

aligning to this and there are new requirements for research studies

to consider sex as a variable in their design and interpretation.

Clinical trials are underway on new therapies that will potentially
Frontiers in Immunology 07
complement TH, reduce the morbidity and mortality rate and

improve neurodevelopmental outcomes in these infants while

hopefully taking into account the reported immunological sex

differences observed.
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