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In addition to typical respiratory symptoms, patients with asthma are frequently

accompanied by cognitive decline, mood disorders (anxiety and depression),

sleep disorders, olfactory disorders, and other brain response manifestations, all

of which worsen asthma symptoms, form a vicious cycle, and exacerbate the

burden on families and society. Therefore, studying the mechanism of

neurological symptoms in patients with asthma is necessary to identify the

appropriate preventative and therapeutic measures. In order to provide a

comprehensive reference for related research, we compiled the pertinent

literature, systematically summarized the latest research progress of asthma

and its brain response, and attempted to reveal the possible “lung–brain”

crosstalk mechanism and treatment methods at the onset of asthma, which

will promote more related research to provide asthmatic patients with

neurological symptoms new hope.
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1 Introduction

Asthma, also known as bronchial asthma, is a chronic inflammatory disease of the

airways with a complex etiology, and its pathological process involves multiple aspects,

such as the genetic regulation of genes and environmental interference (1, 2). According to

a 2022 study, over 334 million individuals are suffering from asthma worldwide, with an

incidence of approximately 3.33%, which had risen rapidly because of the synergistic

influence of air pollution, climate change, and other factors over the last few decades (3, 4).
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Asthma primarily affects children and adolescents, and has become

a severe global public health issue, imposing a significant economic

burden on families and society (5).

Asthma is characterized by non-specific respiratory symptoms

such as wheezing, shortness of breath, chest tightness, and episodic

cough as the main clinical manifestations, which frequently occur at

night and early in the morning, and its main pathogenesis is chronic

immune-inflammatory response, airway hyperreactivity, reversible

airflow limitation, and airway remodeling (6, 7). Patients with

asthma are often accompanied by neurological symptoms such as

cognitive dysfunction, depression, anxiety, dysosmia, and sleep

disorders, implying a brain response to asthma, which affects

their quality of life, increases their economic burden, reduces the

treatment sensitivity of asthma, increases the risk of asthma

exacerbations, and forms a vicious cycle (8–10). Based on our

previous summary of brain response in allergic rhinitis (AR) (11),

a “lung–brain” crosstalk in asthma can be observed on the basis of

neuro-immune mechanisms, that is, inflammatory factors

generated during chronic inflammation in asthma can be

transmitted upwards to the central nervous system, thereby

stimulating associated brain regions to elicit one or more brain

responses, transmitting response commands to peripheral nerves,

activating such commands to release mediators such as

neuropeptides and neurogenic trophic factors, worsening asthma

symptoms through actions such as tracheal smooth muscle

contraction, promoting the re-entry of immune inflammatory

factors produced in the periphery to the brain, and exacerbating

neurological symptoms caused by brain response (12, 13). We have

summarized the research on the correlation between asthma and

changes in brain activity related to its neurological phenotypes in

the past 5 years (Table 1) (14–22).

Despite the abundance of research on asthma and

neuroinflammation, the specific brain response mechanism

implicated in asthma has not been systematically elucidated. Thus,

we aim to sort out the current status and progression of neurological

symptoms induced by asthma by summarizing relevant literature to

provide a reference for mechanism exploration, prevention, and

treatment intervention of asthma-related brain responses.

Simultaneously, our summary also complements the “lung–brain”

axis theory to a certain extent.
2 Asthma and neuro-immune-
mediated “lung–brain” crosstalk

Patients with asthma exhibit altered functional activity in

relevant brain regions. Using resting-state functional magnetic

resonance imaging (fMRI), Huang et al. scanned the brain

regions of patients with asthma and found differences in

regional homogeneity values in the cerebellar, frontal, temporal,

and occipital lobes (23). Rosenkranz et al. used fMRI to

simultaneously measure pulmonary function and inflammatory

parameters of induced sputum in patients with asthma and found

that changes in insula activity best characterized asthma

pathogenesis; such changes were significantly associated with

decreases in pulmonary function and increases in eosinophil
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content of induced sputum (24). Leupoldt et al. used fMRI to

investigate changes in brain regions during induced asthma in

asthmatic patients and healthy subjects and found that cortical

activity in the insula decreased, whereas activity in the

periaqueductal gray (PAG) increased when asthma was induced

and caused dyspnea. The authors hypothesized that the activity of

the insula, a key brain region involved in emotion regulation, may

be regulated by PAG, which causes negative mood disorders such as

anxiety and depression (25). Dynamic functional connectivity is

more sensitive than resting brain function evaluation indicators in

MRI, allowing it to disclose the internal heterogeneity and dynamic

changes of brain dysfunction (26), of which dynamic voxel-

mirrored homotopic connection (dVMHC) plays a role in

revealing asthma-induced brain response because of its sensitive

and specific quantitative characteristics of neural activity intensity,

particularly in indicating emotion-related disorders (27). A clinical

study of patients with asthma revealed that dVMHC levels in the

lingual gyrus and calcarine sulcus were significantly elevated, and

dVMHC values in the medial superior frontal gyrus, cingulate

gyrus, and supplementary motor area were considerably lowered;

these brain regions have a vital function in mood regulation,

indicating that the ability of patients with asthma to regulate their

emotions is severely impaired (28). Thus, a “lung–brain” crosstalk

based on the neuro-immune mechanisms may be observed when

asthma occurs.
2.1 Effects of airway inflammation on the
brain in patients with asthma

Prior research on neuro-immune crosstalk in asthma has

focused on interactions between inflammatory factors and the

peripheral nervous system. Given the increasing number of

patients with asthma who develop a variety of neurological

symptoms in clinical practice, pertinent research has been

conducted, and results show that numerous inflammatory factors

produced during chronic asthmatic inflammation can reach the

central nervous system via humoral and neural pathways.

Asthma-induced chronic inflammation can stimulate the

synthesis and release of prostaglandin mediators and nitric oxide

(NO) from cerebrovascular endothelial cells and pericytes that form

the blood–brain barrier (BBB), causing endothelial cell injury, tight

junction destruction, and structural integrity disruption of the BBB.

It can also increase BBB permeability in response to the binding of

inflammatory factors to endothelial cell surface receptors (29). In

the humoral pathway, after being released into the blood, cellular

inflammatory factors can either penetrate the BBB or infiltrate the

brain region directly via the periventricular organs without a BBB,

thereby activating and damaging neurons, including microglia and

astrocytes. Michelle and Parajuli et al. discovered that after

eosinophil activation, eotaxin-1 (CCL11) swiftly crossed the BBB

and bound to CCL11 receptors on the surface of microglia (30),

which increased the amount of nicotinamide adenine dinucleotide

phosphate-oxidase 1 (NOX1) in microglia, promoted the

development of oxidative stress in microglia, increased the levels

of intracellular reactive oxygen species (ROS), and enhanced
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TABLE 1 Summary of research on the correlation between asthma and changes in brain activity related to its relatedneuropsycological symptoms in
the past 5 years.

Sample Age
(asthma/
control)

Numbers
(Asthma)

Methods
of brain
function
detection

Indicators
of brain
function
detection

Associated
neurological
phenotypes

Evaluation
methods of
neurological
phenotypes

Conclusions References

Children 8.98 ± 1.52/
8.31 ± 1.39

62 (31) fMRI DC and
VMHC

Cognitive
dysfunction

CPT Impaired superior
frontal gyrus and
parietal lobe
function are
associated with
attentional deficit
in asthmatic
children.

Zhu L, et al.
(14)

Adults

39.58 ±
2.19/38.53 ±
1.70

38 (19) fMRI DMN and SN Depression and
anxiety disorders

DASS Enhancements in
power and
coherent activity of
DMN and SN
regions, including
dmPFC, vmPFC,
PCC, rACC,
precuneus, parietal
cortex, insula, and
dACC in asthmatic
patients, that were
remarkably
correlated with
depression,
anxiety.

Gholami-
Mahtaj L, et al.
(15)

18-73 246 (111) dMRI DWI and MD Cognitive
dysfunction

Reaction time of
the Stroop Task

Deterioration of
myelin axons of
fiber bundles of
the corticospinal
tract, external
capsule, inferior
longitudinal
fasciculi, superior
longitudinal
fasciculi, inferior
fronto-occipital
fasciculi and the
destruction of
white matter
integrity is related
to the cognitive
dysfunction.

Rosenkranz
MA, et al. (16)

52.2 ± 9.70/
50.43 ± 9.42

80 (40) fMRI SN, DMN and
ECN

Depression
disorders

HAMD The functional
connection
between dACC
and the left middle
frontal gyrus
increases, as well
as the functional
connection
between SN and
DMN, ECN, which
leads to depression
of patients with
asthma.

Zhang Y, et al.
(17)

18-45 40 (40) fMRI Subcortical
gray matter
volumes

Depression and
anxiety disorders

HADS The strong anxiety
of patients with
asthma is related
to the lower
volume of the
pallidum, while
general anxiety

Ritz T, et al.
(18)

(Continued)
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glutamate-induced neurotoxicity, thereby resulting in neuronal

damage and death (31). The pathogenesis of asthma is

significantly influenced by oxidative stress. Florentino et al.

demonstrated that oxidative stress-mediated inflammation

promoted the activation of relevant microglia and the production

of inflammatory neuro-mediators after compromising the integrity
Frontiers in Immunology 04
of the BBB, leading to a series of brain responses (32, 33). In

addition, Antunes et al. found that airway inflammation

could increase acetylcholinesterase (AchE) activity and decrease

Na+, K+-ATPase activity in the brain of asthmatic mice, both of

which led to a reduction in acetylcholine (Ach) content and formed

a pro-inflammatory humoral immune microenvironment (34, 35).
TABLE 1 Continued

Sample Age
(asthma/
control)

Numbers
(Asthma)

Methods
of brain
function
detection

Indicators
of brain
function
detection

Associated
neurological
phenotypes

Evaluation
methods of
neurological
phenotypes

Conclusions References

and depression are
not significantly
correlated with
subcortical gray
matter volume.

38.67 ±
10.46/38.64
± 10.35

98 (54) fMRI The global and
regional
network
measures for
brain DTI
networks

Depression and
anxiety disorders

HRSD and HRSA The abnormal
nodal centralities
that involved the
fronto-limbic
network and the
right middle
temporal gyrus
(temporal pole) is
associated with
depression and
anxiety in patients
with asthma.

Gao X, et al.
(19)

18-55 20 (20) fMRI BOLD Depression and
anxiety disorders

HADS Deteriorating
asthma symptoms
are associated with
negative emotional
stimuli and
stronger activation
of the anterior and
middle cingulate
gyri, including the
dACC.

Ritz T, et al.
(20)

25.3 ± 8.9/
25.10 ± 8.88

40 (20) sMRI, 1H-
MRS

Hippocampal
volume and
metabolites

Cognitive
dysfunction

MoCA Cognitive
impairment in
patients with
asthma is related
to the reduction of
NAA and
glutamate Glu in
the hippocampus,
but not to the
volume of the
hippocampus.

Kroll JL, et al.
(21)

31-62 89 (32) pASL, fMRI CBF Depression
disorders

HRSD Depression
disorders in
patients with
asthma is
associated with
increased rCBF in
the right
cerebellum
posterior lobe.

Zhang Y, et al.
(22)
fMRI, functional magnetic resonance imaging; Dmri, diffusion-weighted magnetic resonance imaging; sMRI, structural magnetic resonance imaging; 1H-MRS, proton magnetic resonance
spectroscopy; pASL, pulsed arterial spin labeling; DC, degree centricity; VMHC, voxel-mirrored homotopic connectivity; DMN, the default mode network; SN, the salience network; DWI,
diffusion-weighted imaging; MD, mean diffusivity; ECN, executive control network; DTI, diffusion tensor imaging; BOLD, blood oxygenation level dependent; CBF, cerebral blood flow; CPT,
continue performance test; DASS, Depression Anxiety Stress Scales; HAMD, Hamilton depression scale; HADS, Hospital Anxiety and Depression Scale; HRSD and HRSA, Hamilton Rating Scale
for Depression and Anxiety; MoCA, the Montreal Cognitive Assessment; vmPFC, ventromedial prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; PCC, posterior cingulate cortex; ACC,
anterior cingulate cortex; NAA, N-acetylaspartate; Glu, glutamate; rCBF, regional CBF.
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With regard to neural pathway transmission, after the

inflammatory response during asthma attacks activates primary

afferent nerves, signals are further emitted to stimulate afferent

nerve fibers of the pulmonary vagus nerve, which produce nerve

impulses that reach the nucleus tractus solitarius (NTS) and project

to multiple brain regions, thereby inducing diverse neurological

phenotypes by affecting the functional activity of these brain regions

(36, 37). The research of Chen et al. on asthmatic monkeys

indicated that protracted exposure to allergens elevated

excitability in relevant brain regions (e.g., NTS) that process

airway receptor afferent signals, which may be associated with an

increase in the plasticity of postsynaptic neurons caused by

variations in the amplitude and frequency of nerve impulses

transmitted to the NTS by lung receptors (28). Simultaneously,

chronic inflammation in asthma increases airway resistance;

enhances respiratory reflexes, chemoreceptors, and pulmonary

stretch receptors in airways associated with shortness of breath

and dyspnea-transmitted nerve impulses to the insula and anterior

cingulate cortex (ACC) via the spinothalamic cortex; and completes

the regulation of respiration via functional connections formed by

the medial prefrontal cortex (mPFC) and brainstem (12, 38). When

examining respiratory-related evoked potentials in children with

life-threatening asthma (LTA), Davenport et al. found that certain

children with LTA had a loss of airway mechanoreceptor-cerebral

cortex perception-related circuits, which made their asthma

symptoms more difficult to control compared with those of other

children (39). The neural pathways implicated in the “lung–brain”

axis associated with asthma are intricate and delicate, and they may

involve a single brain region, multiple brain regions, or neural

circuits, which coordinate and collaborate with humoral pathways

to contribute jointly to the effects of peripheral airway inflammation

on the brain.
2.2 Brain regulation of airways in asthma

Chronic inflammation resulting from the pathogenesis of

asthma is transmitted to the central nervous system via a number

of pathways, resulting in the activation of related brain regions and

subsequent alterations in brain function and symptoms, during

which brain signals are fed back to the periphery in various ways.

Asthma occurs when the bronchial smooth muscle contracts and

generates various inflammatory factors, triggering an inflammatory

response in related brain regions to activate its function, including

the amygdala, prefrontal cortex (PFC), and insula. Amygdala

stimulation further activates the hypothalamic–pituitary–adrenal

(HPA) axis, and glucocorticoids are released into the circulation to

bind to glucocorticoid receptors (GR) on the surface of the airway

epithelium and immune cells as well as to achieve the central

regulation of peripheral inflammation, particularly in the

expression of cellular inflammatory factors (such as IL-4, IL-5,

and IL-13) involved in the development of asthma (12, 40). The

activation of the HPA axis can also lead to the release of non-

glucocorticoids (e.g., epinephrine, norepinephrine, and
Frontiers in Immunology 05
acetylcholine), which, along with glucocorticoids, amplify

immune inflammation generated by asthma (41). Bailey et al.

identified that the expression level of GR in the lungs of stressed

asthmatic mice was drastically downregulated following the

activation of the HPA axis, which may be connected to the

impaired nuclear translocation of GR in macrophages and other

cells, thereby reducing the responsiveness of the body to

glucocorticoids, suppressing its anti-inflammatory ability, and

deteriorating the airway inflammatory response in patients with

asthma (42, 43). Similarly, Pongratz et al. suggested that the

hypothalamus triggered the sympathetic nervous system to release

norepinephrine, which acts directly on B-cell surface-associated

receptors to promote the synthesis and release of immunoglobulin

E (IgE), a key factor in asthma (44, 45). Therefore, the distinctive

endocrine activation route of the HPA axis is crucial to brain’s

modulation of peripheral inflammation.

Furthermore, numerous studies have confirmed that asthma is

triggered by psychological stress, negative emotions, and other

states (46). After induction, patients experience the activation of

brain regions, including the ACC, insula, and limbic system,

releasing neurotransmitter molecules represented by substance P

(SP), histamine, and neuropeptide Y (NPY) that are transmitted to

the airways through specific pathways; interacting with peripheral

nerves and immune cells to exacerbate asthma symptoms; and

deteriorating asthma symptoms to aggravate the adverse emotions

of patients with asthma (24, 47, 48). Miyasaka et al. injected

histamine receptor (H1R and H2R) antagonists into the brain

ventricles of stressed asthmatic mice and discovered a significant

reduction in peripheral airway inflammation, and eosinophil and

lymphocyte infiltrations were considerably lowered, which

indicated that allergens under stress may increase the severity of

the inflammatory response to asthma by stimulating the release of

histamine to activate histamine receptors (H1R and H2R) in the

brain region (49). Consequently, the regulation of the expression of

these neurotransmitter molecules can be used as an effective means

to manage asthma symptoms.
3 Asthma-associated brain response
phenotypes and mechanisms

3.1 Asthma and cognitive dysfunction

Clinical data indicate that approximately 45% of patients with

asthma have varying degrees of cognitive impairment, which is

closely related to the duration of asthma, frequency of attacks, and

degree of pulmonary function reduction at the onset of asthma, and

the risk of cognitive decline in patients with asthma increases by

roughly 78% in comparison with the general population (8, 50, 51).

Existing research has demonstrated that the precise mechanism by

which asthma causes cognitive dysfunction is intricate, which is

worthy of further study.

As mentioned previously, asthma can damage the BBB,

allowing lung inflammatory factors to easily enter the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1240248
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1240248
hippocampus, PFC, and other regions of the brain associated with

cognitive function, resulting in cognitive impairment. In addition,

the onset of oxidative stress in asthma regulates the Th1/Th2-type

immune inflammatory response, activates microglia, and promotes

the release of inflammatory factors in cognitively involved brain

regions such as the hippocampus by activating the NF-kB signal

pathway, which may diminish N-acetylaspartate (NAA) levels in

the hippocampus of patients with asthma and ultimately lead to

cognitive dysfunction, including learning and memory (21, 52).

Nair et al. noticed a high concentration of neurogranin (a protein

closely related to synaptic plasticity and consolidation of memory

and learning ability) and an elevated level of tau phosphorylation in

the cerebrospinal fluid of patients with asthma, indicating that such

patients have a pathological basis for cognitive impairment (53).

Given the contraction of bronchial smooth muscle and

obstruction of airways, asthma attacks are accompanied by

varying degrees of hypoxia symptoms, and the degradation of

synaptic structures caused by hypoxia is closely associated with

cognitive impairment (54, 55). Ren et al. revealed that the

expression level of hypoxia-inducible factor-1a (HIF-1a) and

HIF-2a was upregulated in the brain tissue of mice induced with

asthma by house dust mites (HDM) along with the decreased

synaptic plasticity in the hippocampus, and the learning and

memory abilities of asthmatic mice, as measured by the Barnes

maze test, were impaired compared with those of the control group

(56, 57). In a mouse model of asthma, Guo et al. reported that the

synaptic structure was destroyed in the hippocampus, and the

maintenance of long-term potential (LTP), which is closely

affiliated with learning, was disrupted, but this phenomenon did

not affect the occurrence of LTP. In addition, the upregulation of

HIF-1a expression and downregulation of c-FOS protein

expression were detected in the hippocampus, and c-FOS is

known to be a key factor in memory formation, that is, a strong

correlation can be observed between hypoxia and cognitive

impairment in patients with asthma (58). Moreover, cortisol

hormones are used as conventional treatments to control asthma,

and chronic oral cortisol hormones have been shown to promote

volume reduction in the hippocampus and amygdala of patients

with asthma (59). The aforementioned mechanism may be closely

linked to cognitive decline in patients with asthma. However,

recurrent asthma attacks; poor control often accompanied by

sleep disorders, anxiety, depression, and other adverse emotional

disorders; and sensitive responses to psychological stress and social

stress events will damage patient’s learning and memory ability to

varying degrees, which merits our focus.

Interestingly, in considering whether cognitive impairment has a

reverse promoting effect on asthma pathogenesis, Wu et al.

discovered evidence contradicting the hypothesis that inducing

asthma in genetically inherited mice with Alzheimer’s disease (AD)

did not exacerbate the severity of asthma, but rather reduced its

airway hyperreactivity and airway obstruction, correspondingly

increased the number of regulatory immune cells, and decreased

the severity of inflammatory response to asthma (60). Contrary to the

pathological progression of asthma, the existence of these protective

mechanisms merits further investigation.
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3.2 Asthma and anxiety disorders

Anxiety disorder is a mental illness characterized by excessive

anxiety, worry, or dread. Asthma and anxiety disorders share many

common predisposing factors, with an anxiety disorder incidence of

approximately 22.7% and a risk nearly three times that of healthy

individuals mentioned in a meta-analysis of comorbid anxiety in

juvenile asthmatics (61). The co-occurrence of asthma and anxiety

disorders diminishes the quality of life of patients; interferes with

their ability to study, work, and engage in daily activities; makes

asthma control more difficult; and increases the burden of medical

care (62, 63).

Existing studies have indicated that the amygdala is a pivotal

region of the brain encoding and processing anxiety-like behavior,

and its circuit composed of mPFC plays a great part in the body’s

anxiety processing network; moreover, the neural activity in this

circuit can be directly used to represent the neuro-coding information

of anxiety-like behavior (64, 65). Dehdar et al. characterized

the immune-inflammatory status of the mPFC and amygdala

in an ovalbumin (OVA)-induced asthma rat model by

immunofluorescence staining of microglia and astrocytes and

found that the activation and proliferation of these two cells were

significantly enhanced probably because the immune-inflammatory

factors produced during asthma inflammation strengthened the

functional activity of local astrocytes via peripheral nerves or

through the BBB to reach the paraventricular nucleus of the

hypothalamus, stimulated their synthesis and release of gamma-

aminobutyric acid, and induced the production of anxiety-like

behavior, whereas the activation of microglia may heighten the

inflammatory response in the hippocampus and further aggravate

asthma-induced anxiety disorders (66–68). Further examination of

the electrical activity of the brain in asthmatic rats revealed abnormal

changes in the coupling potential between the mPFC and amygdala,

such as decreased local delta/theta-gamma phase–amplitude coupling

(PAC) in the mPFC, increased local delta-gamma PAC in the

amygdala, diminished coupling between the mPFC delta/theta

phase and amygdala gamma2 amplitude, enhanced coupling

between the amygdala delta/theta phase and mPFC gamma2

amplitude, and improved neural activity in the mPFC and

amygdala at low-frequency bands of delta and theta, indicating that

chronic inflammation in asthma may achieve the neuromodulation

of anxiety by strengthening the functional connectivity of the mPFC–

amygdala circuit (69, 70). Dehdar et al. also found that inhaled

corticosteroids, such as fluticasone, can improve the functional

connectivity of the mPFC–amygdala pathway and attenuate the

degree of neuroinflammation in the early stage of asthma

pathogenesis, thereby relieving anxiety, which provides a

foundation for the subsequent prevention and treatment of

negative emotions in patients with asthma (70). More detailed

studies have illustrated that ACC, as a subregion of the mPFC, also

constitutes circuit connections with the basolateral amygdala (BLA)

in a specific manner and plays an essential role in the

neuromodulation of anxiety (71). Asthma-induced Th2

inflammatory factors allow type 2 cytokines to reach the ACC,

BLA, and other brain regions along specific pathways, and the
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activation of microglia and astrocytes enhances the frequency of

neural oscillations in ACC and BLA brain regions; moreover, the

PAC of ACC-BLA circuits is strengthened, leading to heightened

functional connectivity of ACC-BLA and inducing the expression of

anxiety (72). In addition, anomalous coupling between the amygdala

and the respiratory control network has a substantial effect on the

development of anxiety in patients with asthma (73, 74). Hence,

asthma regulates the development of anxious behavior in patients via

numerous abnormal neural network activities.

Additionally, the expression level of type 2 inflammatory factors

and corticotropin-releasing hormone was upregulated in the PFC,

whereas c-FOS protein was deposited in the hypothalamus and

amygdala of OVA-sensitized animal models, in which the activation

of the HPA axis by corticotropin-releasing hormone could

exacerbate asthma symptoms while modulating negative emotions

(68, 75). Bejeshk et al. identified an oxidative/antioxidant imbalance

in the hippocampus of asthmatic rats with anxiety, as well as

elevated levels of inflammatory factors, and hypothesized that

oxidative stress may have significant effects on asthma-related

anxiety disorders, whereas the administration of antioxidant

substances (e.g., myristicol) can ameliorate anxiety-like behavior

by relieving inflammatory responses and oxidative stress in brain

regions such as the hippocampus (76).
3.3 Asthma and depression

Epidemiological surveys have indicated that patients with

asthmatic are roughly two times as likely as the general

population to suffer from depression and that improvement in

depressive symptoms contributes to the control of asthma

progression (77). Th2-type immune inflammation in the

pathogenesis of asthma can serve as a “link” between asthma and

depressive disorders.

Accumulating research has verified that the NOD-like receptor

family pyrin domain-containing 3 (NLRP3) inflammasome in lung-

mediated pathological processes can promote a substantial increase

in the serum concentration of pro-inflammatory cytokines

(including IL-1b, IL-6, and TNF-a), corresponding activation of

the HPA axis, and increased glucocorticoid release in patients with

asthma. However, persistently high levels of glucocorticoids can

lead to neuronal atrophy, neurogenesis inhibition, and decreased

synaptic plasticity in the hippocampus and mPFC, whereas

excessive IL-1b further reduces the production of brain-derived

neurotrophic factor (BDNF) and neurogenesis in the hippocampus,

both of which induce depressive mood in patients (78–80). Notably,

Iwata et al. hypothesized that inflammatory signal transduction

with the NLRP3 inflammasome as the “link” is biphasic in the

development of depressive disorders in patients with asthma, that is,

depressive symptoms among patients with asthma can be

correspondingly activated by NLRP3 inflammasomes distributed

in brain regions such as the hippocampus after pessimistic

aggravation of major psychological stress events; the release of

inflammatory factors such as IL-1b can transmit such

inflammasomes to peripheral organs such as the lung through

specific pathways (neural and humoral pathways) to strengthen
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the immune-inflammatory response of asthma, worsen the relevant

symptoms of asthma, and serve as inflammatory factors in brain

regions to further strengthen the susceptibility to depression along

the abovementioned neural networks (81). However, direct

experimental evidence is insufficient to confirm this biphasic

regulatory relationship between asthma immune inflammation

and neural networks in brain regions. If this hypothesis is

validated, then it will have great guiding significance for the

prevention and treatment of depressive disorders among patients

with asthma.

In addition to inflammatory factors, Kanaya et al. found

elevated levels of vascular endothelial growth factor (VEGF) in

the blood of asthmatic mice and high concentrations of c-FOS

protein, and glial fibrillary acidic protein (GFAP) deposition was

detected in their brain regions, which is known to increase the

permeability of the BBB. In addition, GFAP is a typical astrocyte

injury marker, whereas c-FOS protein expression elevates when

mast cells are activated in the brain, thereby indicating that

inflammatory factors may infiltrate brain regions through the

destruction of the BBB to activate neurons and mast cells in the

brain, impair astrocyte function, disrupt mood regulation, and

produce depressive disorders (82, 83). Depression and anxiety

disorders, as common internalization disorders, involve many

overlapping regulatory mechanisms in the pathogenesis of

asthma, such as the activation of brain regions by oxidative stress,

damage to brain structure by inflammatory factors, and feedback

regulation of the HPA axis. Regulating these prevalent pathological

processes will be more conducive to our prevention and treatment

of asthma-related negative emotions (84).
3.4 Asthma and sleep disorders

Numerous studies suggest that patients with asthma frequently

experience varying degrees of sleep disorders, which can manifest as

insomnia, nocturnal awakenings, and early morning awakenings;

indirectly contribute to daytime sleepiness, difficulty concentrating,

diminished learning, and memory abilities; and significantly affect

patients’ ability to work (85). What’s more, asthma is an essential

risk factor for obstructive sleep apnea (OSA), with an incidence rate

of up to 50% in patients with asthma, and the risk of OSA is

proportional to the severity of asthma symptoms, the frequency of

asthma attacks, and poor asthma control (86–88). Considering that

asthma and sleep disorders can be affected by a variety of factors,

such as obesity, smoking, rhinitis, and gastroesophageal reflux

disease (GORD), the mechanisms involved are complex, and the

role of “lung–brain crosstalk” remains unclear (89).

Bonnet et al. discovered significant increases in nocturnal

airway hyperresponsiveness and airway resistance in patients with

asthma, who tend to be agitated at night and experience more severe

symptoms (90). Sensitizer exposure also caused a strong immune

inflammatory response to worsen asthma symptoms, and Gervais

et al. detected forced expiratory volumes in one second (FEV1) in

patients with asthma after inhalation of HDM at different time

points and found that FEV1 decreased evidently; moreover,

ventilatory dysfunction was most severe after inhalation at 11 pm,
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which had a small effect at 8 am (91). The onset of asthma has a

distinct circadian rhythm, which is closely linked to the

development of sleep disorders in patients with asthma; however,

the precise molecular mechanism remains unknown (92).

Asthma-related sleep disorders are inextricably linked to the

expression of circadian clock-related molecules that modulate the

circadian rhythm and activation of pathways (93). Ehlers et al.

compared the broncholavage fluid from patients with severe asthma

with controls and found that circadian clock-related genes

(including BMAL1, PER2, and REV-ERBa) were all decreased

and rhythm regulation may be disturbed (94). Zona et al. also

discovered a dramatic increase in the number of eosinophils in the

blood, the upregulation of the expression level of pro-inflammatory

cytokines in the lungs, and a sharp increase in the degree of

pulmonary inflammation in OVA-induced asthma in a BMAL1-

knockout mouse model, which suggests that the regulation of

circadian clock genes on asthma and rhythm may be biphasic

(95). More in depth, rhythmic regulatory centers located in the

suprachiasmatic nucleus (SCN) of the hypothalamus are stimulated

after sensing afferent nerve impulses that activate the HPA axis and

autonomic nervous system, and these nerve impulses include

peripheral inflammatory molecules produced by asthma, which

are transmitted to the brain through pathways such as the BBB,

thereby resulting in the activation of brain regions or changes in

brain function caused by the provocation of asthma by external

stress factors (96, 97). This activity leads to the growing release of

glucocorticoids and catecholamines (including epinephrine and

norepinephrine), which can be further transmitted to the

periphery to participate in the regulation of the immune

inflammatory response to asthma, and the specific mechanism

has been elaborated previously (98). Consequently, the

modulation of circadian rhythm-related neural pathways in

patients with asthma can not only reduce nocturnal sleep

disorders, but also alleviate symptoms and produce the effect of

one arrow and two sculptures.
3.5 Asthma and olfactory disturbances

Common chronic inflammatory diseases of the respiratory

system, such as chronic rhinosinusitis (CRS) and AR, have been

confirmed by many studies to be accompanied by varying degrees of

olfactory dysfunction, which seriously impair the quality of life and

mental health of patients, and such diseases are often complicated

with asthma. Olfactory dysfunction caused by asthma is mostly

induced on the basis of comorbidity with these diseases, and some

scholars believe that asthma can be used as an independent risk

factor for olfactory disturbance in patients with CRS (99, 100).

Rhyou et al. conducted a clinical investigation on olfactory

dysfunction in patients with asthma, which indicated that the

incidence of olfactory disturbance in patients with CRS or AR

associated with asthma was 56.5%, whereas the incidence of

olfactory disturbance in patients with asthma alone was only

15.8% (10). Lacking direct research, the pathogenesis of asthma

linked to olfactory dysfunction warrants further investigation.
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In summary, we have a preliminary understanding of the

relevant brain regions and the pathological and physiological

changes that occur when asthma patients are accompanied by

cognitive dysfunction, anxiety, depression and sleep disorders, as

shown in Figure 1. However, there is no unified theory that can

fairly and comprehensively reveal its mechanism, which deserves

further in-depth consideration.
4 Treatment of symptoms associated
with brain response in asthma

Asthma causes cognitive impairment, depression, anxiety, and

other emotional disorders as well as sleep disorders, olfactory

dysfunction, and other neurological phenotypes, which will

aggravate the psychological burden and life stress of patients with

asthma while deteriorating the clinical symptoms of asthma,

thereby resulting in a low quality of life. Consequently, while

developing conventional medications for the treatment of asthma,

a treatment to alleviate the neurological symptoms associated with

brain response in patients with asthma must also be developed. At

present, neurocognitive rehabilitation training, psychological

intervention, continuous positive airway pressure (CPAP),

exercise intervention, family intervention, and drug therapy are

widely used and we have provided a brief summary in Figure 2.

These interventions can be executed individually or in combination

to alleviate each other’s symptoms, but their improvement of

neurological asthma symptoms remains to be investigated (101).

Cognitive behavioral therapy (CBT), as one of the most

common psychological interventions, is a psychotherapy designed

to change a person’s thinking and behavior patterns through

talking, which has been demonstrated to have good efficacy in a

variety of psychological disorders (including cognitive impairment,

anxiety, and depression) (102, 103). A clinical study based on group

cognitive behavioral therapy (GCBT) revealed that GCBT can

effectively rectify the functional connectivity activity between

insular subregions and other brain regions in patients with

asthma, which is essential for improving depressive symptoms

(104).Of course, other psychological interventions, such as

mindfulness-based stress reduction therapy, also have their

exclusive effects in alleviating the neurological symptoms of

asthma, but the direct effects of these treatments on the central

nervous system remain to be studied (101).

Exercise interventions, such as common running, rope skipping,

and other exercise modalities, can alleviate airway inflammation by

balancing the ratio of Th1/Th2-type cytokines, reduce the response

level of oxidative stress in the hippocampus to lighten oxidative

damage, upregulate IL-10 levels in the hippocampus to strengthen

brain inflammation, promote the induction and maintenance of LTP

in the brain, and facilitate the synthesis and release of BDNF to

increase synaptic plasticity, thereby relieving asthma-induced

cognitive impairment (105–107). Concurrently, exercise can also

play a certain role in weight loss. Obesity is known to be a risk

factor for comorbid cognitive impairment and sleep disorders in

asthma; thus, exercise is essential for neuroprotection (108).
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FIGURE 1

The brain regions and corresponding physiological mechanisms involved in the occurrence of brain response in asthma.
FIGURE 2

The summary of treatment of the neuropsycological symptoms in asthma.
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Given its inhibition of GORD, local and systemic anti-

inflammatory effects, enhancement of cardiac function,

suppression of leptin levels, weight loss, and restoration of sleep

patterns, CPAP, as a first-line treatment for OSA, has a substantial

impact on the improvement of sleep disturbance in patients with

asthma (109). Ninety-nine asthmatic patients with OSA treated

with CPAP showed significant improvement in asthma symptoms

and sleep disorders after 6 months, but evaluating the efficacy of

CPAP treatment was exceedingly difficult because of the absence of

a healthy control group (110). In addition, adenoidectomy

combined with hormone inhalation, such as montelukast, can

alleviate sleep disorders in asthmatic children with OSA (111).

Neurocognitive rehabilitation training refers to the intervention

of related brain response to asthma by rehabilitation methods for

conventional cardiovascular and cerebrovascular diseases, which

only stays at the theoretical level and has not been reliably verified.

Family intervention therapy begins with the mental health status of

patients’ family members and seeks to alleviate related

psychological disorders in patients with asthma by fostering a

healthy family environment. Brown et al. suggested that a

reduction in melancholy among family caregivers could effectively

control the onset and progression of depression in children with

asthma (112). By contrast, conventional drug therapy, which

includes cortisol hormones, b-adrenergic agonists, etc., may have

varying effects on the nervous system because of their specific

modes, doses, frequencies, etc., and their benefits and drawbacks

contradict the conclusions of the current study. For example, early

inhalation of glucocorticoids, as mentioned previously, may

alleviate the anxiety symptoms of patients with asthma, but their

long-term use will worsen their cognitive impairment. Accordingly,

additional multicenter, randomized, double-blind, parallel

controlled studies must be conducted to investigate the duality of

drug effects in depth.
5 Summary and prospect

Through a systematic exposition of the incidence condition, the

inflammatory factors and neural circuits involved, and

corresponding treatment methods of neuropsycological symptoms

in asthma, we recognize that its pathogenesis is complex and may be

the result of a combination of multiple physiological and

pathological mechanisms. Furthermore, we summarize its

mechanism diagram in Figure 3: (1) A variety of cytokines are

produced during the inflammatory response to asthma afferent the

nervous system through the humoral pathway or neural pathway, of

which the humoral pathway refers to the penetration of

inflammatory factors through the BBB or periventricular organs

without the BBB into the brain region. In addition, the neural

pathway indicates the activation of sympathetic, parasympathetic,

and sensory nerves via immune inflammatory factors; the release of

multiple neuropeptides and neurotransmitters; and the excitation of

the corresponding electrical signals to change the stimulation of the

specific brain regions. (2) Inflammatory infiltration in the brain

region causes the activation and proliferation of microglia and

astrocytes as well as damages neurons, resulting in changes in the
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corresponding electrical activity of the brain, of which the brain

wave amplitude, frequency, PAC between brain regions, and

potential are affected. The feedback regulation of the

neuroendocrine axis is also initiated accordingly, which in turn

acts on related effectors in the lungs and worsens asthma symptoms.

(3) Neuroinflammation transmitted to the brain influences the level

of oxidative stress in the brain, and the equilibrium between

oxidative and antioxidant molecules is disrupted, resulting in

functional changes in specific brain regions. (4) Whether the

relationship between asthma and olfactory dysfunction is

mediated or directly related by nasal diseases lacks relevant

evidence. A summary of changes in brain network/activity,

mediators, and related brain regions involved in the response of

the brain in asthma is shown in Table 2 (12, 21, 31, 34, 37, 42, 44, 49,

53, 56, 58, 59, 68, 70, 72, 74, 78, 82, 97, 113, 114).

It cannot be ignored that not all cognitive dysfunction and mood

disorders (anxiety, depression) associated with asthma patients are

positively correlated with the level of pulmonary inflammation. For

example, asthma in elderly patients was negatively correlated with the

degree of cognitive impairment in a study of asthma patients of

different ages by Minna et al. and others have found a strong gender

bias in the distribution of asthma patients with anxiety, with

significantly more males than females and a positive correlation

with age (115, 116). More detailed studies have shown that asthma

control and the degree of airway obstruction during exacerbations do

not significantly associate with cognitive impairment in elderly

patients, and we hypothesize that the inflammatory state of the

body in asthma patients may be a contributing, rather than a

primary, factor in the development of cognitive deficits in the

elderly, but there is a lack of direct evidence to prove this (117). In

addition, in a study comparing anxiety and depression symptoms in

children with asthma before and after hospitalization, it was noted

that more than half of the children had a significant increase in

anxiety and depression, or even a combination of both, and that

nearly 26% of the children showed a persistent increase in adverse

moods at discharge follow-up after well controlled of lung symptoms.

It does not seem to be fully explained by the theory of the “lung-

brain” axis mediated by the neuroimmune crosstalk mechanisms that

we have summarized 4and may be associated with the patient’s own

degree of sensitivity and tolerance to the perception of symptoms

such as wheezing, also known as symptom-related anxiety/depression

(118, 119). To some extent, this suggests that the neuropsychological

symptoms induced in asthma patients may depend not only on the

severity of the asthma attack, which may reflect the level of

inflammation in the body, but may also be related to the delayed

response of the body to the deterioration of the disease, the stress of

hospitalization, and other stressful factors, that is to say, post-

traumatic stress disorder (PTSD) cannot be ruled out, especially in

the context of the Corona Virus Disease 2019 (COVID-19)

pandemic, the influence of the superimposed effect should not be

ignored (120). Thus, it is clear that multiple factors other than

neuroimmune mechanisms are involved in the development of

asthma-associated neuropsychological symptoms, which deserves

further investigation.

The “lung–brain” crosstalk phenomenon between asthma and

its brain response is governed by a biphasic regulatory mechanism,
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that is, the inflammatory response caused by asthma is transmitted

to the central and peripheral nervous systems through the

abovementioned pathways, which stimulates the synthesis and

release of neurotransmitters such as neuropeptides, which in turn
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can further bind to the corresponding receptors on the airway

surface to promote inflammatory progression and worsen asthma

symptoms. Unique occurrences, such as asthmatic mice,

accompanied by cognitive impairment, alleviate the inflammatory
TABLE 2 Summary of mediators, brain regions, brain networks, and brain activities involved in the development of brain responses to asthma.

Brain
Response

Mediators Associated
brain
region

Associated brain network/brain activity References

Multiple
neurological
phenotypes

(Not
specified)

CCL11(eotaxin-1) Microglia and
astrocyte in the
brain.

CCL11 triggers oxidative stress via microglial NOX1 activation and potentiates
glutamate-mediated neurotoxicity.

Parajuli B, et al.
(31)

(Continued)
FIGURE 3

Schematic presentation of the mechanism of neurological phenotypes associated with asthma. Various immune inflammatory factors produced
during the onset of asthma can reach the brain through humoral and neural pathways, inducing the production of corresponding brain response
through different mechanisms, as follows: (A) Feedback regulation of the neuroendocrine axis (e. g) HPA) is activated; (B) Microglia, astrocyte, etc.
are activated and proliferated, and neurons are damaged; (C) Brain wave amplitude, frequency, PAC between brain regions and potential are
affected; (D) Imbalance in expression of oxidative and antioxidant molecules leads to changes in oxidative stress levels in brain regions.
Theseneuropsycological symptoms further regulate the symptoms of asthma in turn, which forms a cycle. TSLP, the Thymic Stromal Lymphopoietin;
ILC2s, group 2 innate lymphoid cells; IFN-g, interferon-gamma; ICAM-1, intercellular adhesion molecule 1; VCAM-1, vascular cellular adhesion
molecule-1 (The figure is created by BioRender.com).
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TABLE 2 Continued

Brain
Response

Mediators Associated
brain
region

Associated brain network/brain activity References

Multiple
neurological
phenotypes

(Not
specified)

Leukocytes The cerebral
cortex.

The recruitment of leukocyte increases the level of oxidative stress in cerebral cortex
and induces neuronal damage.

Antunes GL,
et al. (113)

Multiple
neurological
phenotypes

(Not
specified)

Neural impulses
transmitted by
pulmonary receptors.

The NTS. The plasticity of postsynaptic neurons increases due to variations in the amplitude
and frequency of nerve impulses transmitted to the NTS by lung receptors.

Chen CY, et al.
(37)

Multiple
neurological
phenotypes

(Not
specified)

Airway
chemoreceptors and
pulmonary stretch
receptors
Information.

ACC, insula, the
brainstem, the
prefrontal
cortex and
spinothalamic
cortex.

Functional connectivity is formed between brain regions to regulate the respiratory
network and change the respiratory pattern.

Vafaee F, et al.
(12)

Multiple
neurological
phenotypes

(Not
specified)

IgE and NE. Hypothalamus
and pituitary
body.

The hypothalamus activates the sympathetic nervous system through the HPA axis to
release NE, which promote B cell to release IgE.

Pongratz G,
et al. (44)

Multiple
neurological
phenotypes

(Not
specified)

IL-5, GM-CSF, TNF-
a, IL-6 and
glucocorticoids.

Hypothalamus
and pituitary
body.

After activation of the HPA axis, glucocorticoids are released, leading to
downregulation of GR in the lung and a decrease in the body’s responsiveness to
glucocorticoids.

Bailey MT,
et al. (42)

Multiple
neurological
phenotypes

(Not
specified)

Histamine The cerebral
cortex.

Allergens under stress may increase the severity of the inflammatory response to
asthma by stimulating the release of histamine to activate histamine receptors (H1R
and H2R) in the brain region.

Miyasaka T,
et al. (49)

Cognitive
dysfunction

Inflammatory
cytokines

The
hippocampus.

Inflammatory factors activate microglia, promote the release of inflammatory
cytokines in hippocampus, and lead to lower levels of NAA and Glu in hippocampus.

Kroll JL, et al.
(21)

Cognitive
dysfunction

Not mentioned. Synaptic
structure in
cerebral cortex.

Synaptic degeneration biomarkers neurogranin and a-synuclein increase and the
degree of tau phosphorylation elevates.

Nair AK, et al.
(53)

Cognitive
dysfunction

IL-4, IL-5, and TNF-a. The cerebral
cortex and
hippocampus.

Inflammatory infiltration causes cerebral vascular edema, up-regulation of HIF-1a
and HIF-2a expression in brain tissue, and decreased synaptic plasticity in the
hippocampus.

Ren M, et al.
(56)

Cognitive
dysfunction

Inflammatory
cytokines

The
hippocampus.

Synaptic structure and maintenance of LTP were disrupted in the hippocampus,
while the expression of HIF-1a was up-regulated and the expression of c-FOS
protein was down-regulated.

Guo RB, et al.
(58)

Cognitive
dysfunction

Cortisol hormones The
hippocampus
and amygdala.

Chronic use of cortisol hormones results in greatly reduced volumes of the
hippocampus and amygdala.

Brown ES, et al.
(59)

Cognitive
dysfunction
and anxiety
disorders

IL-6, IL-17 and TNF-a The
hippocampus

Inflammatory infiltration in the hippocampus decreases levels of oxidative molecules,
increases levels of antioxidant molecules, oxidative/antioxidant imbalance, and
enhanced oxidative stress.

Bejeshk MA,
et al. (76)

Anxiety
disorders

IL-9, IL-13, IL-1b and
eotaxin.

The
hypothalamus.

Inflammatory factors alter the activities of AchE and Na +, K + -ATPase in brain
regions, resulting in increased ROS levels, up-regulation of BDNF expression and
down-regulation of GR expression.

Antunes GL,
et al. (34)

Anxiety
disorders

Inflammatory
cytokines

The
hypothalamic
paraventricular.

Inflammatory factors reach the hypothalamic paraventricular nucleus to activate
astrocytes and microglia, promote their release of g-aminobutyric acid, and enhance
the inflammatory response in the hippocampus.

Dehdar K, et al.
(68)

(Continued)
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response to relieve the symptoms of asthma. This review will

encourage more researchers to focus on the brain response and

its mechanism in asthma, and more in-depth studies can be

conducted on this topic to provide additional evidence for

guiding the diagnosis and treatment of asthma using the “lung–

brain” axis theory and new hope for enhancing the quality of life of

patients with asthma.
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TABLE 2 Continued

Brain
Response

Mediators Associated
brain
region

Associated brain network/brain activity References

Anxiety
disorders

Inflammatory
cytokines

The mPFC and
amygdala.

Inflammatory activation in brain regions resulted in abnormal changes in coupling
potentials between the mPFC-amygdala, with mPFC-amygdala delta/theta-gamma
PAC weakened, and amygdala-mPFC delta/theta-gamma PAC enhanced.

Dehdar K, et al.
(70)

Anxiety
disorders

IL-13, TNF-a, etc. The ACC and
BLA.

The arrival of inflammatory factors in brain regions increases the frequency of neural
oscillations in ACC and BLA, enhances PAC and functional connectivity in ACC-
BLA circuits and disrupts top-down and bottom-up regulation.

Gholami-
Mahtaj L, et al.
(72)

Anxiety
disorders

Inflammatory
cytokines

The ARA loop. Inflammation in brain regions decreases synchrony of the amygdala with respiratory
rhythms, disrupts the ARA circuit, and increases local phase power coupling between
d-g2 and q-g2 in the amygdala.

Dehdar K, et al.
(74)

Anxiety
disorders

IL-4, IL-5 and IL-13. The
hippocampus
and brainstem.

After the airway inflammation, brainstem SERT mRNA, hippocampal 5Htr1a and
Crhr1 expression are all ug-regulate.

Caulfield JI,
et al. (114)

Depression
disorders

IL-1b, IL-6, TNF-a
and NLRP3
inflammasome.

The
hippocampus,
mPFC and HPA
axis.

NLRP3-mediated inflammation in the lung activates the HPA axis, and excess
glucocorticoids released can lead to neuronal atrophy and reduced synaptic plasticity
in the hippocampus and mPFC, while excess IL-1b further reduces BNDF production
and neurogenesis in the hippocampus.

Ma M, et al.
(78)

Depression
disorders

Pro-inflammatory
cytokines and Th2-
related cytokines (IL-4,
IL-5, IL-13, etc.)

The cerebral
cortex.

Inflammation in the lung may lead to up-regulation of VEGF, c-FOS protein and
GFAP expression in brain regions, and mast cell activation in brain regions may
mediate the generation of depression-like behavior by affecting the function of related
brain regions.

Kanaya A, et al.
(82)

Sleep
disorders

Pro-inflammatory
cytokines

The SCN of the
hypothalamus.

Rhythm regulatory centers located in the SCN are activated upon sensing afferent
nerve impulses from pulmonary inflammation, activating the HPA axis and
autonomic nervous system, releasing glucocorticoids and other worsening asthma
symptoms.

Mavroudis PD,
et al. (97)
NE, norepinephrine; Glu, glutamate; GM-CSF, granulocyte-macrophage colony-stimulating factor; ARA, amygdala–respiration–amygdala; SERT, serotonin transporter; 5Htr1a, serotonin
receptor 1a; Crhr1, corticotropin releasing hormone receptor 1.
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Glossary

AR allergic rhinitis

fMRI functional magnetic resonance imaging

PAG periaqueductal gray

dVMHC dynamic voxel-mirrored homotopic connection

NO nitric oxide

BBB blood–brain barrier

CCL11 eotaxin-1

NOX1 nicotinamide adenine dinucleotide phosphate-oxidase 1

ROS reactive oxygen species

AchE acetylcholinesterase

Ach acetylcholine

NTS nucleus tractus solitarius

ACC anterior cingulate cortex

mPFC medial prefrontal cortex

LTA life-threatening asthma

PFC prefrontal cortex

HPA hypothalamic–pituitary–adrenal

GR glucocorticoid receptors

IgE immunoglobulin E

SP substance P

NPY neuropeptide Y

NAA N-acetylaspartate

HIF-1a hypoxia-inducible factor-1a

HDM house dust mites

AD Alzheimer’s disease

OVA ovalbumin

PAC phase–amplitude coupling

BLA basolateral amygdala

NLRP3 NOD-like receptor family pyrin domain-containing 3

BDNF brain-derived neurotrophic factor

VEGF vascular endothelial growth factor

GFAP glial fibrillary acidic protein

OSA obstructive sleep apnea

GORD gastroesophageal reflux disease

FEV1 forced expiratory volumes in one second

SCN suprachiasmatic nucleus

CRS chronic rhinosinusitis

CPAP continuous positive airway pressure

(Continued)
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CBT cognitive behavioral therapy

GCBT group cognitive behavioral therapy
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