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Introduction: Intrathymic T-cell development is a coordinated process

accompanied by dynamic changes in gene expression. Although the

transcriptome characteristics of developing T cells in both human fetal and

postnatal thymus at single-cell resolution have been revealed recently, the

differences between human prenatal and postnatal thymocytes regarding the

ontogeny and early events of T-cell development still remain obscure. Moreover,

the transcriptional heterogeneity and posttranscriptional gene expression regulation

such as alternative polyadenylation at different stages are also unknown.

Method: In this study, we performed integrative single-cell analyses of

thymocytes at distinct developmental stages.

Results: The subsets of prenatal CD4–CD8– double-negative (DN) cells, the most

immature thymocytes responsible for T-cell lineage commitment, were

characterized. By comprehensively comparing prenatal and postnatal DN cells, we

revealed significant differences in some key gene expressions. Specifically, prenatal

DN subpopulations exhibited distinct biological processes and markedly activated

several metabolic programs that may be coordinated to meet the required

bioenergetic demands. Although showing similar gene expression patterns along

the developmental path, prenatal and postnatal thymocytes were remarkably varied

regarding the expression dynamics of some pivotal genes for cell cycle, metabolism,

signaling pathway, thymus homing, and T-cell commitment. Finally, we quantified

the transcriptome-wide changes in alternative polyadenylation across T-cell

development and found diverse preferences of polyadenylation site usage in

divergent populations along the T-cell commitment trajectory.

Discussion: In summary, our results revealed transcriptional heterogeneity and a

dynamic landscape of alternative polyadenylation during T-cell development in

both human prenatal and postnatal thymus, providing a comprehensive resource

for understanding T lymphopoiesis in human thymus.

KEYWORDS

human thymus, scRNA-seq, T cell development, double-negative thymocytes,
alternative polyadenylation
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Introduction

While commitment to most blood cell lineages occurs primarily

in the bone marrow and/or spleen, T lineage commitment depends

on the specific microenvironment of the thymus. In humans, T-cell

development is initiated by settling of thymus-seeding progenitors

(TSPs) from fetal liver as early as gestational week 7 (1). From

gestational week 22 onward, TSPs from the bone marrow become

the source of thymic immigrants (2). These TSPs then develop into

early thymic progenitors (ETPs) and undergo a strict T-cell

commitment process. Uncommitted ETPs have multilineage (e.g.,

myeloid cell, dendritic cell, natural killer cell, B lymphocyte, and

erythrocyte, in addition to T lymphocyte) potential, and

commitment to the T-cell fate is in concert with loss of potential

for other lineages (3, 4). From here onward, committed thymocytes

begin to rearrange their T-cell receptor (TCR) mediated by RAG

proteins and finally differentiate into either ab T cells or gd T cells

(5). Similar to mice, human ab T thymocyte development processes

through a series of coordinated and successive stages that can be

characterized based on specific surface receptor expression, starting

from CD4–CD8– double-negative (DN) thymocytes, followed by

CD4+CD8– immature single-positive (ISP) and CD4+CD8+ double-

positive (DP) populations, culminating with CD4+CD8– or CD4–

CD8+ single-positive (SP) cells. The most immature thymocytes are

DN cells and can be subdivided into three populations (DN1–DN3)

characterized by the expression of CD34, CD38, and CD1a in the

postnatal thymus (6). DN1 cells express CD34 but lack CD1a and

CD38 expression. Transition from DN1 to DN2 stage is

accompanied by the upregulation of CD38, following by

differentiation of DN3 cells expressing CD34 and CD38 as well

as CD1a.

Although considerable advances have been made toward

understanding human T-cell development, several major

questions remain obscure regarding the heterogeneity and

molecular mechanisms underlying the fate bifurcation of certain

T progenitors. Several laboratories have largely resolved these long-

standing questions by using single-cell RNA sequencing (scRNA-

seq) technologies to study human T-cell development in both the

developing fetus and postnatal thymus (7–13). Our group first

revealed thymus organogenesis, early T lymphopoiesis, and their

pre-thymic lymphoid progenitors in the early human fetus at

single-cell resolution (7, 14). Following studies further

transcriptomically characterized the TSPs and revealed T lineage

specification, commitment, and subsequent differentiation in both

the prenatal and postnatal thymus (8, 10, 11). A recent work

profiled the complete thymocyte populations in postnatal

samples, especially the three CD4–CD8– DN subsets and

identified three distinct TSP subpopulations as well as revealed T-

cell lineage commitment and divergence of non-T-cell lineages (12).

Despite that the characteristics of immature DN subsets have been

characterized in the human postnatal thymus (11, 12), less is known

regarding the nature of distinct DN subpopulations and cell fate

decision (T lineage versus non-T lineage) during DN stages of T-cell

development in human fetus. Furthermore, mouse studies have well

documented that fetal and adult DN cells (including ETP) are not
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equivalent, reflecting the origin of ETP (HSC-dependent or HSC-

independent), thymic outputs, differentiation speed, and gene

expression transition (15, 16), so whether these differences

existing between prenatal and postnatal human thymocytes are

also worth to be addressed.

Alternative polyadenylation (APA) is an RNA-processing

mechanism that generates a diversity of mRNA isoforms through

differential usage of distinct polyadenylation sites (17). APA has been

observed in over 70% of mammalian mRNA-encoding genes and

occurs most frequently in the 3’ untranslated region (3’ UTR) of

mRNAs (18–20). Alternative 3’ UTR isoforms interact with RNA-

binding proteins and/or microRNA to modulate posttranscriptional

regulatory mechanism by affecting mRNA stability, translation, nuclear

export and localization, and protein localization (17, 21). Here, 3’ end

sequencing or bulk RNA-seq has revealed the global landscape of APA

in all eukaryotes, and APA is dynamically regulated in a tissue- and/or

cell type-specific manner (22–25). With the advance of scRNA-seq

technology, the single-cell landscape of APA events in various tissues,

biological processes, and diseases has been extensively exploited (26–

29), contributing to the understanding of dynamic gene expression

regulation at greater cell type and isoform resolution. However, to date,

the cell-to-cell heterogeneity in APA usage and APA dynamics across

human T-cell development is still unexplored.

To explore the cellular heterogeneity in the developing and

functionally mature thymus, we constructed an integrative

transcriptomic atlas of human thymocytes involving both prenatal

and postnatal stages. Specifically, we disclosed the following aspects:

1) characterizing the prenatal DN subpopulations transcriptomically;

2) revealing the transcriptional differences between prenatal and

postnatal DN cells regarding key gene expressions, enriched GO

terms, and metabolic programs; and 3) illustrating the different

preferences of polyadenylation site usage in prenatal and postnatal

thymocytes at single-cell resolution.
Results

Integrated single-cell transcriptomics of
human thymocytes

To comprehensively understand the transcriptomic landscape

of whole development stages/events of human thymic T cells in

both prenatal and postnatal thymus, we performed integrative

analysis of several published scRNA-seq datasets (7–12) of the

human thymus, ranging from 7 postconception weeks (PCW) to 16

PCW (prenatal) and 9 days to 5 years (postnatal) (Figure 1A,

Supplementary Table S1). A total of 187,842 cells from developing

and postnatal thymus were pooled together for downstream

analysis. A two-dimensional uniform manifold approximation

and projection (UMAP) was then used to visualize the global

transcriptional changes in the thymus. Using CellTypist (30) with

built-in models, 14 cell clusters were readily annotated according to

the expression of specific marker genes. Differentiating T cells were

well represented in both prenatal and postnatal datasets, including

ETP, DN, DP, and CD4/CD8 T cells (Figures 1B–G).
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Characterization of human prenatal DN
subpopulations in silico

A recent study has reported the transcriptional characteristics of

distinct DN subpopulations in human postnatal thymus (12), whereas

the cellular heterogeneity of prenatal DN cells has not been well

deciphered. To identify DN subpopulations within the context of the

developing thymus, we next fetched all integrated DN cells for further

analysis. A total of 24,467 prenatal cells and 71,720 postnatal cells were

included. After cell cycle regression and dimensionality reduction, these

cells were further divided into six subclusters and annotated as Non_T,

ETP, T_C1, T_C2, T_C3, and T_C4 (Figures 2A, B). The Non_T

cluster was identified by the high expression of plasmacytoid DC

marker IRF8 and myeloid markerMPO. ETP was characterized based
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on the expression of hematopoietic progenitor genes CD34,HOPX, and

HOXA9 and alternative lineage genes (IRF8, SPI1). Of note,HOPX and

HOXA9were specifically highly expressed only in ETP but not adjacent

Non_T or T_C1 clusters. The T_C1 cluster still retained stem/

progenitor features (CD34, SPINK2) and alternative lineage potential

(MPO, SPI1). The T_C2 cluster showed declined expression of genes

for stem/progenitor cells and alternative lineage cells and started to

express some T lineage genes at a low level. The T_C3 cluster further

downregulated the expression of stem/progenitor genes and

upregulated the expression of TCR rearrangement genes (RAG1,

RAG2, and PTCRA). The T_C4 cluster showed the highest

expression of TCR rearrangement genes, T-cell lineage genes (TCF7,

BCL11B), and CD4 and CD8A, suggesting that T-cell lineage

specification and commitment progressed (Figures 2C–E). The
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FIGURE 1

Integrative analysis of human thymocytes. (A) Summary of gestational stage/age of samples from six published datasets. Each symbol (circle or triangle)
denotes an individual time point, while the bar represents the corresponding time frame. (B) Visualization of uniform manifold approximation and
projection (UMAP) for cellular composition of human thymus colored by cell type (ETP, early thymic progenitor; DN, double-negative T cell; DP, double-
positive T cell; ILC, innate lymphoid cell; Mye, myeloid cell; Mac, macrophage; Ery, erythrocyte; Mk, megakaryocyte; Plt, platelet; Epi, epithelial cell;
Endo, endothelial cell; Fb, fibroblast). (C) Visualization of UMAP for cellular composition of human thymus colored by prenatal and postnatal group. (D)
Visualization of UMAP for cellular composition of human prenatal thymus colored by postconception weeks (PCW). (E) Visualization of UMAP for cellular
composition of human postnatal thymus colored by different age groups. (F) Visualization of UMAP for cellular composition of human postnatal thymus
colored by immunophenotypic subsets. The dataset was derived from Cordes et al. (12). (G) Dot plot showing feature gene expression in each cell
cluster.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1240859
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2023.1240859
pattern of sequential expression of signature genes in prenatal and

postnatal clusters was almost identical (Figure 2E). Nevertheless, the

expression of some key T-cell genes was not consistent between

prenatal and postnatal clusters. For example, the expression of RAG1

and RAG2was as early as in prenatal T_C1 cluster but only in postnatal

T_C4 cluster (Figure 2E). Cordes et al. (12) previously used flow

cytometry to sort all postnatal thymocyte populations based on surface

marker expression and subjected them to scRNA-seq analysis. We next

explored the corresponding relationship of these identified clusters

with their immunophenotypic clusters. Non_T, ETP, T_C1, and a

small part of the T_C2 cluster belonged to DN1 cells. The other part of

T_C2 and the majority of the T_C3 cluster fell into DN2 cells. The

T_C4 cluster was a mixture population, including DN3, ISP, and DP

cells (Figures 2F, G). We also mapped the identified six clusters with

the populations depicted in Figure 1B. TheNon_T and ETP subclusters

were almost mapped to the ETP population; the remaining subclusters

corresponded to DN cells (Figure 2H).
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To illustrate the transcriptional differences between distinct

clusters of both stages, we first identified differentially activated

transcription factors (TFs) and regulons (transcriptionally

coregulated operons) in each cluster by single-cell regulatory

network inference and clustering (SCENIC) (31). The majority of

regulon activities between clusters were varied and showed stage

specificity. Prenatal clusters shared some regulons with

corresponding postnatal clusters; for instance, the Non_T cluster

of both prenatal and postnatal thymocytes showed higher regulon

activities related to myeloid cells (CEBPD, CEBPE). Stem/

progenitor cell-related regulons (HOXA10, HOXB5) were highly

enriched in the ETP cluster of both stages. The activities of cell

proliferation- and differentiation-related regulons (ATF3, TAF7)

and T cell-related regulons (SOX5, FOXP3) were specified higher in

both prenatal and postnatal T_C3 and T_C4 clusters (Figure 3A).

Gene Ontology (GO) term analysis showed that transcripts for ETP

and T_C1 cluster were enriched for terms related to the adaptive
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FIGURE 2

Identifying human prenatal double-negative (DN) subpopulations transcriptionally. (A) UMAP visualization of distinct subclusters of DN cells. (B) UMAP plot
showing DN subclusters colored by different sources. (C) UMAP plot showing HOPX, CD34, IRF8, CD1A, CD38, RAG1, RAG2, CD4, and CD8A gene
expression. (D) Heatmap showing blocks of differentially expressed genes (DEGs; top 10) by six subclusters of human thymic DN cells. (E) Dot plots depicting
the expression of selected genes in prenatal (left) and postnatal (right) DN subclusters. (F) UMAP representing DN subclusters from Cordes et al. (12). (G)
Sankey plots showing the proportion of DN subclusters with immunophenotypic characteristics. (H) Mapping the identified six subclusters with the
populations depicted in Figure 1B.
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immune system, cytokine signaling in the immune system,

regulation of immune effector processes, and the innate immune

response, and these enrichments were more profound in postnatal

clusters compared with those in the prenatal stage. The prenatal

T_C2 cluster exhibited higher enrichment of GO terms related to

metabolism of RNA and mRNA processing compared with

corresponding postnatal clusters (Figure 3B). We also observed

that proliferation-related GO terms (cell cycle, DNA metabolic

process, and DNA replication) were enriched in prenatal DN cells

as early as T_C1 cluster, but only enriched in the postnatal T_C3

and T_C4 clusters, which were congruent with the results that

prenatal T_C1 and T_C2 clusters had more proliferating cells, while

only postnatal T_C3 and T_C4 exhibited more active cell cycle state

(Figure 3C). These results indicated that prenatal clusters may

harbor proliferation characteristics more in advance to adapt to

the rapid development of the embryo (32). Moreover, GO terms

related to CD8 TCR pathway and alpha-beta T-cell activation were

enriched in both postnatal T_C3 and T_C4 clusters, but only in

prenatal T_C4 cluster (Figure 3B). These observed differences may

collectively contribute to the distinct development of T cells

between prenatal and postnatal stages.

Previous studies showed that thymocyte subsets exhibit distinct

metabolic patterns tailored to meet the bioenergetic demands

required at each developmental stage (33–36). To explore whether
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there were differences in metabolism between prenatal and

postnatal cells, we analyzed the activities of different metabolic

pathways in corresponding clusters. We found that prenatal clusters

displayed much active metabolic programs related to oxidative

phosphorylat ion, glycolysis/gluconeogenesis , pyruvate

metabolism, and citrate cycle compared with the corresponding

postnatal clusters, especially in ETP, T_C1, and T_C2 clusters.

Arginine biosynthesis, glycerolipid metabolism, and lysine

degradation, which function in activated T cells to fuel

proliferation, survival, and function (37, 38), were more enriched

in postnatal clusters but not prenatal cells (Figure 3D). These results

further suggested that prenatal cells may harbor distinct metabolic

characteristics to meet the bioenergetic demands required for T-

cell specification.
Differences in dynamic molecular
programs between prenatal and postnatal
DN cell development

We next further explored the dynamic expressional changes

between prenatal and postnatal DN cells based on the

developmental path. Considering the interference of batch effects

in postnatal thymocyte data on the construction of the pseudo-
A B

D

C

FIGURE 3

Delineating transcriptional characteristics of DN subclusters. (A) Heatmap showing the enriched regulons in distinct DN subclusters of prenatal and
postnatal stage. Representative regulons are shown on the right. (B) Selected top enriched Gene Ontology (GO) term for DEGs of indicated cell
clusters. GO term enrichment analysis was performed with Metascape. (C) Bar plot presenting the proportion of DN subclusters with distinct cell
cycle states. Pre, Prenatal; Post, Postnatal. (D) Dot plot exhibiting enrichment of metabolic pathway-related GO term in indicated cell clusters. Pre,
Prenatal; Post, Postnatal.
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developmental path, we therefore only chose the data with the

information of immunophenotypes from Cordes et al. (12) for

further analysis. Cell cycle was first corrected in all prenatal and

selected postnatal DN cells to minimize the effect of proliferation on

the downstream analysis. Trajectory analysis by Monocle 3 at

single-cell resolution (39) revealed the developmental order of

both prenatal and postnatal DN cells. Moreover, the trajectories

of DN cells from both stages were also verified by slingshot

algorithm (40) and partition-based graph abstraction (PAGA)

analysis (Figures 4A, B).

Both prenatal and postnatal cells showed mainly three gene

expression patterns along the developmental trajectory. Among

them, the kinetics of patterns 1 and 3 were much similar between

these two stages (Figures 4C, D). Prenatal pattern 1 enriched the

genes related to hematopoietic cell lineage (CD34, HOPX, SPINK2,

IRF8, and CD79B) and TCR signaling (RHOB, NR4A1, and

NR4A2), and these genes were sharply downregulated across the

subsequent T-cell development process. Prenatal pattern 2 included

the genes associated with citric acid cycle and respiratory electron

transport (UQCRQ, UQCRH) as well as DNA metabolic process

(HMGN2,HMGA1), showing relatively high expression throughout

the almost whole development path especially in cells enriching the

T_C2 stage. Prenatal pattern 3 involved the genes gradually

upregulated in the T_C3 and T_C4 clusters, in which T-cell

lineage-related genes were enriched. Similar to prenatal patterns,

postnatal pattern 1 enriched genes related to stem/progenitor cells

(HOPX, CD34, CCR7, and SPINK2) as well as alternative lineages

(LYL1,MPO, and VPREB1), which were sharply declined along the

developmental process. Postnatal pattern 2 included proliferation-

and DNAmetabolism-related genes (MKI67, TOP2A,HMGN2, and

HMGA1), reaching the highest expression in early and late stages of

the T_C4 cluster. Compared with that in the prenatal stage, the

activation of cell cycling was relatively lagging in postnatal cells. T-

cell commitment-related genes were enriched in postnatal pattern 3

(Figures 4C, D). Next, we further performed gene functional

enrichment analysis, and the results revealed that both prenatal

and postnatal pattern 1 mainly expressed genes related to

hematopoietic cell lineage, cell activation, cytokine signaling in

immune system, innate immune response, and adaptive immune

system. Cell cycle, DNA metabolic process, and DNA replication-

related genes were enriched in both prenatal and postnatal pattern

2. Moreover, prenatal pattern 2 also enriched genes related to RNA

metabolism, translation, aerobic glycolysis, and cysteine and

methionine metabolism, which were consistent with the results

observed in Figures 3B, D. Both prenatal and postnatal pattern 3

included genes related to T-cell activation and cell population

proliferation (Figures 4E, F).

Finally, we focused on the transcriptional changes of a set of

genes pivotal for T-cell development along the trajectory in both

prenatal and postnatal thymocytes. Along the developmental order,

the expression of T-cell precursor gene (CD34) and non-T cell gene

(HLA-DRA, CD74) was dramatically decreased, which is

concomitant with the activation of NOTCH signaling and WNT

signaling. NOTCH signaling subsequently upregulated the

expression of TCF7, BCL11B, and GATA3, making specification

toward the T-cell lineage. The expression of PTCRA and CD1A
Frontiers in Immunology 06
marked full commitment of the cells to the T-cell lineage and the

initiation of TCR rearrangement (16, 41). We observed that the

sequential expression of these genes in postnatal cells was congruent

with the reports, whereas the dynamic expression of some genes in

prenatal DN cells markedly differed from those in postnatal cells.

For instance, CD7 together with some NOTCH and WNT signaling

genes (DTX1, HES1, and NOTCH1) was highly expressed again at

later stages of the T_C4 cluster, which is not the case in postnatal

cells. Moreover, the expression of thymus homing genes (SELL,

CXCR4, and CCR9) in prenatal thymocytes was also varied

compared with those in postnatal cells (Figures 4G, H). These

results indicated that prenatal thymocytes may adopt distinct gene

expression patterns to meet the special demand for differentiation of

T cells in embryo.
Identification of polyadenylation site usage
in human thymus

The majority of mammalian protein-coding genes exhibit

alternative cleavage and polyadenylation (APA), resulting in

mRNA isoforms with different 3’ UTRs. APA can considerably

affect posttranscriptional gene regulation by alteration of the 3’

UTR length (42). The aforementioned scRNA-seq analysis has

revealed the heterogeneity between human prenatal and postnatal

thymus at a high resolution. The 3’ enriched strategy in library

construction of most of these scRNA-seq data also allowed us to

measure APA enrichment across human T-cell development. A

deep learning-embedded pipeline called SCAPTURE (43) was used

to capture previously unannotated cleavage and polyadenylation

sites (PASs) in the human thymus. After filtering out 5’ tag-based

data and quality control, 29 samples were subjected to APA analysis

and the numbers of gene and APA transcript in each sample were

exhibited (Figure 5A). Over half of the genes detected in the human

thymus expressed at least two APA transcripts (Figure 5B), and the

enrichment of APA transcripts in distinct thymic cell populations

was diverse (Figure 5C). Thymic epithelial cells had the highest

APA transcript/gene ratio, and this ratio in T cells was

medium (Figure 5C).

For many transcripts, alternative PASs can generate multiple

mRNA isoforms with different 3’ UTRs. The use of the distal PAS

generates a longer 3’ UTR, while the use of proximal PAS leads to a

shorter 3’ UTR. These alternative 3’ UTR isoforms allow for

inclusion or exclusion of cis-regulatory elements such as RNA-

binding protein sites and/or microRNA-binding sites that then

result in changes in transcript abundance, stability, and translation

efficiency (44). We then analyzed proximal and distal PAS usages in

hematopoietic clusters of both prenatal and postnatal thymus.

Compared with other prenatal cells, macrophages showed the

least proximal PAS usage, whereas ILC displayed the most

proximal PAS usage. While at the postnatal stage, ILC exhibited

the least proximal PAS usage, and myeloid cell manifested the most

proximal PAS usage (Figure 5D). In contrast to corresponding

postnatal cells, prenatal thymic B cells and myeloid cells showed less

proximal PAS usage, prenatal ILC cells exhibited more proximal

PAS usage, while no preference of PAS usage was found in T cells
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FIGURE 4

Comparing dynamic molecular programs between prenatal and postnatal DN cell development. (A) Developmental trajectory of prenatal DN
thymocytes inferred by Monocle 3 (top left), slingshot algorithm (top right), and partition-based graph abstraction (PAGA) analysis (bottom left).
UMAP for cell cycle state was shown in bottom right. (B) Developmental trajectory of postnatal DN thymocytes inferred by Monocle 3 (top left),
slingshot algorithm (top right), and PAGA analysis (bottom left). UMAP for cell cycle state was shown in bottom right. (C, D) Heatmap showing the
expression changes of pattern genes (top 500) along the development paths in prenatal (C) and postnatal (D) DN thymocytes. Corresponding
diagrams of pattern changes were shown on the right. Pre, Prenatal; Post, Postnatal. (E, F) Enriched GO terms for prenatal (E) and postnatal (F) patterns. Pre,
Prenatal; Post, Postnatal. (G, H) Heatmap exhibiting gene expression of surface markers, signaling pathways, thymus homing markers, and recombination
genes involved in the T-cell differentiation ordered according to the pseudotime of the developmental trajectory for prenatal (G) and postnatal
(H) DN subclusters.
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when they were taken as a whole (Figure 5E). We further explored

the PAS usages in detailed T-cell populations and found that the

postnatal ETP and T_C4 clusters showed more preference of

proximal PAS usage than corresponding prenatal clusters, while

there was no/subtle difference in PAS usage in other T-cell clusters
Frontiers in Immunology 08
(Figure 5F). Next, we investigated PAS usage in several crucial T-

cell lineage genes during T-cell development (Figure 5G). The PAS

usage in each gene differed in distinct cell clusters. For instance,

TRGC1 exhibited more proximal PAS usage in postnatal

thymocytes compared to prenatal cells. SELL and CD8A showed
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FIGURE 5

Identifying cleavage and polyadenylation sites (PASs) usages in human prenatal and postnatal thymus. (A) Bar plots showing the total number of genes
and alternative cleavage and polyadenylation (APA) transcripts in each sample. (B) Bar plot showing the numbers of expressed transcripts per gene in
combined 29 human thymus datasets. Each number above the bar indicates gene number. (C) Violin plot exhibiting the APA transcript/Gene ratio in
indicated cell types of human thymus (Mac, macrophage; Mk, megakaryocyte; Plt, platelet; Ery, erythrocyte; Epi, epithelial cell; Endo, endothelial cell; Fb,
fibroblast). (D) Characterization of proximal PAS usage in indicated cells in prenatal and postnatal thymus. (E) Characterization of proximal PAS usage in
T, B, innate lymphoid cell (ILC), and myeloid cells in prenatal and postnatal thymus. (F) Characterization of proximal PAS usage in T cells (ETP, T_C1,
T_C2, T_C3, T_C4, DP1, and DP2/CD4/CD8) of both prenatal and postnatal thymus. (G) Violin plots showing the PAS usage of indicated genes in distinct
prenatal and postnatal T-cell clusters. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, and ns stands for not significant (Wilcoxon rank-sum test).
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no PAS usage preference in prenatal cells but exhibited distal PAS

usage in majority of the postnatal cell populations. TCF7 and SOCS2

manifested more distal PAS usages in postnatal cells compared with

prenatal thymocytes. The distinct preference usage of PAS between

prenatal and postnatal at some gene loci may affect the alternative

splicing events and finally modulate gene expression level,

contributing to the transcriptional heterogeneity between prenatal

and postnatal thymocytes.
Discussion

Mouse studies have well documented that there are prominent

differences in sub-lineage options, differentiation speed, and

proliferative yield that distinguish fetal and postnatal versions of

T-cell development (15). Moreover, during embryogenesis and fetal

development, the ontogeny of T cells is both multifaceted and

complex, with emerging evidence suggesting that T-cell lineages

arise from certain progenitor cells antedating the emergence of

HSCs (45–49). However, the study of T-cell development especially

during human embryogenesis has been dampened due to the

scarcity of fetal material available and lack of appropriate

techniques. Knowledge on early human embryonic T

lymphopoiesis is vital for understanding physiology and

pathological conditions and for developing immunotherapies

(50). Recent advances in scRNA-seq technique have provided

important new insights into the heterogeneity of T-cell precursors

and the molecular mechanisms underlying T-cell lineage

commitment at the single-cell level. In this study, we performed

integrative transcriptomic analysis of both prenatal and postnatal

thymocytes to decipher the cellular heterogeneity in human

thymus, especially in CD4–CD8–DN cells. Our findings clarify

that human fetal DN thymocytes exhibited distinct transcriptional

and metabolic programs manifesting in elevated activities of

oxidative phosphorylation and glycolysis, shedding new light on

the transcriptional dynamics between prenatal and postnatal T-

cell development.

Thymic T-cell differentiation occurs via a series of coordinated

developmental stages that can be characterized based on cell surface

marker expression. Unlike the mouse, the lack of genetic tools and

the absence of defined cell surface markers have impeded our

understanding of the intrathymic T-cell development in human.

Although CD34, CD1a, and CD7 (51) or CD34, CD1a, and CD38

(6) were commonly used to discriminate postnatal DN cells, the

identification and characterization of prenatal DN subsets are still

unclear. To comprehensively understand the transcriptional

characteristics of human prenatal DN cells, we fetched all

prenatal and postnatal thymus cells for further analysis. Six

distinct DN subpopulations were identified in both prenatal and

postnatal cells. Besides T-cell fate, both prenatal and postnatal ETP/

early DN cells had other lineage potential, as the ETP and T_C1

clusters also expressed alternative lineage markers (e.g., IRF8,MPO,

and SPI1). Functional lineage potential studies of these progenitor

subsets in the fetal human thymus are quite limited in the literature

(7), and hence, the functional significances of cell clusters identified

in the fetal human thymus via scRNA-seq remain unclear.
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Although we have characterized that the prenatal ETP and T_C1

clusters harbor alternative lineage potential, a key limitation of this

study is that we could not obtain these two types of cells via flow

cytometry sorting to validate their fate in vitro. Through analysis of

the developmental state of these identified six populations, it was

found that although prenatal and postnatal DN subclusters shared

some regulons, the overall regulon activities were varied.

Furthermore, prenatal and postnatal DN subclusters showed

significant differences in gene expression and enriched GO terms.

These discrepancies could partially explain the distinct T-cell

development of two stages in human. Thymocytes with different

developmental states are directed by distinct metabolic pathways

and signaling networks, matching the specific functional

requirements of the stage (52). These metabolic alterations in the

thymus could also contribute to complex signaling mechanisms that

link external signals with transcriptional events and fate decision

(53, 54).

Although several groups have characterized transcriptional

dynamics underlying human T-cell development (7–12), to our

knowledge, it remains unclear whether exactly the same genetic

mechanism functions in postnatal compared to prenatal T-cell

development. We thus compared the molecular programs

between prenatal and postnatal DN thymocytes along T-cell

developmental paths. Prenatal and postnatal DN thymocytes

exhibited three similar patterns, but the developmental

characteristics of these gene patterns were very varied. Moreover,

the expression dynamics of some pivotal signaling pathway genes

along the T-cell development trajectory were also distinct between

prenatal and postnatal thymocytes.

The majority of mammalian genes express isoforms with

distinct 3’ UTRs, generated by alternative polyadenylation (APA).

S ince a l t e rna t ive 3 ’ UTR iso forms are invo lved in

posttranscriptional gene regulatory mechanisms (17), it is

important to explore the role of APA in development and cell

fate determination. Over half of genes in the human thymus,

especially in T cells, only harbored one APA transcript, which

restrict us to refine single-cell clustering by using APA transcript

expression. By profiling PAS usage, we indeed observed differential

PAS usage in distinct cell types in both prenatal and postnatal

thymocytes. Moreover, the different preference of PAS usage of

several T-cell lineage genes in T-cell populations was also observed.

These data provided genome-wide dynamic changes of APA during

human T-cell development, providing an extra layer for

comprehending T-cell development.

In summary, we have conducted an integrative transcriptomic

analysis and yielded detailed information about the cellular

diversity and transcriptional differences of prenatal and postnatal

human thymocytes at a single-cell resolution. This study has

addressed a critical question in the field regarding what are the

biological differences between T-cell development in prenatal and

postnatal life. Answering this question is key for understanding

both T-cell biology and the strengths and limitations of lab models

of human T-cell development that are based on fetal human tissue

as well as their applicability to understanding postnatal T-cell

development. Our study also clarifies previous unknown dynamic

landscapes of APA between human prenatal and postnatal cells,
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providing new perspectives in the fundamental differences in

prenatal versus postnatal T lymphopoiesis.
Materials and methods

Public datasets

Human embryonic and fetal thymus datasets were obtained

from Gene Expression Omnibus (GEO; GSE133341) (7),

ArrayExpress (E-MTAB-8581) (8), and National Omics Data

Encyclopedia (NODE; OEP001185) (9). Human postnatal thymus

datasets were obtained from GEO (GSE139042, GSE144870, and

GSE195812) (10–12). The detailed information of the datasets used

in this study is listed in Supplementary Table S1.
Processing and quality control of
sequencing data

ScRNA-seq datasets were realigned and quantified using the

Cell Ranger Single-Cell Software Suite (version 6.1.3 for 3’

chemistry, 10× Genomics Inc.) with the GRCh38 human

reference genome (official Cell Ranger reference, version 1.2.0).

Cells with fewer than 1,000 UMI counts, 500 detected genes, and

mitochondrial gene proportion >10% were considered as low-

quality cells and removed from these datasets. To avoid the effects

of doublets, doublets evaluated by DoubletDetection (version 4.2,

https://github.com/JonathanShor/DoubletDetection) with default

parameters were removed.
Integration, dimensionality reduction,
and cluster

After quality control, we used Seurat (Version 4.3.0) (55) to

integrate all datasets. Genes expressed in <5 single cells were

excluded. In total, we captured 187,842 cells for all prenatal

and postnatal samples. Scanpy (version 1.9.1) (56) python

package was used to load the cell-gene count matrix and

perform downstream analysis, including data normalization

(scanpy.api.pp.normalize_total method, scaling factor 10000), log-

transformation (scanpy.api.pp.log1p), variable gene detection

(scanpy.api.pp.highly_variable_genes), data feature scaling

(scanpy.api.pp.scale), principal component analysis (PCA)

(scanpy.api.tl.pca, from variable genes), batch-balanced

neighborhood graph building (scanpy.external.pp.bbknn,

batch_key=‘source’), and UMAP visualization (scanpy.api.ti.umap).

For clustering all cells, we used CellTypist (30) to annotate the

cells with default parameters. The selected models included

“Immun_All_Low” and “Immun_All_High.” As a result, we

captured 29 clusters. According to the expression of feature genes,

we finally summarized these clusters as ETP (HSC/MPP, ETP),

T_DN, T_DP1, T_DP2/CD4/CD8, ILC (ILC, ILC precursor), B (B

cells, B-cell lineage), B_plasma, Mye (DC, DC precursor, pDC, pDC
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precursor, granulocytes, MNP, mono-mac, monocyte precursor,

monocytes, myelocytes, promyelocytes), Mac, Ery (erythrocytes,

erythroid), Mast/Mk/Plt, Epi, Endo, and Fb.

Dimension reduction and subclustering were then performed

within ETP and DNs in Figure 2. All cells from ETP and DN

populations were selected for downstream analysis. After highly

variable genes were calculated, we performed correlation analysis

between the top 2,000 variable genes and the previously reported

cell cycle genes using ‘cor’ function in R version 4.1.3. Genes with

correlation coefficients greater than 0.3 and genes associated with

mitochondrial, heat shock protein, and ribosome were removed.

Moreover, we calculated the cell cycle gene score in each cell

(scanpy.tl.score_genes_cell_cycle) and performed regression

(scanpy.pp.regress_out). We also conducted regression according

to the phenotype of cells to minimize the batch effect. After

dimension reduction, we used Leiden graph-clustering method to

conduct an unsupervised clustering. According to the expression of

feature genes, we annotated clusters as Non_T, ETP, T_C1, T_C2,

T_C3, and T_C4. For dimension reduction of prenatal cells in

Figure 4, we used the same procedure. PAGA was also performed

on prenatal and postnatal cells (scanpy.tl.paga).
Differential gene expression analysis

To detect DEGs in different clusters of the datasets, we used the

FindAllMarkers function in Seurat (Wilcoxon rank-sum test, with P

value adjusted for multiple testing using Bonferroni correction).

Genes with avg_logFC (log fold-change in the average expression)

>log2(1.5), adjusted P < 0.05, and not related to mitochondria, heat

shock protein, and ribosome were selected.
Pseudotime trajectory analysis

For pseudotime trajectory analysis, we used Monocle 3 (version

1.0.0) (39) based on the previous UMAP dimension reduction from

Scanpy. Pattern genes of prenatal and postnatal ETP, DN cells

changing along the paths were identified by using graph_test

function of Monocle 3 with its Moran’s I test, respectively. Genes

with a P value <0.01 and the top 500 highest Moran’s I score were

selected. Pattern genes were then clustered using the K-means

method, and the number of clusters was determined by manually

checking the heatmap results from a larger to a smaller number of

clusters. We also performed pyslingshot (40) with default

parameters, and the results were consistent with Monocle 3.
Gene functional enrichment analysis

Gene functional enrichment analyses were performed using

Metascape (http://metascape.org) (57). Pathways with P value <0.05

were selected for visualization. In addition, the R package

scMetabolism (58) was used to predict the metabolism score for

the cell types.
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Gene regulatory network analysis

To further evaluate the transcriptional and regulatory

characteristics of T-cell subclusters (Non_T, ETP, T_C1, T_C2,

T_C3, and T_C4) of different stages, gene regulatory network

analysis was performed using pySCENIC (version 0.12.1) (59)

following default parameters, which included gene regulatory

network inference, generation of co-expression modules, regulon

prediction aka cisTarget from CLI, and cellular enrichment (aka

AUCell). The results were further explored in R. Only regulons with

at least one other regulon and activated in at least 50% of cells in each

cluster were included, and the top 10 regulons sorted by the scaled

average regulon activity per cluster were chosen for visualization.
PAS analysis

For PAS analysis, we use SCAPTURE (43) to identify, evaluate,

and quantify cleavage and polyadenylation sites (PASs) from 3’ tag-

based scRNA-seq. Briefly, realigned BAM files that were generated

from Cell Ranger samples were used as input to call peaks for

subsequent PAS evaluation. Next, DeepPASS was embedded to

evaluate called peaks from 3’ tag-based scRNA-seq. Peaks with a

positive prediction (predicted probability >0.5 by DeepPASS) were

considered as high-confidence PASs in further analysis. Finally,

UMI-tools (v1.0.1) protocol was utilized to quantify PAS-based

transcripts at a single-cell level and generate barcode count

matrices. The final count matrix of PAS-based transcript was

analyzed in downstream single-cell tools like Seurat.
Quantification and statistical analysis

Wilcoxon rank-sum test in R version 4.3.0 was used for DEG

analysis and comparison in PAS analysis. P < 0.05 was considered

statistically significant. The statistical details were indicated in the

figure legend.
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