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Isolation, culture, and delivery
considerations for the use of
mesenchymal stem cells in
potential therapies for
acute liver failure
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Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative
Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, China
Acute liver failure (ALF) is a high-mortality syndrome for which liver

transplantation is considered the only effective treatment option. A shortage of

donor organs, high costs and surgical complications associated with immune

rejection constrain the therapeutic effects of liver transplantation. Recently,

mesenchymal stem cell (MSC) therapy was recognized as an alternative

strategy for liver transplantation. Bone marrow mesenchymal stem cells

(BMSCs) have been used in clinical trials of several liver diseases due to their

ease of acquisition, strong proliferation ability, multipotent differentiation,

homing to the lesion site, low immunogenicity and anti-inflammatory and

antifibrotic effects. In this review, we comprehensively summarized the harvest

and culture expansion strategies for BMSCs, the development of animal models

of ALF of different aetiologies, the critical mechanisms of BMSC therapy for ALF

and the challenge of clinical application.
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1 Introduction

Acute liver failure (ALF) is defined as a sudden onset of fulminant liver dysfunction in

patients without underlying liver disease and is characterized by multiple organ failure with

hepatic jaundice, coagulopathy [INR ≥ 1.5] and encephalopathy (1, 2). The interval time from

the onset of jaundice to the development of encephalopathy is divided into three classifications:

hyperacute, acute and subacute (3). Without therapeutic intervention, ALF can rapidly

progress to multiorgan failure, severe systemic inflammation and even death, with a

mortality rate often exceeding 90% (4). Liver transplantation, the only curative treatment

for acute liver failure, is limited by the high cost, shortage of donor organs and long-term
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1243220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1243220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1243220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1243220/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1243220/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1243220&domain=pdf&date_stamp=2023-09-07
mailto:lijun2009@zju.edu.cn
https://doi.org/10.3389/fimmu.2023.1243220
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1243220
https://www.frontiersin.org/journals/immunology


Yang et al. 10.3389/fimmu.2023.1243220
immune rejection (5). Hepatocyte transplantation has been considered

an alternative to organ transplantation but has been hampered by the

lack of large cell quantities, expansion difficulties ex vivo, rejection of

allografts and xenotransplantation, and the rapid loss of liver

properties in vitro (6–8). Therefore, other alternatives need to be

studied for the constraint of hepatocyte and liver transplantation. Stem

cells, including foetal biliary tree stem cells, foetal liver stem cells,

haematopoietic stem cells, endothelial progenitor cells, MSCs, induced

pluripotent stem cells and others, can transdifferentiate into

hepatocyte-like cells to restore the damaged liver and response to

stimulation (9). MSC therapy has been extensively studied and shows

great clinical promise due to its ease of acquisition, strong proliferation

ability, multipotential differentiation, homing to the lesion site, low

immunogenicity and anti-inflammatory and antifibrotic effects.

At present, MSCs are utilized to improve liver function while

waiting for liver transplantation and can also be used as a potential

alternative therapy to organ or hepatocyte transplantation (10). Some

recent clinical trials have reported that infusion of MSCs could induce

tolerance after liver transplantation to reduce immune rejection due to

the low immunogenicity and immunosuppression of MSCs (11–13).

MSCs have been isolated from multiple biological tissues, including

adult bone marrow, adipose tissue and neonatal tissues, such as the

umbilical cord and the placenta. Bone marrow-derived mesenchymal

stem cells (BMSCs) were the first multipotential stromal progenitor

cells isolated and identified. BMSCs was recognized as the most

promising cell sources due to their easy access and well-

characterized biological features in clinical trials and preclinical

studies (14, 15). However, only a small percentage of BMSCs,

ranging from 0.01% to 0.001%, are present in bone marrow tissue,

and these cells require substantial expansion ex vivo before they can be

used for clinical treatment. Isolating BMSCs through conventional

differential adherence and density gradient centrifugation is effective,

but the approaches do not yield a relatively homogeneous cell

population, and the cells may be contaminated by other cells from

the bone marrow (16), which results in differential proliferation,

transdifferentiation and therapeutic efficiency of BMSCs. Therefore,

cell sorting based on BMSC-specific markers is an attractive technique

for homogeneous subsets, and glucose, hypoxia and serum-free

conditions are vital to facilitate the proliferation of MSCs and

reduce cell senescence. Although BMSCs have been used in

numerous clinical therapies and animal investigations (17, 18), the

mechanism is unclear. In this review, we summarize the critical

mechanism as shown in Figure 1. Under the stimulation of liver

failure signals, BMSCs homed to lesion sites through the endothelium

and immediately modulated the immune microenvironment, which is

beneficial for tissue repair. Furthermore, several animal models of ALF

have been described to clarify the mechanisms of BMSCs for the

treatment of ALF with different aetiologies.
2 Definition and source of
mesenchymal stem cells

MSCs are a heterogeneous population that can adhere to plastic

and proliferate ex vivo, forming colonies with a fibroblast-like
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morphology. They can differentiate into osteocytes, chondrocytes,

adipocytes and other mesodermal lineages and have endodermic

(19) and ectodermic (20) differentiation potential (Figure 2). Several

studies have shown that MSCs can differentiate into functional

hepatocytes and cholangiocytes after growth factor induction ex

vivo (22). Intrasplenic transplantation of human-derived BMSCs

into mice with fulminant liver failure developed a dual humanized

mouse model with hepatocytes and immune cells (23). A recent

investigation reported that MSCs can also self-assemble a three-

dimensional (3D) human liver bud ex vivo by transdifferentiating

into hepatocytes, sinusoidal endothelial cells (LECs) and hepatic

stellate cells (HSCs) (24). Minimal criteria for humanMSCs in basic

scientific investigations and preclinical studies were proposed in

2006 by the International Society for Cellular Therapy (ISCT),

which included adherence to plastic, potential for differentiation

into osteoblasts, adipocytes, and chondroblasts under standard in ex

vivo differentiation conditions, and expression (≥95% positive) of

CD105, CD73 and CD90, as measured by flow cytometry.

Additionally, these cells must lack expression (≤2% positive) of

CD45, CD34, CD14 or CD11b, CD79a, CD19 and HLA class II,

which are haematopoietic stem cell surface antigens (21).

MSCs are located in multiple adult and neonatal tissues with

perivascular niches (34), such as adult bone marrow and adipose

tissue, and neonatal tissues, such as the umbilical cord and the

placenta. In addition, the fundamental biological functions of MSCs

involved in the treatment of liver diseases are mainly homing/

migration to sites of damage and the secretion of trophic factors

that mediate liver regeneration and regulation of immune responses

(17, 35–37) (Figure 2).
3 Culture strategies of BMSCs in vitro

3.1 Isolation of BMSCs

The effect of BMSCs in clinical treatment is highly dependent

on their quality. However, the lack of standardized culture

procedures and unique markers limits the consistency of BMSC

characteristics. The initial step for BMSC standardization is the

isolation process (38). Human bone marrow is mainly obtained

from the iliac crest via aspiration in the presence of some

anticoagulants, such as heparin sodium (23). There are several

methods for isolating BMSCs from bone marrow. Traditional

differential adhesion is based on the typical capacity of MSCs,

such as adherence to plastic and sensitivity to enzyme digestion, and

the culture medium is changed every 3-4 days to gradually achieve

purification. Although this method is convenient and economical, it

does not yield a homogeneous population of cells that contain other

bone marrow subpopulations, such as endothelial cells, pericytes,

leukocytes, and haematopoietic stem cells (39, 40). Another

technique, called density gradient centrifugation, has also been

proposed to precipitate different cells in the bone marrow

according to size and density using gradient centrifugation

solutions with a density of approximately 1.077 g/mL, low

viscosity and low permeability, such as Ficoll, Ficoll-Paque,

Percoll, and Lymphogre. After centrifugation and stratification,
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the greyish-white cloudy layer above the separation fluid was

purified through differential adhesion. However, the lack of

specific subsets and contamination of cell populations have

limited its application (38, 41, 42). To improve the homogeneity

of BMSC populations, advanced isolation methods, such as

fluorescence-activated cell sorting (FACS) and magnetic-activated

cell sorting (MACS), have been used for high-throughput screening

of BMSCs via specific surface markers. FACS and MACS employ

electric and magnetic fields, respectively, that exert external forces

to separate BMSCs. However, there is no evidence assessing their

influence on MSC functions and therapeutic effects (43, 44).

Therefore, the crucial aspect of this method is specific surface

markers. ISCT published minimal guidelines for the isolation of

human BMSCs based on the positive markers CD105, CD73, and

CD90 and the negative markers CD45, CD34, HLA-DR, CD79a,

CD19, CD11b, and CD14 (21), and we summarized a variety of

unique markers for human BMSCs in Table 1 (45–58).
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3.2 Culture expansion of BMSCs

The scientific studies and clinical applications of BMSCs require

substantial expansion ex vivo to obtain sufficient numbers of cells

because MSCs are rare in the bone marrow (0.001-0.01% of total

nucleated cells and 0.42% of plastic adherent cells) (19). Tomaintain the

functions and activities of BMSCs in vitro, a variety of approaches have

been used to optimize the culture conditions, including medium

composition, cell seeding density, passages and parameters related to

the external environment, such as oxygen tension, pH and temperature.

3.2.1 Serum
Foetal bovine serum (FBS), the classic nutritional supplement

for cell culture ex vivo, has been commonly used at a concentration

of 5-20% (v/v) for the expansion of BMSCs, predominantly at 10%

(59). FBS can provide macromolecules, proteins, adhesion, growth

factors, nutrients, hormones and other essential biomolecules for
FIGURE 1

Homing and immunoregulation of MSCs triggered by the injured liver. The injured liver releases a variety of damaged or inflammatory factors,
such as TNF-a and histamine, which enter vessels through the hepatic blood sinusoids and activate blood vascular endothelial cells (ECs),
upregulating the expression of selectin and VCAM1. Once MSCs roll into the vessel wall, the expression of CD44 (HCAM), CXCR4, and VLA-4 on
the surface of MSCs is triggered. MSCs then adhere to ECs through the interaction of selectin ligands and selectins, and an activation phase
occurs through the interaction of SDF-1 and CXCR4, which enhances the affinity for integrins. The binding of VLA-4 and VCAM-1 promotes MSC
extravasation; this process starts after the activation of matrix metalloproteinases (MMPs) and disrupts type IV collagen in the basement
membrane. MSCs cross the basement membrane and are released into the hepatic interstitium, where they perform the functions of liver
regeneration and immunoregulation and achieve therapeutic efficacy. MSCs release soluble factors and express surface molecules to regulate
adaptive (T cells, B cells) and innate (NK cells, DC cells, macrophages and neutrophils) immune cells. HLA-G1, TGF-b, HGF and IDO secreted by
MSCs can inhibit T-cell proliferation and activation, and similarly, the Fas and PD-1/L1 pathways trigger apoptosis of T cells. MSCs expressing
CD54, PD-1, IL-10 and PEG2 can inhibit Th17 differentiation. In the presence of MSCs, T cells can differentiate into Tregs, such as Th2 cells,
CD3+CD45RO+ memory Treg cells, CD8+CD28- Tregs, IL10+ Tr1 cells and TGFb+ Th3 cells. MSCs inhibit B-cell proliferation, interfere with the
formation of plasma cells, and release CCL2 and CCL7 to inhibit antibody production. IDO from MSCs is involved in the proliferation of CD5+

regulatory B cells, and IL-10 promotes the differentiation of CD19+CD24+CD38+ Bregs. MSCs can inhibit the proliferation, cytotoxic activity and
cytokine production of quiescent NK cells by releasing IDO, PGE2 and HLA-G5 and by expressing MHCI. The maturation of myeloid dendritic
cells (mDCs) is inhibited by MSC-derived IL-6, macrophage colony-stimulating factor (M-CSF), TSG-6, and PGE2. IL-10-plasmacytoid dendritic
cells (pDCs) can be induced by PGE2 release from MSCs. In addition, MSCs can induce the transformation of mature dendritic cells into
immunosuppressive regulatory dendritic cells through IL-10 and evasion of apoptosis. Inflammatory macrophages (M1) are converted to anti-
inflammatory macrophages (M2) by IDO, TSG-6 and PGE2 secreted by MSCs, and CD54 and CD200 enhance their immunosuppressive effects.
MSCs maintain neutrophil activity, and IL-6 delays apoptosis and inflammation.
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the growth of BMSCs (60). However, the treatment of BMSCs

cultured with FBS is controversial due to high batch-to-batch

variations, xenoimmune effects and contamination with

pathogens (38, 61, 62). Therefore, materials from autologous or

allogeneic human blood sources have been explored, and the results

showed that human serum (63), platelet lysate (63, 64) and

umbilical cord serum (65) significantly increased cell

proliferation, but an in-depth study of their efficacy is lacking. To

overcome the uncertainties associated with serum, commercial

serum-free media (SFMs) showed good performance ex vivo

culture of human-derived BMSCs (63, 66–68). Van T Hoang

et al. adapted a standardized process to assess the functional

characteristics of serum-free cultured MSCs and showed that the

MSCs satisfied the criteria (including basic MSC characteristics,

normal karyotype, stronger proliferation, clinical-scale production

and quality control requirements) (69, 70).

3.2.2 Glucose
Glucose is another critical source of energy for the growth and

development of most cell types in vivo (71). Under physiological

conditions, the serum glucose concentration of an organism is

maintained at approximately 100 mg/dL, suggesting that MSCs

should be exposed to the same glucose concentration in the bone

marrow niche or ex vivo culture (72). Nevertheless, there is still

controversy regarding the culture of BMSCs in terms of high vs. low

glycaemic levels. Al-Qarakhli et al. assessed the effects of different

glucose concentrations on the proliferation, senescence and
Frontiers in Immunology 04
multidirectional differentiation ability of MSCs, and the results

demonstrated that high concentrations of glucose (450 mg/dL)

inhibited osteogenic/adipogenic differentiation and had a limited

negative effect on the proliferation and stemness of MSCs (73).

Similar studies have shown that low glucose concentrations (100

mg/dL or 350 mg/dL) during culture can promote cell proliferation,

colony formation, and multidirectional differentiation and reduce

apoptosis and senescence (74–78). Overall, low-glycaemic culture

may better maintain the properties of MSCs, which may facilitate

the homing and tissue repair of MSCs in ALF.

3.2.3 Oxygen tension
The oxygen tension (pO2) of MSCs exposed to the bone marrow

microenvironment typically ranges from 1% to 8% (also referred to

hypoxia) (79), whereas ex vivo culture was at an atmospheric

oxygen tension (21%), which may lead to cell proliferation

cessation after multiple passages as well as cellular senescence.

This does not occur in hypoxic conditions (1% pO2), which is

possibly related to downregulation of the gene expression of p16

and extracellular signal-regulated kinase (ERK) (80). Several

previous studies have revealed that hypoxic culture can promote

cell proliferation (81), inhibit differentiation (82, 83) and reduce

BMSC senescence (80). Recently, Ben Antebi et al. evaluated the

function of human and porcine bone marrow-derived MSCs

following long-term (10 days) and short-term (48 hours) hypoxic

(1% pO2) culture, and the results demonstrated that short-term

culture under hypoxia significantly increased cell proliferation
FIGURE 2

Multipotent differentiation and functions of mesenchymal stem cells (MSCs) derived from various tissues. MSCs can be isolated from multiple biological
tissues, including adult bone marrow, adipose tissue and neonatal tissues, such as the umbilical cord and the placenta, and can differentiate into osteocytes,
chondrocytes, adipocytes and other mesodermal lineages (21) and exhibit endodermic (such as hepatocytes, muscle cells, gut epithelial cells, and
cholangiocytes) (20, 22–28) and ectodermic (epithelial cells and neuronal cells) (29–33) differentiation potential. MSCs also have strong self-renewal
properties. The fundamental biological functions of MSCs include homing to sites of damage, immunoregulation of the immune microenvironment and
secretion of trophic factors that exert anti-inflammatory and antifibrotic effects, as well as differentiation into hepatocytes to promote liver regeneration.
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TABLE 1 Positive and negative markers of human bone marrow mesenchymal stem cells.

Gene Gene Symbol ENSG Description Expression

CD29 ITGB1 ENSG00000150093 Integrin Subunit Beta 1 +

CD44 CD44 ENSG00000026508 CD44 Molecule (Indian Blood Group) +

CD49d ITGA4 ENSG00000115232 Integrin Subunit Alpha 4 +

CD49e ITGA5 ENSG00000161638 Integrin Subunit Alpha 5 +

CD51 ITGAV ENSG00000138448 Integrin Subunit Alpha V +

CD54 ICAM1 ENSG00000090339 Intercellular Adhesion Molecule 1 +

CD71 TFRC ENSG00000072274 Transferrin Receptor +

CD73 NT5E ENSG00000135318 5’-Nucleotidase Ecto +

CD90 THY1 ENSG00000154096 Thy-1 Cell Surface Antigen +

CD105 ENG ENSG00000106991 Endoglin +

CD120a TNFRSF1A ENSG00000067182 TNF Receptor Superfamily Member 1A +

CD120b TNFRSF1B ENSG00000028137 TNF Receptor Superfamily Member 1B +

CD146 MCAM ENSG00000076706 Melanoma Cell Adhesion Molecule +

CD166 ALCAM ENSG00000170017 Activated Leukocyte Cell Adhesion Molecule +

CD271 NGFR ENSG00000064300 Nerve Growth Factor Receptor +

CD124 IL4R ENSG00000077238 Interleukin 4 Receptor +

CD49f ITGA6 ENSG00000091409 Integrin Subunit Alpha 6 +

CD49a ITGA1 ENSG00000213949 Integrin Subunit Alpha 1 +

CD49b ITGA2 ENSG00000164171 Integrin Subunit Alpha 2 +

CD49c ITGA3 ENSG00000005884 Integrin Subunit Alpha 3 +

CD58 CD58 ENSG00000116815 CD58 Molecule +

CD61 ITGB3 ENSG00000259207 Integrin Subunit Beta 3 +

CD200 CD200 ENSG00000091972 CD200 Molecule +

CD102 ICAM2 ENSG00000108622 Intercellular Adhesion Molecule 2 +

CD104 ITGB4 ENSG00000132470 Integrin Subunit Beta 4 +

CD221 IGF1R ENSG00000140443 Insulin Like Growth Factor 1 Receptor +

CD140a PDGFRA ENSG00000134853 Platelet Derived Growth Factor Receptor Alpha +

CD140b PDGFRB ENSG00000113721 Platelet Derived Growth Factor Receptor Beta +

PODXL PODXL ENSG00000128567 Podocalyxin Like +

SOX11 SOX11 ENSG00000176887 SRY-Box Transcription Factor 11 +

SSEA3 B3GALT5 ENSG00000183778 Beta-1,3-galactosyltransferase 5 +

H-L6 TM4SF1 ENSG00000169908 Transmembrane 4 L six family member 1 +

GD2 B4GALNT1 ENSG00000135454 Beta-1,4-N-acetyl-galactosaminyltransferase 1 +

MSCA-1 ALPL ENSG00000162551 Alkaline phosphatase, biomineralization associated +

SSEA-4 ST3GAL2 ENSG00000157350 ST3 beta-galactoside alpha-2,3-sialyltransferase 2 +

Stro-1 Record to support submission of GeneRIFs for a gene not in Gene (human) +

CD13 ANPEP ENSG00000166825 Alanyl Aminopeptidase, Membrane +

CD106 VCAM1 ENSG00000162692 Vascular Cell Adhesion Molecule 1 +

CD56 NCAM1 ENSG00000149294 Neural Cell Adhesion Molecule 1 +/━

(Continued)
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upregulated VEGF expression and downregulated the expression of

HMGB1 and the apoptotic genes BCL-2 and CASP3. Additionally,

in short-term hypoxic culture at 2% and 5% pO2, BMSCs showed

inhibition of the proinflammatory cytokine IL-8 and promotion of

the anti-inflammatory agents IL-1Ra and GM-CSF, especially in

short-term hypoxic culture at 2% pO2 (84). Yu et al. found that

CXCR4 expression was upregulated in the presence of short-term

hypoxic culture (24 h, 2% pO2) and low-dose inflammatory stimuli

(1 ng/mL TNF-a and 0.5 ng/mL IL-1b), enhancing the homing/

migration of BMSCs (85).

3.2.4 Cell seeding density
Cell seeding density is a key factor to be considered when

BMSCs are expanded ex vivo. During the primary culture of bone

marrow cell suspensions, the seeding density is typically 1 × 106 to

2 × 106 cells/cm2 for differential adhesion and approximately 1 ×

104 cells/cm2 for density gradient centrifugation (86). The

inoculation density of BMSCs is usually in the range of 2,000 to

5,000 cells/cm2 during the passaging process (38). It has been shown

that low-density inoculation may facilitate cell proliferation by

reducing contact inhibition and less affect the cell surface antigen

phenotype and cell differentiation.

3.2.5 BMSC passage
Passaging is helpful to expanding the number of cells in culture

and avoids mass mortality arising from cells entering the plateau
Frontiers in Immunology 06
stay or even decay. Typical digestion with 0.25% trypsin/EDTA was

performed on cells at a confluence of 80-90%. BMSCs face

replicative senescence, exhibiting progressive shortening of

chromosomal telomeres, reduced stemness and a heightened risk

of mutation (87, 88). Although no comprehensive studies have

reported which generation will undergo cell senescence, the loss of

typical fibroblast-like morphology and the decreased rate of

fibroblast colony-forming units (CFU) are representations of ex

vivo cellular ageing (88–90). An ex vivo study also revealed a

dramatic decrease in the potential for hepatic differentiation at

later passages (passage 8, p8) (91), suggesting that early passage of

BMSCs may have superior therapeutic benefits for liver failure.
4 Homing functions of MSCs in
ALF treatment

Homing to damaged tissue sites is a key property of BMSCs in

treating liver failure. Regardless of the method of local or systemic

administration, BMSCs are always found at sites of damaged tissue

(92). Proinflammatory chemokines, such as TNF-a and histamine

secreted by the injured liver, activate blood vascular endothelial cells

(ECs), as indicated by the upregulated expression of selectin and

VCAM1 (93). Once MSCs rolled to the vascular wall, a few

significant ligands related to MSC extravasation, such as CD44

(HCAM), CXCR4, and VLA-4, were triggered. The adherence
TABLE 1 Continued

Gene Gene Symbol ENSG Description Expression

CD309 KDR ENSG00000128052 Kinase Insert Domain Receptor +

Nucleostemin GNL3 ENSG00000163938 G Protein Nucleolar 3 +

NRP1 CD304 ENSG00000099250 Neuropilin 1 +

CD81 CD81 ENSG00000110651 CD81 Molecule +/━

CD130 IL6ST ENSG00000134352 Interleukin 6 Cytokine Family Signal Transducer +

SUSD2/W5C5 SUSD2 ENSG00000099994 Sushi Domain Containing 2 +/━

NG2 CSPG4 ENSG00000173546 Chondroitin Sulfate Proteoglycan 4 +

Nestin NES ENSG00000132688 Nestin +

CD11a ITGAL ENSG00000005844 Integrin Subunit Alpha L ━

CD11b ITGAM ENSG00000169896 Integrin Subunit Alpha M ━

CD14 CD14 ENSG00000170458 CD14 Molecule ━

CD19 CD19 ENSG00000177455 CD19 Molecule ━

CD31 PECAM1 ENSG00000261371 Platelet And Endothelial Cell Adhesion Molecule 1 ━

CD34 CD34 ENSG00000174059 CD34 Molecule ━

CD45 PTPRC ENSG00000081237 Protein Tyrosine Phosphatase Receptor Type C ━

CD117 KIT ENSG00000157404 KIT Proto-Oncogene, Receptor Tyrosine Kinase ━

CD79A CD79A ENSG00000105369 CD79a Molecule ━

HLA Class II ━
+ represents a positive marker of human bone marrow mesenchymal stem cells;━ represents a negative marker of human bone marrow mesenchymal stem cells; and +/━ indicates that it is not
clear whether the marker is a positive or negative marker.
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process occurs when the adhesion molecule selectin ligand CD44

(HCAM) expressed by MSCs interacts with selectins located on ECs

(94, 95). Notably, CD44 is a significant target for modifying MSCs.

During the activated phase, stromal cell-derived factor (SDF)-1

naturally expressed by ECs binds to the chemokine receptor CXCR4

on MSCs or CXCR7 and other chemokines, such as MCP-1 and

MCP-3 (96–99), increasing the affinity for integrins (100). Several

preclinical studies indicated that MSCs with enhanced CXCR4

expression after genetic engineering, treatment with ALF rat

serum or stimulation with inflammatory cytokines such as TNF-a
and IL-1b/3 showed better homing in vivo (101–106). The

entrapment phase involves the VLA-4-VCAM-1 interaction,

which is the key mediator of the MSC adherence process to ECs

(107, 108). During the extravasation stage, the transmigration of

MSCs begins with the activation of matrix metalloproteinases

(MMPs), which break down type IV collagen in the basement

membrane and then cross the endothelial cell layer and basement

membrane into the vasculature to migrate to the liver lesion (109,

110), where they can then exert their therapeutic, regeneration and

immunomodulatory effects.
5 Immunomodulatory functions of
MSCs in ALF treatment

MSCs can improve and repair injured tissue by regulating

immune responses by secreting soluble factors and direct cell-to-

cell interactions (111). When MSCs migrate to damaged sites, they

interact closely with numerous proinflammatory cytokines, such as

TNF-a, IL-1b and IL-6, causing the conversion of MSCs to an

immunosuppressive phenotype to modulate innate and adaptive

immune responses (112). In this section, we mainly focus on soluble

factors and membrane-bound molecules involved in MSC immune

modulation (Figure 1).
5.1 Adaptive immune cells

MCSs can inhibit T‐cell proliferation and activation and induce

the differentiation of Tregs. Several soluble immunosuppressive

f a c t o r s s e c r e t e d by MSCs a r e i n vo l v ed i n T - c e l l

immunoregulation; the release of HLA-G1, TGF-b and HGF

induces cell cycle arrest in G1 phase by downregulating

phosphoretinoblastoma (pRb), cyclin D and cyclin A as well as

upregulating cyclin-dependent kinase inhibitor 1B (p27Kip1),

rendering T-cell activation ineffective (113, 114), and the

production of IDO after IFN‐g stimulation promotes tryptophan

metabolism, resulting in the depletion of tryptophan, which inhibits

proliferation and induces apoptosis of T cells (115). The direct

interaction between MSCs and T cells may trigger T-cell apoptosis

through the Fas ligand (FasL)-dependent pathway (116) as well as

the PD-L1 pathway (117); of note, Fas ligand-associated T-cell

apoptosis can induce macrophages to produce TGF-b, thereby
increasing the abundance of Tregs (116). Additionally, several

studies revealed that MSCs could inhibit the differentiation of
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Th17 cells through different mechanisms; the expression of CD54

recruited Th17 cells to MSCs and then upregulated PD‐1, IL‐10 and

PGE2, blocking differentiation (118, 119). Some reports have also

shown that activated T cells can differentiate into Th2 (120),

CD3+CD45RO+ memory Treg cells (121), CD8+CD28‐ Treg

(122), IL10+ Tr1 and TGFb+ Th3 (123) cells in the presence of

MSCs, which suppress immune responses and accelerate tissue

repair. Although the detailed mechanism of the interaction

between MSCs and B cells is controversial, it is known that the

inhibition of B-cell proliferation by MSCs seems to be associated

with cell cycle disruption at specific stages rather than the induction

of apoptosis (124, 125). Activated MSCs can interfere with the

formation of plasmacytes and promote the differentiation of Bregs;

for example, the soluble molecule IDO secreted by MSCs is involved

in the survival and proliferation of CD5+ regulatory B cells (126),

and when MSCs express IL-10, they promote the production of

CD19+CD24+CD38+ Bregs in humans and CD19+CD1d high CD5+

Bregs in mice (126, 127). In addition, MSCs can promote the

formation of naive, transitional and memory B-cell subsets, and

these nonactivated B cells can induce Treg differentiation. Notably,

the MSC-derived CC chemokine ligands CCL2 and CCL7 can

suppress immunoglobulin (such as IgA and IgM IgG) production

and release by plasmacytes (128).
5.2 Innate immune cells

Natural killer cells (NK cells) are important effector cells of

innate immunity (129). MSCs can inhibit the proliferation,

cytotoxic activity and cytokine production of resting NK cells

(130). IL-2-mediated proliferation of resting NK cells is inhibited

by coculture with MSCs. The mechanism may involve the release of

IDO, PGE2 and HLA-G5 (131–133), and upregulating the

expression of HLA class I molecules (MHCI) inhibits cytokine-

mediated induced NK-cell cytotoxicity and decreases the secretion

of cytokines (130). MSCs also maintain the activity of neutrophils

for a long period to promote the elimination of invading bacteria

(134), and the MSC-derived soluble factor IL-6 can delay apoptosis

of neutrophils and inhibit the neutrophil-mediated fulminant

inflammatory response, which is called the respiratory burst

(135). The immunoregulatory effect of MSCs on macrophages

mainly converts polarized inflammatory macrophages (M1) to

anti-inflammatory macrophages (M2). The mechanism may

involve IDO, TSG-6 and PGE2 (134, 136–138). Furthermore,

proinflammatory factors (IFN‐g, TNF‐a and LPS) can enhance

the M2 macrophage polarization of MSCs. To date, the membrane-

bound molecules CD54 and CD200 have been found to increase the

immunosuppressive function of MSCs (139, 140). Regarding

myeloid dendritic cells (mDCs), MSCs can inhibit the

development and maturation of mesenchymal/dermal DCs and

the convers ion of umbi l ica l cord blood and CD34+

haematopoietic progenitors as well as monocytes into DCs (141)

(142, 143). Several recent studies suggested that MSC-derived IL-6,

macrophage colony-stimulating factor (M-CSF), TSG-6 and PGE2

could be responsible for the immunoregulatory interaction between

MSCs and immature dendritic cells (141, 142, 144). Furthermore,
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MSCs can induce the transformation of mature dendritic cells into

immunosuppressive regulatory dendritic cells via jagged-2 and IL-

10-activated SOCS3 pathways while escaping from their apoptotic

fate (145, 146), and IL-10-plasmacytoid dendritic cells (pDCs) can

be induced by PGE2 (124).

These soluble and membrane molecules play important roles in

MSC immunomodulation, and researchers can evaluate the

effectiveness of pretreatment in vitro for improving the

immunomodulation of MSCs. Recently, the concept of immune

training of MSCs has been proposed (147–149), where MSCs are

stimulated in vitro by proinflammatory factors or cocultured with

activated immune cells, and when MSCs are stimulated again with

the same stimuli, detection of the immunosuppressive molecules we

mentioned can be used to assess whether MSCs can achieve

“memory” to rapidly and efficiently suppress inflammatory signaling.
6 Developing animal models of
liver failure and the mechanism of
MSC therapy

6.1 Devascularization-induced ischaemia-
reperfusion model

Devascularization models mainly imitate hepatic ischaemia-

reperfusion injury (IRI) caused by liver transplantation,

hepatectomy and haemorrhagic shock (150, 151), and such

models have also been used to investigate liver regeneration and

the therapeutic potential of artificial liver support systems (ALSSs)

(152, 153). Hepatocytes and endothelial cells experienced hypoxic

insult during a brief period of ischaemia. Subsequently,

dysfunctional mitochondrial respiratory chain-activating

degradative enzymes cause a range of disruptions in intracellular

proteins, lipids and DNA. Reperfusion produces reactive oxygen

species (ROS) and hydroxyl radicals that activate Kupffer cell

amplification cascades and inflammatory responses, recruit

neutrophils (154), and trigger different types of cell death,

including apoptosis, autophagy-associated cell death and

necrosis (155).

As many investigations have shown, ischaemia-reperfusion

models in rats (156), mice (157) (C57BL/6 mice were described as

the most popular model) and pigs (158) (in combination with

hepatectomy) have been developed via 70% hepatic segmental

thermal ischaemia. The critical protocol is a noninvasive vascular

clip on the upper left side of the portal triad structure (bile duct,

portal vein and hepatic artery) for 45 (159), 60 or 90 (160) minutes

to block the blood supply to the left and median lobe of the liver,

and reperfusion is initiated by removal of the clamp (161). A

previous study revealed reproducible hepatic injury at 60 min of

ischaemia and is therefore extensively employed in ischaemia-

reperfusion models (157, 161–164), allowing decompression of

the portal vein through the right lobe and caudate lobe. To

prevent mesenteric vein congestion, all surgical procedures were

performed at a constant temperature of 37°C.
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Tail vein (165, 166), hepatic vein (167) and peripheral vein

(168) injection of MSCs in an ischaemia-reperfusion injury animal

model showed that MSC infusion can reduce liver damage and cell

death (165, 167), improve the levels of ALT and AST (166–168) and

mainly decrease oxidative stress caused by liver excision and

ischaemia-reperfusion injury (169). MSCs also inhibit the

production of proinflammatory cytokines (TNF-a, IL-1b and

iNOS), macrophage activation and neutrophil recruitment and

promote anti-inflammatory cytokine secretion (IL-10), which is

beneficial for recovery from liver injury and inflammatory

responses (167). The potential mechanism of MSCs in the

treatment of liver IRI may increase CD47 expression in the liver,

and then the CD47-SIRPa interaction activates HEDGEHOG/

SMO/Gli1 signaling and further inhibits NEK7/NLRP3 activity to

protect the integrity of the liver (166). Zheng et al. found that MSCs

upregulated PINK1-dependent mitophagy and exerted a protective

effect in liver IRI, which might be associated with the modulation of

AMPKa activation (168).
6.2 Acetaminophen-induced drug-induced
liver injury models

Acetaminophen-induced drug-induced liver injury (DILI) is the

most frequent cause of ALF in many Western countries, such as the

United States and the United Kingdom. The animal models caused

by acetaminophen are more similar to the pathophysiological

characteristics of liver failure in humans (170). The toxicity

mechanism of excess acetaminophen-induced oncotic necrosis

begins with the accumulation of a toxic metabolite, N-acetyl-

benzoquinone imine (NAPQI), catalysed by the cytochrome P450

enzyme system (171). Subsequently, a large amount of reactive

oxygen species are formed, which initiates severe mitochondrial

oxidative stress (172), mainly through activation of MAP kinase and

translocation of phospho-c Jun N-terminal kinase (p-JNK) to

mitochondria (173); the mitochondria eventually undergo

swelling of the cytoplasm and rupture of the outer membranes

(174), with the release of endonucleases to degrade nuclear DNA

(175, 176). Several species, such as mice, rats, rabbits, dogs and pigs,

have been used to develop acetaminophen models, and mice are

widely used because they develop liver failure very close to those

reported in humans in pathophysiology structure and

acetaminophen doses (177).

Furthermore, the acetaminophen dose, the diluent, the

administration route and the mouse strain are critical factors that

need to be considered for model development. Many studies have

noted that because glutathione can relieve the toxicity associated

with NAPQI (178), fasting before acetaminophen administration

maintains baseline levels of glutathione in all animals, which

increases the consistency of experimental results and the success

of acetaminophen-induced liver failure. In previous studies, typical

hepatotoxicity was observed in fasted mice at doses of 200-300 mg/

kg and in nonfasted mice at doses of 500-600 mg/kg or higher, and

acetaminophen was diluted in normal saline (NS) or phosphate-

buffered saline (PBS) and administered intraperitoneally to mice,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1243220
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1243220
while intravenous or subcutaneous administration is more suitable

for large animals.

Some studies have reported that tail vein transplantation of

MSCs significantly improves the survival rate of mice with liver

failure induced by APAP and ameliorates liver function by reducing

intense centrilobular necrosis and inflammatory infiltration (179–

183). A recent study showed that MSC therapy can efficiently

improve APAP-induced mitochondrial dysfunction and liver

injury by inhibiting c-Jun N-terminal kinase (JNK)-mediated

mitochondrial retrograde pathways (179). Another study reported

that MSC-mediated immunoregulation is associated with the

activation of the Notch2/COX2/AMPK/SIRT1 pathway (183).

More interestingly, MSCs can enhance antioxidant activity to

attenuate liver damage by inhibiting cytochrome P450 activity (by

reducing NAPQI production) to reduce the depletion of GSH and

oxidative stress. These results might be related to the

downregulation of MAPK signalling and the decreased

inflammatory responses (180).
6.3 Carbon tetrachloride-induced drug-
induced liver injury model

Carbon tetrachloride (CCL4), a classical hepatotoxin, induces

DILI after single high-dose administration and can progress to

chronic liver disease (CLD) (184) such as nonalcoholic

steatohepatitis (NASH) (185), hepatocellular carcinoma (HCC)

(186), acute-on-chronic liver failure or other alcohol-related liver

disease and fatty liver disease after multiple low-dose

administrations (187). After entering the body, CCL4 depends on

the cytochrome P450 enzyme system metabolism for conversion

into reactive trichloromethyl radicals with high activity (188). These

metabolites can cause lipid peroxidation and hepatocyte membrane

rupture, as well as DNA strand breakage. In addition, it has been

revealed that such damage further affects the transcriptional and

replication activity of hepatocytes, resulting in portacaval zone

necrosis (189).

In general, CCL4 administration is performed in mice, rats and

rabbits (BALB/c mice have been described as the most appropriate

model) via intragastric administration, intraperitoneal injection,

subcutaneous injection or inhalation to induce acute or chronic

liver failure. In some investigations, 6- to 8-week-old male mice

(weighing approximately 25-30 g) were used to develop acute

mouse models of CCL4 induction (190, 191), in which olive or

corn oil served as diluents to solubilize CCL4 at ratios ranging from

10% (v/v) to 50% (v/v), and CCL4 doses of 2 mL/kg or higher can

induce acute liver failure in mice (191–194).

MSC therapy efficiently prolonged the survival time of CCL4

induced acute liver failure mice from day 2 to day 7 after

transplantations of second trimester amniotic fluid (AF-MSCs),

and the ALT and AST levels significantly decreased by 35.36% and

64.72%, respectively (195). In addition, Milosavljevic et al. found

that MSCs can modulate the IL17 signaling to treat the immune-

mediated liver failure via altering NKT17/NKTreg ratio and

suppressing hepatotoxicity of NKT cells in an IDO-dependent
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manner (196). A previous study reported that the treatment effect

of adipose tissue-derived mesenchymal stem cells (AT-MSCs) may

relate to the secretion of interleukin 1 receptor (IL-1R), IL-6, IL-8,

granulocyte colony-stimulating factor (G-CSF), granulocyte-

macrophage colony-stimulating factor (GM-CSF), monocyte

chemotactic protein 1, nerve growth factor, and hepatocyte

growth factor (197).
6.4 D-gel/LPS-induced TNF-a-mediated
liver failure model

Lipopolysaccharide (LPS) is a molecule that is present in the

outer membrane of gram-negative bacteria and can activate Kupffer

cells (198–200), triggering the secretion of multiple inflammatory

mediators (200, 201), and the coadministration of 300 mg/kg D-Gal

dramatically increased rodent susceptibility to LPS, resulting in

extensive liver injury and cell death (202). D-Gal is a hepatocellular

phosphate uracil nucleotide interference agent that is metabolized

via the galactose pathway and can cause diffuse necrosis and

inflammation rather than zonal necrosis, similar to most

hepatotoxic drugs (153). The administration of D-Gal/LPS in

mice induced liver necrosis and inflammation similar to human

hepatitis (203, 204). Previous studies demonstrated that

coadministration of LPS at doses of 10-100 µg/kg and D-Gal at

doses of 100-1000 mg/kg was performed to establish an acute liver

failure mouse model (205–209).

The pathophysiological mechanism of D-Gal/LPS-induced ALF

involves the binding of LPS to Toll-like receptor 4 (TLR4) on

Kupffer cells, which triggers transcriptional and translational

activation of cytokines such as TNF-a, IL-1b and IL-6 (210, 211).

In particular, TNF-a has been recognized as a key regulator of

hepatitis, as it recruits many neutrophils into the liver sinusoids and

induces the expression of various adhesion molecules, including

intercellular adhesion molecule 1 (ICAM1), vascular adhesion

molecule 1 (VCAM1), selectin, and chemokines on endothelial

cells and hepatocytes, after LPS treatment (212, 213). Some of

these adhesion molecules are critical for neutrophil extravasation

and cytotoxicity. In addition, by binding to its receptor 1 (TNFR1)

on hepatocytes, TNF-a activates the nuclear factor kappa beta (NF-

kB) pathway, resulting in the expression of proinflammatory and

antiapoptotic genes (214, 215). Although high doses of D-gal

inhibite the synthesis of antiapoptotic genes by depleting uridine

triphosphate in hepatocytes, they promote apoptosis signaling via

activation of the caspase cascade and DNA damage. Thus, TNF-a-
mediated apoptotic signaling and inflammation are commonly

considered pathophysiological mechanisms of D-Gal/LPS-induced

ALF. Notably, the interaction between these mechanisms remains

uncertain and should be explored in the future.

BMSC transplantation rescued the D-gal-induced liver failure

model. In rodents, the 4-week survival rate significantly increased

by 80% (216). Numerous hepatocytes were repaired, with only a few

necrotic areas. In D-gal-induced liver failure in large animals,

BMSC therapy significantly prolonged the survival time from 3.22

days to more than 14 days by suppressing the life-threatening

cytokine storm. BMSC-derived hepatocytes were widely
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distributed in injured livers within 10 weeks, with liver function

returning to normal levels (217). During recovery, serum levels of

proinflammatory molecules, including IFN-g, IL-1b, and IL-6, were

reduced, while serum levels of the anti-inflammatory cytokine IL-10

were significantly increased through paracrine effects, referring to

regulation by the STAT3 signaling pathway (216) and notch-DLL4

signaling pathway (218).
6.5 JO2-induced Fas/FasL-mediated liver
failure model

Fas receptor (CD95), a member of the TNF-receptor superfamily

with a death domain, mediates the assembly of a death-inducing

signaling complex. Inducing caspase activation and cell apoptosis

(219) has been considered the critical mechanism of fulminant liver

failure (220), ischaemia-reperfusion-associated liver diseases (221),

nonalcoholic fatty liver disorders (222) and other acute and chronic

hepatic disorders. The liver constitutively and abundantly expresses the

Fas receptor and activated caspase (casp) 8 upon binding of FasL or

other receptor agonists (220, 223), such as the Fas receptor antibody

JO2 and soluble FasL in the hexameric form (MegaFasL) (198). Then, it

triggers the caspase cascade accompanied by excessive hepatocyte

apoptosis (224), which can quickly progress to secondary necrosis

(225). This mechanism may rely on activation of Fas-induced

inflammatory signaling via the nonclassical interleukin-1b
pathway (225).

Several researchers have reported that JO2 at concentrations such

as 0.15, 0.2, 0.23, 0.35, 0.4, 0.42, and 0.5 mg/kg can induce liver failure,

and the severity of liver injury is dependent on the JO2 dose (220, 221,

225–231). Thus, the critical element for developing this animalmodel is

the concentration of JO2. Shao et al. (220) observed severe liver

damage, including destruction of the hepatic lobules, hepatocyte

necrosis and haemorrhage after treatment with 0.5 mg/kg JO2

(dissolved in normal saline (NS)) in BALB/c mice via intraperitoneal

injection. However, after treatment of C57BL/6 mice with the same

doses and methods, all mice died within 12 h (231). Although this

difference could be caused by differences across researchers or other

environmental factors, strain differences. In addition, the

administration route can affect the pharmacodynamics and

pharmacokinetics of the drug.

In recent works, BMSC transplantation rescued mice with JO2-

induced liver failure and prolonged the survival time by improving liver

function and decreasing extensive hepatic necrosis and haemorrhage.

BMSCs can colonize injured mice and transdifferentiate into

hepatocytes and cholangiocytes, and many KRT7- and KRT19-

positive human cholangiocytes form tubular structures around the

portal area (22). Meanwhile, transplanted BMSCs differentiate into

immune cell lineages, including T cells, B cells, natural killer (NK) cells,

macrophages and dendritic cells, and play a paracrine role by

regulating inflammatory cytokine levels (23). Another study

confirmed this finding and further identified the two

transdifferentiation phases by transcriptomics; hepatic metabolism

and liver regeneration were characterized in the first 5 days after
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BMSC transplantation, and immune cell growth and extracellular

matrix (ECM) regulation were observed from day 5 to day 14 (25).
7 BMSC transplantation routes in
animal and clinical trials

In clinical trials, MSC transplantation routes involving

intravenous injection, followed by intrahepatic injection (through

the portal vein and hepatic artery), and intrasplenic injection are

minimally used (232). Notably, different routes could affect the

number of MSCs homing to sites of damage. Next, we discuss which

routes resulted in optimal therapeutic benefits.

Peripheral intravenous injection, such as caudal or jugular

venous injection, is the most common administration route in

clinical trials and animal models owing to the simplicity of the

technique and the success rate rather than promising therapeutic

results. In our previous study, we transplanted human-derived

BMSCs (hBMSCs) into pigs with D-gal-induced fulminant

hepatic failure (FHF) via peripheral and intraportal veins. The

results revealed that all animals died of FHF within 96 hours after

peripheral intravenous injection of hBMSCs, while most animals

were rescued and survived for up to 6 months after intraportal vein

injection (217), which suggested that the intraportal route has a

better therapeutic effect than peripheral intravenous injection. E.

Eggenhofer et al. radiolabelled MSCs with Cr-51 and found that

within the first 24 hours after tail vein infusion, most viable MSCs

accumulated in the lungs and that beyond 24 hours, MSCs

disappeared in the lungs and were probably cleared by immune

cells, with less than 10% of the cellular debris transferred to the

injured liver (233). Similarly, Mami Higashimoto also found that a

large proportion of MSCs resided in the lungs after caudal vein

infusion, with only a small number of cells homing to the hepatic

site of conA injury (234). This finding indicates that after the

intravenous injection of MSCs, the cells first moved into the lungs

and subsequently moved towards the liver, where they may be

phagocytosed by reticuloendothelial cells in the capillary tissue,

diminishing their therapeutic potential.

In contrast to intravenous injection, the intrahepatic portal vein

is an important structure in the hepatic portal system that allows

MSCs to rapidly home and colonize the liver after grafting and

avoids cellular off-target effects. A comprehensive preclinical study

compared four different transplantation routes: intraportal

injection, intrahepatic artery injection, intravenous injection and

intrahepatic injection. The results indicated that compared to other

routes, intraportal injection of MSCs efficiently improved liver

function, inhibited apoptosis and prolonged survival in ALF

swine (235). An additional study confirmed that portal vein grafts

can reduce the inflammatory response, inhibit cellular necrosis and

promote liver regeneration in pigs with ALF (236). This preclinical

evidence can ultimately guide the choice of graft route for the

treatment of MSCs in the clinic. Regarding whether portal injection

performs better in clinical trials, there was a trial comparing the

therapeutic efficacy of MSCs after portal vein and intrasplenic
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injection in patients with end-stage liver diseases. According to the

Fatigue Impact Scale and the MELD score, portal injection was

found to be more effective than intrasplenic injection only in the

first month, and this difference disappeared in the following

months. The results demonstrated that the portal vein is more

beneficial for the migration of MSCs. In particular, splenic injection

could be the most promising route of transplantation in the future

because of its simplicity (237). Recently, Ogasawara et al. found that

the limited transplantable space in the spleen resulted in many cells

clustered together experiencing high pressure, which may inhibit

graft function (238). However, another animal study showed that

transplantation of BMSCs via intrasplenic injection rescued a large

proportion of 84.6% of FHF mice (23).

It is clear that intraportal injection can be chosen as the optimal

administration route for MSCs to treat liver failure. Another

possible reason for the excellent performance of portal vein

transplantation is that there is an adequate graft area, and the

graft can be widely distributed within the hepatic sinusoids and be

maintained in good condition (238).
8 Future challenges and perspectives

MSCs are recognized as a promising cell therapy for the

treatment of complications of liver transplantation, liver cancer,

cirrhosis and liver failure caused by HBV, HCV, alcohol, primary

biliary cholangitis and other infections (17, 18). Autologous bone

marrowMSCs are the predominant source of cells, but the aspiration

of bone marrow from patients themselves is still an invasive

procedure, and the therapeutic efficiency of bone marrow MSCs

can be limited by cellular senescence and differential proliferation and

differentiation capacity (239). Adipose-derived MSCs may be an

alternative source of cells in the future with the improvement of

complex isolation strategies, and umbilical cord-derived MSCs would

be a more desirable source of cells without the limitations mentioned

above (240). While embryonic stem cell-derived extracellular vesicles

have been verified to rejuvenate senescent MSCs and enhance their

therapeutic effects, the antisenescence mechanism may be associated

with the IGF1/PI3K/AKT pathway (241). MSC-derived extracellular

vesicles have also been explored as a cell-free therapy that can

effectively treat liver failure and avoid cell rejection (242–245).

The persistence time of MSCs for continued remission and

maintenance of liver function have no consistent conclusion in

various studies. Some clinical trials for acute-on-chronic liver failure

showed that the MSC group can significantly improve liver function at

24 weeks or 48 weeks of follow-up, as shown in Table 2, alleviate TBIL

levels and MELD scores, and decrease the mortality rate (247, 248,

251–253, 255). However, some studies have found that MSC

transplantation has no significant effect (249, 256, 257). These results

may be caused by the source of MSCs, quantity of MSCs, cell dosage,

treatment frequency, endpoints and small number of cohorts.

The quality of MSCs is a critical factor that needs to be

considered, as in many clinical trials, the characteristics of
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autologous BMSCs from patients of different ages and disease

states vary significantly; therefore, there is an urgent need to

establish uniform criteria for evaluating the quality of MSCs to

support autologous or allogeneic transplantation.

Although MSCs can improve liver function and effectively treat

liver failure in the short term and can be used as a cell source to

modulate cellular properties and improve the effectiveness of

bioartificial liver systems, their long-term efficacy in patients with

decompensated end-stage liver disease remains poor (246). Zhang Z

et al. first reported 45 patients with chronic hepatitis B decompensation

who received MSC transfusions at 0.5 x 106 cells/kg three times at 4-

week intervals. Clinical parameters were measured at 40 weekly follow-

ups, and the results demonstrated that MSC treatment markedly

reduced ascites and improved liver function in patients with

decompensated liver cirrhosis (248). Other similar research also

reported the effectiveness of multiple injections. Peripheral

intravenous infusion of MSCs at a dose of 0.5 x 106 cells/kg 3 times,

4 weeks apart for chronic hepatic failure and chronic hepatitis B liver

failure, effectively prolonged the overall survival time and improved the

biochemical liver index (247, 255, 258). A total of 0.5 x 107 cells were

injected via the hepatic artery twice in weeks 4 and 8 for alcoholic

cirrhosis disease, which improved the patients’ liver histological

features (259, 260). Multiple injections of MSCs may achieve long-

term therapy. The treatment interval of MSCs that can maintain liver

function is shown in Table 2, including every week for 4 weeks, twice in

the first and second weeks and once in the third week for a total of 5

times, every four weeks for a total of three times and only one infusion

(247, 252–255). However, no uniform guideline has been defined, and

there is an urgent need to address this issue through extensive animal

and clinical trials.

Current studies on MSC therapy have some limitations. MSCs are

a heterogeneous population that limits their consistent treatment

effects. Although Table 1 lists the special markers of MSCs, cell

subsets with specific biological functions have not been identified.

The MSC atlas is an urgent acquirement for screening special cell

subpopulations aimed at different diseases. The guidelines for isolating

and cultivating high-quality MSCs have not been uniformed. The

mechanisms of MSC therapy for acute liver failure are still poorly

understood. How does MSC migrate to the site of injury from spatial

distribution, and in what form does it treat hepatocyte failure and

regulate the immune microenvironment. Therefore, multi-omics

combinations, including spatial transcriptomics, single-cell

transcriptomics, proteomics, metabolomics, and bulk transcriptomics,

are an instant demand to generally clarify the mechanisms of MSC

therapy. Highly simulated mouse models of human acute liver failure

need to be constructed to better evaluate the efficacy of MSCs in

preclinical studies and provide more evidence-based medical evidence

for clinical trials. MSCs have been used in perioperative care for liver

transplantation and to improve immune rejection after liver

transplantation (10, 11). However, the persistence, frequency and

early initiation time of MSC treatment have no consistent

conclusion, which requires further validation in multi-central, large

sample, non-random cohorts. The comparison and combination of
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TABLE 2 Clinical trials of MSC therapy in acute liver disease.

Lver disease Cell type
Cell
dosage

Time of
treatment

Treatment
interval

Administration
route

Follow-
up time

Improvement of liver function
Adverse
event

Author

Acute-on-
chronic liver
failure

Autologous
BMSCs

(3.4 ±
3.8)
*10^8

1 /
Hepatic arterial
injection

192
weeks

Levels of ALB, TBIL, and PT and
MELD score were significantly
improved from 2-3 weeks after
transplantation in MSC group

No serious
side effects or
complications;

Liang Peng,
Zhi-liang Gao
et al. (246)

Acute-on-
chronic liver
failure

Allogenic
UMSCs

1*10^6/
kg

1 /
Intravenous
injection

24 week
or 72
weeks

1. The mortality rate was significantly
decreased (MSC group vs. control,
20.8% % v.s. 47.7% at 72 weeks of
follow-up
2. MSC therapy significantly reduced
MELD score, increased ALB,
cholinesterase, prothrombin activity
and platelet counts, decreased TBIL
ALT and AST level at 24-week of
follow-up

No significant
side effects

Ming Shi, Fu-
Sheng Wang
et al. (247)

hepatitis B
chronic with
decompensated
Liver cirrhosis

Allogenic
UMSCs

0.5*10^6/
kg

3
Every 4
weeks

Intravenous
injection

48
weeks

1. A significant reduction of volume of
ascites in MSC group
2. Liver function significantly improved
revealed by the increased of ALB level,
and the decreased TBIL level and
MELD score

No significant
side-effects
and
complications

Fu-Sheng Wang
et al. (248)

Decompensated
cirrhosis

Autologous
BMSCs

1.20-
2.95*10^8

1 / Peripheral vein
48
weeks

Child scores, MELD scores, ALB, INR,
ALT, AST and liver volumes have no
significant effect in MSC group at 48-
week of follow-up

Fever
Mehdi
Mohamadnejad
et al. (249)

HCV-related
decompensated
cirrhosis

Autologous
BMSCs

1*10^6/
kg

1 /
Intrahepatic
infusion

24
weeks

MSC therapy improved ALB within
the first 2 weeks and prothrombin
concentration and ALT after 1 month

No
Hosny Salama
et al. (250)

Hepatitis B
chronic plus
acute liver
failure

Plasma
exchange
and
Allogenic
UMSCs

1*10^8/
60 ml
saline

1 /
Hepatic arterial
injection

96
weeks

1. Cumulated survival rate at 24 weeks
was significantly improved (MSC
group vs. control, 54.5% % v.s. 26.5%)
2. The level of ALB, AST, ALT, TBIL,
PT, INR and MELD score significantly
improved at 24 weeks

No severe
adverse event

Yu-Hua Li et al.
(251)

Acute-on-
chronic liver
failure

Allogenic
UMSCs

(1.0-10)
*10^5/kg

4
Every 1
week

Intravenous
injection

24
weeks

1. Cumulated survival rate for follow-
up 24 weeks was significantly
improved (MSC group vs. control,
73.2% v.s. 55.6%)
2. The laboratory indexes, including
alanine aminotransferase (ALT) and
albumin (ALB) had significantly
improved in MSC group at week 1,
and MELD score dramatically
decreased at week1 and 2
3. The incidence of severe infection in
the MSC group was much lower

No infusion-
related side
effects, No
carcinoma
event, Fever

Bing-liang Lin
et al. (252)

Acute-on-
chronic liver
failure

Plasma
exchange
and
Allogenic
UMSCs

1*10^5/
kg

4
Every 1
week

Intravenous
injection

48
weeks

1. Rates of death and unfavourable
outcome were decreased without
significances.
2. TBIL, ALT, AST and MELD score
were significantly decreased during
treatments

Fever
Wen-xiong Xu
et al. (253)

Acute-on-
chronic liver
failure

Allogenic
BMSCs

1*10^6/
kg

5

Twice in the
first and
second
weeks, and
once in the
third week.

Intravenous
injection

12
weeks

1. Survival rate after 12-week follow-up
(MSC group vs. control, 25% vs. 20%)
2. MSC therapy significantly improved
Child–Pugh score (C-14 to B-9),
MELD score (32 to 22) and ACLF
grade (3 to 0)

No infusion-
related side
effects

Fernando
Comunello
Schacher et al.
(254)

Decompensated
liver cirrhosis

Allogenic
UMSCs

0.5*10^6/
kg

3
Every 4
weeks

Intravenous
injection

300
weeks

1. Follow-up period 13 to 75th months,
MSC group significantly prolonged
overall survival rate
2. Liver function (including ALB,
prothrombin activity, cholinesterase,
TBIL) markedly improved during 48
weeks of follow-up

No Significant
side effect; No
hepatocellular
carcinoma
event

Ming Shi et al.
(255)
F
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BMSCs, bone marrow mesenchymal stem cells; UMSCs, umbilical cord mesenchymal stem cells; ALB, albumin; TBIL, total bilirubin; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; MELD score, Model for End-stage Liver Disease score.
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MSC therapy and other strategies, such as xenotransplantation, is an

important direction for future studies.
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