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Background: Recurrent pregnancy loss defined as the occurrence of two or

more pregnancy losses before 20-24 weeks of gestation, is a prevalent and

significant pathological condition that impacts human reproductive health.

However, the underlying mechanism of RPL remains unclear. This study aimed

to investigate the biomarkers and molecular mechanisms associated with RPL

and explore novel treatment strategies for clinical applications.

Methods: The GEO database was utilized to retrieve the RPL gene expression

profile GSE165004. This profile underwent differential expression analysis,

WGCNA, functional enrichment, and subsequent analysis of RPL gene

expression using LASSO regression, SVM-RFE, and RandomForest algorithms

for hub gene screening. ANN model were constructed to assess the

performance of hub genes in the dataset. The expression of hub genes in both

the RPL and control group samples was validated using RT-qPCR. The immune

cell infiltration level of RPL was assessed using CIBERSORT. Additionally, pan-

cancer analysis was conducted using Sangerbox, and small-molecule drug

screening was performed using CMap.

Results: A total of 352 DEGs were identified, including 198 up-regulated genes

and 154 down-regulated genes. Enrichment analysis indicated that the DEGs

were primarily associated with Fc gamma R-mediated phagocytosis, the Fc

epsilon RI signaling pathway, and various metabolism-related pathways. The

turquoise module, which showed the highest relevance to clinical symptoms

based onWGCNA results, contained 104 DEGs. Three hub genes, WBP11, ACTR2,

and NCSTN, were identified using machine learning algorithms. ROC curves

demonstrated a strong diagnostic value when the three hub genes were

combined. RT-qPCR confirmed the low expression of WBP11 and ACTR2 in

RPL, whereas NCSTN exhibited high expression. The immune cell infiltration

analysis results indicated an imbalance of macrophages in RPL. Meanwhile, these
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three hub genes exhibited aberrant expression in multiple malignancies and were

associated with a poor prognosis. Furthermore, we identified several small-

molecule drugs.

Conclusion: This study identifies and validates hub genes in RPL, which may lead

to significant advancements in understanding the molecular mechanisms and

treatment strategies for this condition.
KEYWORDS

recurrent pregnancy loss, diagnostic biomarkers, machine learning, WGCNA, immune
cell infiltration
Introduction

Recurrent pregnancy loss (RPL) is defined as two or more

clinically confirmed pregnancy failures occurring before 20-24

weeks of gestation. It is a significant complication affecting around

2.5% of women during pregnancy (1). The exact etiology of RPL

remains unknown, although it is primarily believed to be associated

with uterine anatomical, genetic, and immunological abnormalities

(2). Recent studies have identified additional factors potentially linked

to RPL, including endometritis and genetic susceptibility to

embolism. Targeted treatments for specific etiologies, including

early pregnancy administration of aspirin, heparin, and other

medications, as well as surgical management of uterine anomalies,

have shown improved pregnancy outcomes for some RPL patients

(3). Nevertheless, approximately 50% of RPL cases have an unknown

etiology (4), and although clinical empirical treatment with

progesterone supplementation may benefit certain patients (5),

further randomized controlled trials are necessary to validate these
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findings. Therefore, investigating the diagnostic genes and

pathogenesis of recurrent pregnancy loss holds significant value.

With the rapid development of transcriptomics, bioinformatics

analysis based on gene expression profile data to explore signature

biomarkers has been widely performed (6, 7). The Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds) of the

National Center for Biotechnology Information (NCBI) provides

comprehensive expression profiles for a wide range of diseases,

enabling researchers to conduct diverse data analyses. Through

their analysis of the GEO dataset, Chen Y et al. identified Atp6v1g3

as a key gene associated with recurrent spontaneous abortion (8). In

another study, researchers conducted data analysis along with in vivo

and in vitro experiments and discovered that exosomal miR-205 can

induce angiogenesis in ovarian cancer through the PTEN-AKT

pathway, revealing a potential therapeutic target for the disease (9).

Seven genes closely associated with recurrent miscarriage were

screened and experimentally validated by Wei Peiru et al. using

single-cell sequencing technology combined with comprehensive

bioinformatics analysis, which may have potential value in

predicting this disease (10).

Weighted co-expression network analysis (WGCNA),

developed in 2008 by Peter Langfelder and Steve Horvath (11),

allows the identification of co-expressed gene modules and the

exploration of associations between gene networks and clinical

phenotypes based on gene expression. It is widely employed for

the discovery of disease biomarkers (12, 13). Machine learning, a

special class of algorithms that enable computers to learn from data

and make predictions autonomously, represents an emerging field

in medicine with the potential to significantly contribute to the

exploration of disease mechanisms and clinical diagnosis (14, 15).

Immune cell imbalance plays a significant role in the

pathogenesis of numerous diseases (16–18). The maternal-fetal

interface consists of various immune cells, including metaphase

natural killer cells, macrophages, T cells, dendritic cells, B cells, and

NKT cells (19). Immune imbalance is one of the etiologies leading

to recurrent spontaneous abortion. Therefore, conducting the

immune cell infiltration analysis can provide valuable insights

into the pathogenesis of RPL.

In this study, we utilized WGCNA and three machine learning

algorithms: LASSO, SVM-RFE, and Random Forest, to screen for
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diagnostic biomarkers of RPL. Subsequently, scoring models were

developed using artificial neural networks to assess their diagnosis

values. Through PCR experiments, we verified the abnormal mRNA

expression levels of hub genes in RPL. Moreover, CIBERSORT was

employed to determine the infiltration of immune cells in the RPL

and control groups, and the correlation between hub genes and

immune cells was explored. Additionally, pan-cancer analysis of the

hub gene was conducted based on the TCGA database, aiming to

explore the role of hub genes in RPL and various cancers. These

works are expected to provide novel insights into the study of RPL.
Materials and methods

Datasets and patient selection

The raw data of GSE165004 was downloaded from the GEO

database (20), based on the GPL16699 platform, including

endometrial samples from 24 patients with RPL, 24 patients with

unexplained infertility, and 24 healthy fertile women (controls). For

this study, we only included 24 RPL patients and 24 healthy fertile

women. Additionally, we downloaded GSE183555 (21), based on

the GPL21697 platform, which consisted of 5 cases each of RPL

patients and healthy fertile women, used as a validation dataset. The

detailed information of the dataset is presented in Table 1.

Decidua samples were collected from 20 women who

underwent selective termination of pregnancy and 20 women

with RPL at the Department of Obstetrics and Gynecology, the

First Affiliated Hospital of Guangxi Medical University, to verify the

expression of the hub gene in RPL. The study was conducted in

accordance with the principles outlined in the Declaration of

Helsinki and received ethical approval from the Research Ethics

Committee of the First Affiliated Hospital of Guangxi Medical

University (No. 2023-K057-01). The inclusion criteria for patients

were as follows: RPL group: 1. a history of two or more unexplained

pregnancy losses. 2. Absence of fetal heartbeat detected by

ultrasound between 6-8 weeks of gestation. Control group: 1.

Spontaneously conceived pregnancies with a duration of 6-8

weeks and voluntary termination for non-medical reasons; 2.No

history of spontaneous abortion or clinical signs of threatened

abortion. 3. Fetal cardiac activity is observed on ultrasound

within 3 days before pregnancy termination. Exclusion criteria: 1.

Abnormal embryonic chromosomal karyotype analysis; 2. Known

causes of miscarriage; 3. and patients with concurrent

medical conditions.

After induced abortion, decidua tissues were transferred to a

curved dish using forceps within 15 minutes. The tissues were

thoroughly rinsed with pre-cooled physiological saline to remove

surrounding blood clots. Approximately 3g of the sample was
Frontiers in Immunology 03
separated using a surgical knife and placed in Trizol (Takara,

Japan) for RT-PCR experiments . Another port ion of

approximately 10g was placed in a cryotube and stored in a liquid

nitrogen tank for subsequent experiments.

Patients who were enrolled in the study signed the relevant

informed consent before surgery, and the general baseline data of

patients in both groups are presented in Table 2.
Data preprocessing and differentially
expressed genes (DEGs) identificating

GSE165004, based on the Agilent-039494 SurePrint G3 Human

GE v2 8x60K microarray, was RMA background corrected,

normalized, and log2 transformed using the affy package (22) in

R. The results before and after standardization are presented in box

plots (Supplementary Figure 1). GSE183555 was downloaded from

the GEO database as a validation dataset.

Probe annotation was performed on standardized expression

profiles, excluding probes without matching gene symbols. For

genes with multiple probes, the average value was calculated as

their expression values. Differential expression analysis was

performed using the limma package (23) with screening criteria

of |log2 FC| > 0.585 and p-value < 0.05. Heat maps and volcano

plots were visualized using the “heatmap” and “ggplot2” packages.
Functional enrichment analysis

Gene Ontology (GO) term and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis of DEGs were

performed using the “clusterProfiler” package (24). Meanwhile,

c2.cp.kegg.v7.4.symbols.gmt was selected as the reference gene set,

and Gene Set Enrichment Analysis (GSEA) was also conducted. A

p-value of less than 0.05 was set as the criterion for

significant enrichment.
Co-expression network analysis and
module selection

The “WGCNA” package was used to construct a co-expression

network, which can associate gene networks with clinical features.

First, a scale-free co-expression network was constructed, followed

by the transformation of the matrix into an adjacency matrix and a

TOMmatrix. Then, the dissimilarity of the TOMmatrix (dissTOM)

was calculated and at least 60 genes were clustered into different

modules using a dynamic tree cutting algorithm. Eigengene was

calculated and the abline was set to 0.25 to merge similar modules
TABLE 1 Baseline characteristics of GEO datasets used in this study.

GSE series Platforms Type Sample size Timing of biopsy

GSE165004 GPL16699 mRNA 48 (24 RPL samples and 24 control samples) days 19-21 of the menstrual cycle

GSE183555 GPL21697 mRNA 10 (5 RPL samples and 5 control samples) days 21-23 of the menstrual cycle
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on the clustering tree. Finally, clinical information was integrated

with the modules to identify the most relevant modules to RPL

through Pearson correlation analysis.
Hub genes screening via machine learning

Three machine learning algorithms, LASSO, SVM-RFE, and

Random Forest, were used to analyze the DEGs of the most critical

modules in the WGCNA results to screen significant variables.

LASSO regression considers both the goodness of fit of regression

coefficients and the absolute magnitude of those coefficients for

effective feature selection. The “glmnet” package was used for

performing LASSO regression analysis (25). SVM-RFE is a

posterior term selection algorithm for sequences based on the

maximum interval principle of SVM, which is one of the most

widely used and superior feature selection algorithms. In this study,

SVM-RFE analysis was performed using “e1071”, “kernlab”, and

“caret” packages (26). The RandomForest algorithm integrates

numerous decision trees to form a forest, is employed for

predicting the final outcome. In this study, the RandomForest

analysis was conducted using “randomForest” packages. The

outputs of the three algorithms were intersected utilizing a Venn

diagram (27), and the common results were identified as hub genes.
The artificial neural network
prognostic model

Artificial neural networks (ANNs) can accurately construct

diagnostic models by simulating human brain information

processing patterns to correctly classify complex data (28). Using

the “neuralnet” and “NeuralNetTools” packages, the stable ANN

model was constructed by scoring the hub genes. The discriminative

ability of hub genes between experimental and control groups, as well

as the accuracy of ANN model in the test and validation sets, were

evaluated using receiver operating characteristic (ROC) curves.
Quantitative real time polymerase chain
reaction (RT-qPCR)

Total RNA was extracted from decidua tissues using Trizol

(Takara, Japan). RNA purity and concentration were determined

using NanoDrop 2000 (Thermo Fisher Scientific, USA). Genomic

DNA was removed using the Prime Script RT reagent kit (Takara,
Frontiers in Immunology 04
Japan). Subsequently, RNA was reverse transcribed into cDNA. The

PCR reaction was performed using the SYBR Green Master Mix kit

(Qiagen, Germany) with cDNA as the template and human b-actin
(H-ACTB) as the internal reference. The primers were designed and

synthesized by Sangon Biotech Co., Ltd(China), and the primer

sequences are shown in Table 3. Before conducting experiments,

primer specificity was assessed using NCBI’s Primer-BLAST to

exclude potential non-specific matches. Meanwhile, during qPCR,

primer specificity was ensured by observing the melting curves of

the reactions. The relative expression of hub gene mRNA was

calculated using the 2-DDCT method. The experiment was

conducted with at least three biological and three technical

replicates. In each replicate well of the sample, a difference in CT

values within 0.5 is considered eligible for analysis.
Immune cell infiltration analysis

Since its first publication in Nature Methods in 2015,

CIBERSORT has been utilized for estimating the abundance of

immune cell types using gene expression data (29). Using the

CIBERSORT package and LM22, an official background file of

cellular gene sets, we calculated the proportions of 22 immune cell

types in RPL and displayed them in a bar chart. Differences in

immune cells between RPL and controls were visualized using the

“vioplot” package. The “corrplot” package was used to create a

heatmap depicting the correlation of immune cells. Additionally, we

analyzed the correlation of hub genes with immune cells.
Pan-cancer analysis

The normalized pan-cancer datasets, including TCGA,

TARGET and GTEx, were obtained from the UCSC database

(https://xenabrowser.net/) via the Sangerbox website (30). The

expression data of the hub genes in each sample were extracted,

and the expression values were log2(x+0.001) transformed.

Differential analysis was conducted using unpaired Wilcoxon

tests. The Cox proportional hazards regression model was
TABLE 3 The primers of hub genes and b-Actin.

Gene
name

Primer
orientation

Sequences

ACTR2 Forward GGCAGTTCTGACTTTGTACGC

ACTR2 Reverse CCAGTCTCCTGGTAAGATGAGG

WBP11 Forward CCAGTGCAACAGCCACAATTA

WBP11 Reverse ACGTTCAAAGGTTTCACGCAG

NCSTN Forward AATGTGAGCTATCCCGAATG

NCSTN Reverse GCGATGTAATGTTGAAGAGGC

b-Actin Forward TGCCACCCAGCACAATGAA

b-Actin Reverse CTAAGTCATAGTCCGCCTAGAAGCA
TABLE 2 General baseline data of patients.

Control(n=20) RPL group(n=20) p

Age(years) 33.85 ± 4.320 34.50 ± 4.65 0.65

Gestational
Weeks(weeks)

7.72 ± 0.99 7.54 ± 0.85 0.53

BMI(kg/m2) 21.76 ± 3.51 21.66 ± 2.79 0.92
*BMI, body mass index.
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constructed using the survival package to analyze the relationship

between gene expression and prognosis in each tumor (31). The

Logrank test was used for the comparison of prognostic

significance. Additionally, we assessed the association between

hub genes and overall survival (OS) in pan-cancer using Kaplan-

Meier plots.
Potential drug prediction

The Connectivity Map(CMap) (https://clue.io) is a database for

studying the correlation between gene expression and small

molecule drugs, which can help researchers to screen for highly

relevant drugs for diseases. We uploaded the list of DEGs of RPL to

the CMap database and selected the “Latest” version for analysis. In

the results, compounds with negative scores may potentially

contribute to the treatment of the disease, and we screened

compounds with norm_cs < -1.50 as potential drugs for

RPL treatment.
Statistical analysis

Statistical analysis of this study was based on R software

(version 4.3.0). The “ggplot2” and “ggpubr” packages were

utilized for data visualization. The normality of the data was

assessed using the Shapiro-Wilk test, and for normally distributed

continuous variables, such as patient age, gestational weeks, and

body mass index (BMI), analysis was performed using the Student’s

t-test. The Wilcoxon test was employed to compare the mRNA
Frontiers in Immunology 05
expression levels(Non-normally distributed variables) of individual

genes between the RPL and control groups. The “pROC” was

employed to evaluate the efficacy of the hub genes and ANN

model. A p-value less than 0.05 was considered indicative of

statistical significance in all statistical analyses.
Results

Identification of DEGs in RPL and
functional enrichment analysis

The study design is shown in Figure 1. After data processing of

GSE165004 (Supplementary Figures 1A, B), differential expression

analysis was performed and a total of 198 up-regulated genes and

154 down-regulated genes were obtained. The results were

presented in volcano plot (Figure 2A) and heatmaps (Figure 2B).

To understand the functions and potential pathways involved in

these DEGs, functional enrichment analysis was conducted. The

results of GO analysis showed that in biological processes, these

genes are mainly involved in alcohol metabolic process,

homeostasis of cell number, and regulation of plasma. In terms of

cell component, these genes are mainly enriched in collagen-

containing extracellular matrix, lipid droplet, and brush border.

As for molecular function, these genes were mainly enriched in

extracellular matrix structural constituent, carboxylic ester

hydrolase activity, and adenylyltransferase activity (Figure 2C).

KEGG results revealed that DEGs are mainly involved in Fc

gamma R-mediated phagocytosis, Fc epsilon RI signaling pathway,

and various metabolic pathways (alpha-Linolenic acid metabolism,
FIGURE 1

Flowchart of study design.
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Linoleic acid metabolism, Glycerophospholipid metabolism, Purine

metabolism) (Figure 2D).

The chord diagram illustrated the intricate mapping

relationships between genes and pathways. Notably, the KEGG

pathway associated with JMJD7-PLA2G4B showed the highest

abundance (Figure 2E), suggesting it may play a key role in

bridging different pathways. GSEA results exhibited that the

pathways significantly enriched in RPL were Purine metabolism,

Glycerophospholipid metabolism, Adipocytokine signaling

pathway, Peroxisome, and Pteroid hormone biosynthesis

(Figure 2F). These findings indicate that metabolic pathway

disorders may have a close relationship with RPL pathogenesis.
Frontiers in Immunology 06
WGCNA results

We selected a total of 20,552 genes from GSE165004 for WGCNA

and drew a sample dendrogram and trait heat map (Figure 3A). b=13
(R2 = 0.82) was selected as a suitable soft threshold for the construction

of the scale-free network (Figures 3B, C). Modules were hierarchically

clustered based on the TOM matrix and similar modules on the

clustering tree were merged (Figure 3D). Twenty co-expression

modules were obtained and Figure 3E showed the correlation of

these modules with clinical information. The results showed that the

turquoise module was most closely related to RPL (r=-0.42, p=0.003)

and contained a total of 1,990 genes.
A B

D

E F

C

FIGURE 2

Analysis of DEGs in RPL patients and healthy controls. (A) Volcano plot of DEGs. The red dots represent the up-regulated genes and the green dots
represent the downregulated genes, while gray dots represent nonsignificant genes. (B) Heat map of the top 100 differentially expressed genes. (C) GO
enrichment analysis. (BP, biological process; CC, cellular component; MF, molecular function). (D) KEGG pathway enrichment analysis. (E) Main KEGG
pathways and related genes. (F) GSEA results in the RPL group.
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Identification of hub biomarkers

A total of 104 DEGs were included in the turquoise module,

with 64 up-regulated and 40 down-regulated. Machine learning

algorithms were employed to identify hub genes from the pool of

104 DEGs. In the LASSO regression analysis, the optimal lambda

value of 0.0197 was determined after ten cross-validations and three

hub genes(WBP11, ACTR2 and NCSTN) were extracted

(Figures 4A, B). In the SVM-RFE, the classifier error was

minimized when the number of features was 6, and WBP11,

SUGT1, CISD2, ACTR2, C2orf69 and NCSTN were screened as

hub features (Figures 4C, D). Random forest results identified seven

genes with importance scores >1.0 as potential diagnostic

biomarkers for RPL: WBP11, ACTR2, SUGT1, NCSTN, C2orf69

CISD2, and DHX33 (Figures 4E, F). In total, three biomarkers

overlapped between these three algorithms (ACTR2, NCSTN, and
Frontiers in Immunology 07
WBP11) (Figure 4G). Artificial neural network models were

constructed basing on the three hub genes (Figure 4H).
Diagnostic efficacy of hub biomarkers and
ANN model

The diagnostic efficacy of the 3 hub genes was evaluated using

ROC curves. As shown in Figure 5, the area under the curve (AUC)

values of the ROC curves for WBP11 were 1.00 and 0.60 in the test

set GSE165004 and validation set GSE183555 (Figure 5A). The

AUC values for ACTR2 were 0.99 and 0.60 (Figure 5B), and for

NCSTN were 0.99 and 0.52 (Figure 5C).

The ROC results showed that the ANN model could effectively

discriminate between RPL and controls, with an AUC value of 1.00

for the ROC curves for the test set GSE165004 and an AUC value of
A B

D E

C

FIGURE 3

WGCNA co–expression network. (A) Sample clustering dendrogram of 48 samples of GSE165004. (B) The scale-free fit index for various soft-
thresholding powers (b) and the mean connectivity for various soft-thresholding powers. (C) Histogram of connectivity distribution and the scale-
free topology when b=13. (D) Dendrogram of genes clustered via the dissimilarity measure (1-TOM). (E) Heatmap of the correlation between genes
and clinical traits.
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0.74 for the validation set GSE183555 (Figure 5D). These findings

suggest that the combined use of the three biomarkers contributed

to higher diagnostic accuracy.
Verification of hub biomarkers

To verify the mRNA and protein expression of the hub gene,

decidua samples were collected from 20 control patients and 20 RPL

patients. RT-qPCR results showed that the relative expression of

WBP11 mRNA in the RPL group was lower than that in the control

group (Figure 6A). The relative expression of ACTR2 mRNA was

also lower than that of the control group, while the relative

expression of NCSTN mRNA was higher than that of the control

group (Figures 6B, C).
Immune cell infiltration results

We further investigated immune cell infiltration in RPL and

control groups using CIBERSORT (Figure 7A). The infiltration

levels of M1 and M2 macrophages were significantly lower in the

RPL group compared to the control group (Figure 7B). Notably, the

infiltration of both CD4 naïve T cells and activated mast cells were

not detected in the results. Correlation analysis revealed a strong
Frontiers in Immunology 08
positive correlation between Eosinophils and resting mast cells

(r=0.74), while M0 macrophages exhibited a negative correlation

with M2 macrophages (r=-0.59) (Figure 7C).

The relationship between the three hub genes and immune cells

was further investigated using Spearman correlation analysis. The

results suggested that WBP11 had a positive correlation with M2

Macrophages, while it showed a negative correlation with follicular

helper T cells, activated NK cells and regulatory T cells (Tregs)

(Figures 8A, D–G). ACTR2 was positively correlated with M1

Macrophages (Figures 8B, H). NCSTN exhibited a positive

correlation with CD8 T cells and Tregs, and a negative

correlation with activated Dendritic cells and M2 Macrophages

(Figures 8C, I–M).
Pan-cancer analysis results of
hub biomarker

Expression data of three hub genes were extracted from various

samples and analyzed. WBP11 was found to be significantly

upregulated in 24 tumor types (GBM, GBMLGG, LGG, BRCA,

CESC, ESCA, STES, COAD, COADREAD, PRAD, STAD, HNSC,

LUSC, LIHC, WT, SKCM, OV, PAAD, TGCT, UCS, ALL, LAML,

ACC, and CHOL), and significantly downregulated in LUAD,

KIRP, and THCA (Figure 9A). The OS analysis (Figure 9B), using
A B

D

E
F

G

H

C

FIGURE 4

Screening diagnostic biomarkers based on machine learning. (A, B) The variables selection in LASSO model(n=3). (C, D) Optimal biomarkers screening by
SVF-RFE algorithm(n=6). (E, F) Significant feature selected via the random forest algorithm(n=7). (G) Venn diagram of overlapping genes in three algorithm.
(H) Schematic presentation of the ANN model.
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Cox regression, showed high expression of WBP11 in LAML and

LUAD was associated with poor prognosis, while low expression of

it in KIRC and READ was associated with poor prognosis

(Figures 9C–F).

ACTR2 exhibited high expression in 28 tumor types (GBM,

GBMLGG, LGG, UCEC, BRCA, CESC, LUAD, ESCA, STES,

KIPAN, COAD, COADREAD, PRAD, STAD, HNSC, KIRC,

LUSC, LIHC, WT, SKCM, BLCA, THCA, OV, PAAD, TGCT,

UCS, LAML, CHOL), while low expression was observed in KIRP

and KICH (Supplementary Figure 2A). In GBMLGG, LGG, LAML,

CESC, LUAD, KIRP, KIPAN, LIHC, MESO, PAAD, LAML, and

ACC, ACTR2 acted as a risk factor, while it acted as a protective

factor in KIRC and NB (Supplementary Figures 2B–F).

NCSTN gene expression was upregulated in 30 tumor types,

including GBM, GBMLGG, LGG, UCEC, BRCA, CESC, LUAD,

ESCA, STES, COAD, COADREAD, PRAD, STAD, HNSC, KIRC,

LUSC, LIHC, WT, SKCM, BLCA, THCA, OV, PAAD, TGCT, UCS,

ALL, LAML, PCPG, ACC, and CHOL, while it was significantly

downregulated in KICH (Supplementary Figure 3A). In the

prognosis analysis, high expression of NCSTN was associated

with poor overall survival in 12 cancers, including GBMLGG,
Frontiers in Immunology 09
LGG, LAML, CESC, LUAD, KIRP, KIPAN, GBM, LIHC, UVM,

LAML, and PCPG, while it showed opposite results in OV

(Supplementary Figures 3B–F).
Small-molecule drugs related to RPL

Using CMap, we investigated small molecule drugs associated

with RPL and identified a total of 17 compounds. Table 4 displays

the top 10 drugs with the highest correlation to RPL. Notably,

guanaben-acetate and adoprazine exhibited a strong negative

correlation with RPL, indicating their potential value in treating

this condition.
Discussion

Recurrent pregnancy loss (RPL) is a distressing disorder that

results in significant physical and psychological harm to

approximately 5% of women in the reproductive age group (32).

Despite the continuous efforts of researchers in working on RPL
A B

DC

FIGURE 5

(A–D) ROC of individual hub gene(WBP11, ACTR2, and NCSTN) and ANN model, the curve is optimized using the smooth() function.
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A B C

FIGURE 6

The mRNA expression validation between normal and RPL tissues by RT-qPCR. (A) WBP11; (B) ACTR2; (C) NCSTN.
A

B

C

FIGURE 7

Landscape of 22 different immune cell infiltration in RPL. (A) Relative proportions of immune cell infiltration. (B) The diagram of the difference in
immune cell infiltration proportion between the RPL and control groups. (C) The correlation heatmap among immune cell populations, blue and red
indicate positive and negative correlation, respectively.
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(33, 34), the etiology remains unexplained in nearly half of the cases,

and only empirical treatment options are available (3). Sporadic

miscarriage has been described as a distinct disease, primarily

characterized by the inability of abnormal embryos to progress to

a viable state (35).

In recent years, new ideas have suggested that the decidual acts

as a biosensor for embryonic quality, and the disruption of decidual

may predispose to miscarriage. These novel insights into the

underlying mechanisms of miscarriage provide new opportunities

for effective interventions in cases of recurrent pregnancy loss (36).

Currently, the absence of reliable biomarkers hinders early

diagnosis of RPL, which further results in poor clinical outcomes.

Consequently, exploring diagnostic biomarkers for RPL is crucial

for effective prevention and treatment.

In this study, we performed differential expression analysis on

GSE165004 and obtained 352 differential genes. The KEGG analysis

revealed the predominant involvement of DEGs in Fc gamma R-

mediated phagocytosis, the Fc epsilon RI signaling pathway, and

several metabolic pathways. Fc gamma receptors (FcgR) belong to a
class of cell surface receptors that bind to the Fc terminus of

antibodies, generating signals in cells primarily through their

ITAM activation sequence (37). These receptors participate in

various immune system actions, including phagocytosis, release of

inflammatory mediators, and cytotoxicity in antibody-dependent

cells (38, 39). Fc epsilon RI can regulate mast cell and basophil
Frontiers in Immunology 11
activation and is involved in IgE-mediated antigen presentation

(40, 41).

Furthermore, KEGG and GSEA results indicated metabolic

pathways, including Purine metabolism and Glycerophospholipid

metabolism, demonstrated a significant correlation with RPL. It can

be speculated that immune regulation and metabolic pathway

abnormalities may exist in RPL, consistent with previous studies

on RPL (32, 42).

Subsequently, WGCNA analysis was conducted, and the

turquoise module, which contained 104 DEGs, showed the

strongest association with RPL. Three biomarkers of RPL

(WBP11, ACTR2, NCSTN) were screened using LASSO, SVM-

RFE, and random forest. The findings were validated using RT-

qPCR in clinical tissue samples. The experimental results were

consistent with the findings of data analysis, in which the expression

of WBP11 and ACTR2 were down-regulated, while the expression

of NCSTN showed up-regulation in RPL tissues.

The predictive capability of hub genes in relation to RPL was

assessed using ROC curves. The AUCs of the ROC curves, based on

ANN model constructed with the three hub genes, were 1.00 and

0.74 in the test set GSE165004 and validation set GSE183555,

indicating their strong diagnostic efficacy. We speculated that the

limited sample size in the validation set might impact the accuracy

of the ANN model. This highlights the necessity to increase the

sample size for future studies.
A B
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FIGURE 8

The lollipop chart showed the relationships between RPL-related hub genes and immune cell infiltration. (A, D–G) WBP11; (B, H) ACTR2; (C, I–M) NCSTN.
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FIGURE 9

(A) Pan–cancer expression levels of WBP11 in the TCGA and GTEx datasets. (B) The correlation between WBP11 expression and OS in various tumors
using Cox regression model analysis. (C–F) The K-M plot of WBP11 expression and several tumors, LUAD, LAML, KIRC, and READ, respectively.
-: p>0.05; *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.
TABLE 4 The top10 potential drugs of RPL screening by the CMAP database.

pert_id pert_iname moa norm_cs

K62736196 guanaben-acetate Adrenergic receptor agonist -1.6975

K34870043 adoprazine Dopamine receptor -1.6239

K42728290 NVP-BGJ398 FGFR inhibitor -1.5986

K47761761 PD-168077 Dopamine receptor agonist -1.5944

A59808129 guggulsterone Estrogen receptor agonist -1.5756

K62996583 lidoflazine Calcium channel blocker -1.5443

K52751261 TAK-715 P38 MAPK inhibitor -1.5334

A75455249 kavain Calcium channel blocker -1.5302

K58114536 rasagiline Monoamine oxidase inhibitor -1.5257

K87737963 CYT-387 JAK inhibitor -1.5207
F
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WW structural domain binding protein 11(WBP11), is a

nuclear protein that has been linked to various congenital

developmental abnormalities and plays a crucial role in

embryonic development (43). Additionally, Lina Wang et al. (44)

demonstrated the significant impact of WBP11 on the proliferation

and migration of gastric cancer cells. In our study, the expression of

WBP11 was downregulated in RPL and could be used as a

diagnostic marker for RPL.

ACTR2, also known as ARP2, encodes a protein that is a major

component of the ARP2/3 complex, which promotes actin

polymerization in the nucleus and thus regulates gene

transcription and DNA damage repair (45). ACTR2 is highly

expressed in hepatocellular carcinoma and diffuse large B-cell

lymphoma and is associated with poor prognosis (46, 47).

Additionally, ACTR2 has been reported as a diagnostic marker

for primary thrombocythemia.

NCSTN is a protein-coding gene that encodes a transmembrane

glycoprotein within the multiprotein g-secretase complex.

Mutations in this gene are ass ociated with familial hidradenitis

suppurativa (48). NCSTN can affect the Notch1 and AKT signaling

pathways and is involved in the development of hepatocellular

carcinoma (49).

In the study by Peiru Wei et al. (10), macrophage-related genes

were screened using single-cell sequencing, followed by

bioinformatics analysis to identify diagnostic genes for RM. In

contrast, in our study, genes in the most important modules related

to RPL were screened by analyzing GSE165004 with WGCNA, and

hub biomarkers were identified using multiple machine-learning

algorithms. Furthermore, in the immune cell infiltration analysis,

we observed a difference in the proportion of macrophages between

RPL and controls as well. Our study and that of Peiru Wei are

distinct yet share similarities, both studies’ results indicate that

ACTR2 and NCSTN can serve as diagnostic markers for RPL. This

finding further confirms the potential diagnostic value of these two

genes in RPL. Possibly due to different screening criteria and

analytical methods, both of us screened and validated other

biomarkers as well. In conclusion, the value of these hub genes in

RPL requires more experimental exploration.

Several studies have indicated that RPL may result from the

disruption of maternal-fetal immune tolerance (50). Paternal

antigens and even antigens from the gamete donor can be

expressed by the fetus, and the maternal immune system’s

response to fetal antigens may be implicated in the pathogenesis

of certain RPL cases (51). Abnormalities in NK cells, T cells, B cells,

and macrophages have been observed in the uterine endometrium

of patients with recurrent miscarriage (52, 53).

Macrophages constitute the second largest population of

immune cells, yet their role during pregnancy remains poorly

understood. M1 and M2 macrophages are involved in vascular

formation and immune suppression at the maternal-fetal interface

(54). Macrophages in the decidual layer during pregnancy serve to

protect the embryo from phagocytosis and infection (55).

Abnormal recruitment and differentiation of macrophages are

closely associated with RPL (56). Decidual macrophages play a
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crucial role in the process of pregnancy, and their dysfunction can

lead to the occurrence of RPL (57). Zhao et al. (58) analyzed RPL

dataset and macrophage polarization dataset, with a specific focus

on URSA-associated macrophage markers and intercellular

communication mechanisms. They further explored the

correlation between macrophage polarization and URSA. The hub

genes obtained in their study showed some discrepancies with our

results, which could be attributed to different focus within the

WGCNA. We focused on modules associated with RPL, while Zhao

et al. placed more emphasis on genes related to macrophage

polarization. In this study, CIBERSORT analysis was used to

investigate immune cell infiltration in RPL, revealing low levels of

infiltration by both M1 macrophages and M2 macrophages in RPL

patients (Figure 8A). We further analyzed the correlation between

hub genes and immune cells in RPL and found that three hub genes

were associated with macrophages. This indicates a potential

association between abnormal expression of hub genes and

dysfunction of immune cell infiltration in RPL. In future research,

it is essential to investigate the potential co-expression of hub genes

between these two studies and design experiments to explore the

regulatory relationship of hub genes with macrophages during

recurrent miscarriage.

In the pan-cancer analysis, abnormal expression of three hub

genes has been observed in multiple malignant tumors, and their

expression is closely associated with overall survival in several

cancers. This suggests that these hub genes play crucial roles in

various biological processes, and conducting further research on

them would contribute to a better understanding of disease

occurrence and progression. Moreover, we successfully screened

several small molecule drugs using the Cmap database, and these

compounds showed a strong negative correlation with the DEGs of

RPL. This finding suggests that these drugs may have significant

therapeutic value for the future treatment of RPL.

In this study, we conducted various advanced bioinformatics

methods and performed experiments, and finally identified three

diagnostic biomarkers for RPL. This finding may be of potential value

in the diagnosis and further research of RPL. However, the limited

number of cases in both the GEO dataset and the experimental

validation could amplify individual variations and introduce potential

biases in the results. Therefore, subsequent research should focus on

validating the findings in larger cohorts to enhance the

generalizability of the research outcomes. Additionally, additional

cell-based and animal experiments should be designed to further

validate the biological functions of the hub genes.
Conclusion

In conclusion, WBP11, ACTR2, and NCSTN were identified as

diagnostic biomarkers of RPL, and these three hub genes are closely

associated with various malignancies. Meanwhile, there is an

imbalance in immune cell infiltration in RPL. Our study provides

new insights into the mechanisms underlying RPL and the potential

development of therapeutic targets for this condition.
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