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Oncostatin M (OSM) is a pleiotropic cytokine involved in a variety of inflammatory

responses such as wound healing, liver regeneration, and bone remodeling. As a

member of the interleukin-6 (IL-6) family of cytokines, OSM binds the shared

receptor gp130, recruits either OSMRb or LIFRb, and activates a variety of

signaling pathways including the JAK/STAT, MAPK, JNK, and PI3K/AKT

pathways. Since its discovery in 1986, OSM has been identified as a significant

contributor to a multitude of inflammatory diseases, including arthritis,

inflammatory bowel disease, lung and skin disease, cardiovascular disease, and

most recently, COVID-19. Additionally, OSM has also been extensively studied in

the context of several cancer types including breast, cervical, ovarian, testicular,

colon and gastrointestinal, brain,lung, skin, as well as other cancers. While OSM

has been recognized as a significant contributor for each of these diseases, and

studies have shown OSM inhibition is effective at treating or reducing symptoms,

very few therapeutics have succeeded into clinical trials, and none have yet been

approved by the FDA for treatment. In this review, we outline the role OSM plays

in a variety of inflammatory diseases, including cancer, and outline the previous

and current strategies for developing an inhibitor for OSM signaling.

KEYWORDS
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1 Introduction

Oncostatin-M (OSM) is an interleukin-6 (IL-6) family cytokine first isolated in 1986

from human histiocytic lymphoma U937 cells (1). It was initially identified as a cytostatic

protein for melanoma cells, thus deriving its name (‘onco’ for cancer and ‘statin’ for

inhibitor) (1). Other than OSM, the IL-6 family members consist of the parent protein IL-6,

leukemia inhibitory factor (LIF), IL-11, IL-27, cardiotrophin-1 (CT-1), ciliary neurotrophic

factor (CNTF), and cardiotrophin-like cytokine factor 1 (CLCF1). The human OSM gene

encodes for a 2 kb mRNA transcript that is translated and cleaved into a soluble 227 amino

acid pro-OSM polypeptide with a 28 kDa molecular weight (2). Mature OSM is synthesized
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after a C-terminal cleavage of 31 amino acids, yielding a 196 amino

acid, ~22kDa protein (3, 4). OSM, like all other IL-6 family

members, has a crystal structure consisting of a four alpha-helical

up-up-down-down configuration (5). LIF and OSM are structurally

and genetically the most similar members of the IL-6 family,

resulting from an ancestral gene duplication event (6). Similar to

other IL-6 family cytokine members, OSM utilizes the shared

receptor protein membrane glycoprotein 130 (gp130; also known

as IL-6Rb) and a unique receptor protein to create a complete

signaling receptor complex (7–10). In the case of OSM, it possesses

the capability to interact and transduce signaling through two

separate complexes (7–10). OSM first binds to the extracellular

cytokine-binding homology region (CHR) domain of gp130 with a

high affinity (~10-8 M) and subsequently recruits either the

leukemia inhibitory factor receptor beta (LIFRb) or oncostatin M

receptor beta (OSMRb); to form either a type I or type II receptor

complex (LIFRb/gp130 and OSMRb/gp130, respectively)

(Figures 1A, B) (11–16). While the OSMR (type II) complex has

been studied extensively in various human cell lines, it remains
Frontiers in Immunology 02
unclear how OSM interacting with the LIFR (type I) complex affects

signaling or disease progression; however, recent research has

indicated that OSM binds to LIFR with significantly lower affinity

than its specific receptor (17, 18). After binding to the OSMR

complex, several signaling pathways are activated, including the

Janus-activated kinase/signal transducer and activator of

transcription 3 (JAK/STAT3), the mitogen-activated protein

kinase/extracellular regulator kinase (MAPK/ERK), the c-Jun N-

terminal Kinase (JNK), and the phosphatidylinositol-3-kinase/

protein kinase B (PI3K/AKT) pathways (Figure 1C) (19–21). To a

lesser extent OSM signaling may also activate additional STAT

proteins, including STAT1 and STAT5, depending on the cell type

(22, 23). OSM is synthesized and secreted by a variety of cells;

primarily activated macrophages, monocytes, T cells, dendritic cells,

and neutrophils (1, 2, 24). OSM acts in a pleiotropic fashion,

contributing towards a variety of physiological functions such as

hematopoiesis, stem cell differentiation, liver regeneration, and

inflammation. While some of these effects are similar to other IL-

6 family members, many are unique (5, 11, 15). Over the course of
FIGURE 1

OSM activates multiple signaling cascades. (A) OSM binds to gp130 and then recruits LIFRb to form a type I complex (LIFR). (B) OSM binds to gp130
and then recruits its major receptor complex subunit OSMRb to form a type II complex. (C) Visual representation of the signaling pathways used by
OSM type II complex. Created with BioRender.com.
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the last 30 years OSM has been demonstrated to play a significant

role in a variety of processes and diseases, yet successful

development of an anti-OSM clinical therapeutic has not yet

reached FDA approval despite mounting evidence that such a

therapeutic is necessary for a multitude of diseases. In this review,

we will describe: i) the different roles that OSM plays within the

human body regarding its function in inflammatory diseases; ii) the

role of OSM in multiple cancer types; and iii) a detailed analysis of

current targeted therapies designed to disrupt OSM signaling.
2 OSM in diseases

A significant difficulty with developing treatment strategies to

block OSM stems from the pleiotropic nature of the cytokine. As

indicated in Table 1, OSM has a variety of positive and negative

effects on several diseases in the body. Systemic inhibition of OSM

signaling in the body for extended periods of time may be beneficial

with respect to some diseases, but detrimental in cases that rely on

the proinflammatory response for healing. This section will describe

the role OSM plays in a variety of diseases.
Frontiers in Immunology 03
2.1 Arthritis

Arthritis is a disease referring to chronic inflammation in one or

more joints of the body, with the two most common and studied

types being: rheumatoid arthritis and osteoarthritis. Rheumatoid

arthritis (RA) is a chronic autoimmune disease involving

inflammation of the lining of joints. It has been shown that the

presence of OSM and another proinflammatory cytokine,

interleukin-1b (IL-1b), play an important role in development of

the rheumatoid joint (25, 26). In multi-cell culture systems, OSM-

mediated signaling has been identified as an initiator of extracellular

matrix (ECM) turnover as well as human cartilage degradation;

potentially though the secretion of matrix metalloproteinase

(MMP) -1 and -13 (23). Through regulation of various

proinflammatory mediators, OSM in rheumatoid arthritis

synovial fibroblasts (RAFLS), increases the detrimental effects of

tumor necrosis factor alpha (TNFa) via activation of STAT3

signaling (27). Inhibition of JAK/STAT signaling with tofacitinib

(a JAK inhibitor) resolved inflammation through metabolic

reprograming of biopsied RALFS (28). In vivo studies

demonstrated that both collagen-induced and pristane-induced
TABLE 1 OSM in Diseases.

Disease Type Impact of OSM References

Diseases associated with OSM signaling

Arthritis Rheumatoid and Osteoarthritis ECM turnover, cartilage degradation, osteoblast proliferation/
differentiation

(23, 25–32)

Bone Neurogenic Heterotopic Ossification Osteoclast/osteoblast imbalance (33–37)

Inflammatory Bowel Disease Chron’s Disease, Ulcerative Colitis Presence in intestinal mucosal cells signify anti-TNF therapy resistance (38–45)

Lung Diseases Pulmonary Fibrosis, Asthma ECM and Pro-fibrotic macrophage accumulation, airway remodeling (46–50)

Cutaneous Inflammatory
Diseases

Psoriasis, Atopic Dermatitis Increase in keratinocyte proliferation and differentiation (51–57)

Oral Disease Gingivitis, Periodontal Disease Increase presence and activation of Th1 cells (58–62)

Liver Diseases Fibrosis, Cirrhosis Increased TIMP-1 expression, reduction in fibrinolysis, increase in
myofibroblasts

(63–72)

Central Nervous System
Disorders

HIV-1 Associated Neurocognitive
Disorders, Alzheimer’s

Inhibits glutamate uptake, BBB impairment (73–77)

Heart Atherosclerosis Proinflammatory response in smooth muscle cells (78–86)

COVID-19 Cytokine Storm Present in Cytokine Storm associated with severe COVID-19 infection. (87–91)

Cancer Many Tumor cell detachment, invasion, metastasis See Table 2

Normal conditions associated with OSM signaling

Liver Regeneration, development, acute
injury

Hepatocyte differentiation, proliferation, tissue remodeling (63–72)

Bone Bone homeostasis, fracture repair Osteoblast differentiation/proliferation (33–37)

Central Nervous System Multiple Sclerosis, Spinal Cord Injury Increase TIMP-1 and MCL-1 expression, remyelination, neuroprotective
effects

(73–77)

Heart Post myocardial infarction Increase in angiogenesis, dedifferentiation (78–86)

Wound Healing Early Wound Healing, Scar Formation Neutrophil recruitment, excessive scar prevention (92–95)

Pregnancy Placental development, Trophoblast
invasion

Increase MMP2/9, regulation of HCG (96–98)
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arthritis mouse models, showed significant improvement in severity

(p<0.01) and number of affected paws (p<0.01) when administered

an anti-OSM antibody (29). In response to the strong association of

OSM with RA, two clinical therapeutics have entered clinical trials

(GSK315234 and GSK2330811) discussed in further detail below

(see Anti-OSM Therapeutics).

The effects of OSM are not limited to rheumatoid arthritis, as

studies have shown its effects in the development of the much more

prevalent osteoarthritis (OA). OA is characterized by articular

cartilage destruction and an inflammatory response due to

mechanical wear on joints (30). In vitro analysis in primary OA

osteoblasts has demonstrated that degradation and inflammation

could be due to endothelin-1 (ET-1) trans-activating OSM via Ets-1

(31). Increased levels of OSM in synovial tissues induce bone

formation through osteoblast proliferation and differentiation

following cartilage degradation by inhibition of Notch signaling

(32). Currently no clinical trials have evaluated the efficacy of anti-

OSM therapeutics for OA.
2.2 Bone

OSM signaling regarding bone tissue is complicated, as there is

evidence to suggest benefit and harm from its activation. It is well

known that OSM induces differentiation of mesenchymal stem cells

(MSCs) into osteoblasts though the STAT3 signaling pathway (17,

33, 34). This can be beneficial in respect to new bone formation in

osteoporosis and arthritis as well as remodeling of bone during

fracture repair (33). However, there is significant research

suggesting that OSM has an overall negative effect in respect to

bone. While osteogenesis is being stimulated, the anabolic signal

suppresses the reabsorption signal-controlled receptor activator of

nuclear factor-kappa beta ligands (RANKL) signaling, repressing

osteoblast-mediated osteoclast differentiation in bones (34). OSM-

mediated STAT3 signaling has also been associated with the

development of neurogenic heterotopic ossifications, which is the

formation of bone tissue in periarticular muscles, an incapacitating

complication of traumatic brain and spinal cord injuries (35). Other

studies have indicated that STAT3 signaling through OSM is

necessary for osteoclast formation and subsequent bone

resorption (36, 37). It is clear that OSM plays a role in bone

remodeling, however there is evidence suggesting it promotes the

differentiation of both osteoblasts and osteoclasts, leading to some

potential questions about the true effects of OSM signaling

among bones.
2.3 Inflammatory bowel disease

Inflammatory bowel disease (IBD) is a collective term describing

disorders that involve chronic inflammation of the small intestine.

The two main forms of IBD are ulcerative colitis (UC) and Chron’s

disease (CD) (38). It has been demonstrated that OSM andOSMR are

overexpressed in many IBD lesions (39). While anti-tumor necrosis

factor alpha (TNFa) antibodies such as infliximab, adalimumab,

certolizumab, and golimumab have long been available as treatment
Frontiers in Immunology 04
strategies for CD and UC, they are far from perfect. Approximately

one third of patients do not respond to infliximab initially, and

between 23% and 46% develop resistance to anti-TNFa therapies

within 12 months of treatment (40, 41). A recent retrospective cohort

study demonstrates that patients with increased levels of OSM had a

lower chance of remaining in remission 1 year after starting anti-

TNFa therapies (42). There are other IBD treatment options

available, some of the more viable options include JAK/STAT

inhibitors, indicating OSM inhibition upstream may be beneficial

(43). In a study analyzing over 200 patients with IBD, those with high

OSM and OSMR expression before treatment with infliximab

demonstrated reduced efficacy of the therapy from 69-85% to just

10-15% (39). In vivo IBD mouse studies comparing wildtype and

Osm-/- showed that lack of OSM signaling led to a decrease in overall

pathology (p<0.0001), leukocyte infiltration (p<0.0001), epithelial

and goblet cell disruption (p<0.0001), area affected (p<0.0001), and

severity of disease features (p<0.0005) (39). Additionally, OSM has

been shown to mediate STAT3-dependent upregulation of serin

protease inhibitors (SERPINS), which have anti-apoptotic effects in

intestinal epithelial cells that lead to inflammation and a disrupted

intestinal epithelial barrier (44). Recent studies have also shown that

the use of berberine, an isoquinoline alkaloid used to treat chronic

UC, interferes with the production of OSM from T cells, neutrophils,

dendritic cells, andmacrophages, as well as inhibiting OSM activation

of stromal cells and recruitment of immune cells (45). As seen in

other diseases with inflammation as a hallmark, OSM signaling is a

key component in disease pathogenesis, and in this case, it also

appears to interfere with pharmacological treatments.
2.4 Lung diseases

OSM plays an important role in the development and

progression of pulmonary fibrosis and chronic lung inflammatory

diseases such as asthma. OSM levels are upregulated in patients

with pulmonary fibrosis, due to increased lung inflammation as well

as accumulation of ECM proteins (46). Evidence suggests that an

increase in OSM and IL-6 leads to the accumulation of profibrotic

macrophages, in turn increasing bleomycin-induced lung fibrosis

(47). Chronic inflammatory diseases of the lung such as asthma also

showed a significant increase in OSM expression (48). In severe

asthma, poor disease prognosis is characterized by an increase in

number of epithelial mucus producing cells, peribronchial fibrosis,

and smooth muscle contractility through follistatin-like 1 induction

of OSM expression (49). Recent studies have also demonstrated that

overexpression of OSM leads to an increase in resistin-like molecule

alpha in airway epithelial cells, leading to rearrangement of the

ECM in mouse lungs (50). The increase in OSM signaling in the

lungs with respect to these chronic inflammatory diseases

demonstrates its potential to be used as a therapeutic target.
2.5 Cutaneous inflammatory diseases

Being the human body’s largest organ, and our first line of

defense, the skin plays an important role in inflammatory processes
frontiersin.org
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and responses. Diseases such as psoriasis and atopic dermatitis are

chronic inflammatory skin diseases that affect over 7.5 million

individuals within the United States and are characterized by

keratinocyte hyperplasia, proliferation, and altered differentiation

(51, 52). These diseases demonstrate an increase in skin infiltrating

T lymphocytes that lead to secretion of OSM and an increase in

OSMRb on keratinocytes, increasing keratinocyte activation

through STAT3 signaling (52). When OSM is overexpressed in

the skin, its proinflammatory effects have been demonstrated both

in vitro and in vivo (53). Studies conducted in mice show that

intradermal injection of OSM, but not IL-6, regulates the expression

of genes responsible for skin inflammation and epidermal

differentiation, including S100A8/9, cytokeratin-10, filaggrin, and

a number of other cytokines (52). Additionally, OSM has recently

been identified as a significant contributor to chronic pruritus

(itching). Tsen and Hoon et al. discovered that OSMRb is

preferentially expressed by itch-selective sensory neurons and that

OSM can directly modulate itch-selective neurons during chronic

skin inflammation (54). Functional studies showed that OSM acts

in a unique fashion compared to other pruritogens, being that OSM

causes potentiation of neural response to pruritogens and that OSM

increases sensitization of sensory neurons, resulting in tonic action

potential firing of itch-selective neurons. Another study showed

that OSM and IL-31 stimulate dermal cells expressing IL-31RA and

OSMRb, which may further promote itch and inflammation in

patients with prurigo nodularis, a chronic skin dermatosis (55).

Scleroderma is an inflammatory autoimmune disease that is

characterized by increased activation of fibroblasts leading to

accumulation of connective tissue that results in chronic

inflammation on the surface on the skin and internal organs (56).

Elevated OSMRb levels have been found in fibroblasts as well as

dermal endothelial cell of scleroderma patients. In vitro of human

dermal microvascular endothelial cells treated with OSM and IL-6

displayed induced cell migration and proliferation, as well as

stimulation of proinflammatory genes, and genes associated with

endothelial to mesenchymal transition including STAT3, ET-1, zinc

finger protein SNAI1 (SNAIL1), transforming growth factor-b 3

(TGFb3), and its receptor TGFb3R (57). There is currently a clinical

trial for a monoclonal antibody against OSM, in patients with

systemic scleroderma, which will be discussed in greater detail in

Anti-OSM therapeutics.
2.6 Oral diseases

OSM and other cytokines play an important role in the

progression of periodontal disease, a gum infection typically

caused by poor brushing and flossing habits. In studies

investigating levels of OSM in patients’ gingival crevicular fluid,

OSM concentrations increase as disease severity progresses from

early-stage disease to chronic periodontitis (58–60). Another study

focused on T-helper type 1 (Th1) cells, which have detrimental

effects in regard to periodontal disease through the stimulation of

alveolar bone loss (61). OSM and IL-1b together increased the

expression of chemokine (C-X-C motif) ligand 10 (CXCL10), a

chemokine related to Th1 cell migration, as well as intracellular
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adhesion molecule 1 (ICAM-1) that is important in retention and

activation of Th1 cells in inflamed tissue (62). CXCL10 and ICAM-

1 expression were both suppressed when inhibitors of NF-kB and

STAT3 were introduced, indicating that OSM-mediates STAT3

signaling and IL-1b-mediated NF-kB signaling may promote

infiltration and retention of Th1 cells, leading to periodontal

disease (62). Overall OSM signaling continues to demonstrate

negative downstream effects through activation of several different

signaling molecules.
2.7 Liver

Inflammation is a key driver in liver disease, and it has been

demonstrated that OSM plays a profibrogenic role in the

progression of chronic liver disease (63–65). Administration of

OSM to human hepatocellular HepG2 cells in culture increased

expression of GP73 (a glycoprotein biomarker for cirrhosis and

hepatic cell carcinoma), indicative of the effects OSM has on

promoting chronic liver disease progression (63). OSM’s role in

fibrosis is characterized by promoting the expression of tissue

inhibitor of metalloproteinase 1 (TIMP-1), which both suppresses

fibrinolysis in hepatic stellate cells (HSCs) as well as promotes

fibrogenesis through induction of Type 1 collagen expression (64).

Recent research also suggests that OSM promotes fibrosis in non-

alcoholic fatty acid liver disease (NAFLD) through stimulating

migration of hepatic myofibroblasts (MFs) that originate from

HSCs (65). A recent study analyzed serum levels of 83 patients

with NAFLD and non-alcoholic steatohepatitis (NASH) who also

have hepatocellular carcinoma (HCC) and found that the presence

of HCC further increased OSM concentrations (66). It has also been

found in chronic hepatitis C that antigen presenting cells release

OSM following interaction with CD40L present on active CD4+ T

cells (67). This OSM does not result in a large notable effect, as

OSMRb and LIFR expression is also downregulated both in vitro

and in patients with chronic hepatitis C; however, the increase in

ligand is thought to be noteworthy (67).

In addition to affecting liver fibrosis and progression of chronic

liver disease, OSM also plays an important role in liver regeneration

(64, 68–71). Following acute liver injury, it is primarily oval cells

that are responsible for liver regeneration (72). More research has

shown that OSM is able to induce the differentiation of these oval

cells into hepatocytes in vitro (69). In vivo studies demonstrated that

OSMRb knockout mice had impaired hepatocyte proliferation and

tissue remodeling following induced liver injury, indicating its

importance in regeneration (71). Furthermore, administration of

OSM in wild type mice mitigated liver injury through prevention of

apoptosis and tissue destruction (71). It was also demonstrated that

OSM gene therapy in rats effectively increases proliferation and the

anti-apoptotic effects of on hepatocytes, leading to liver

regeneration (70). Through the upregulation of hypoxia-inducible

factory 1 a (HIF1a) and HIF1 transcription, OSM demonstrates its

importance as an upstream mediator of vascular endothelial growth

factor (VEGF) and plasminogen activator inhibitor 1 (PAI1), both

of which are important for angiogenesis and tissue remodeling

respectively (68). While OSM does appear to play an important role
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in regeneration following acute liver injuries, continuous activation

of OSM has a very different effect with respect to fibrosis and

chronic liver disease suggesting its prolonged presence may

be harmful.
2.8 Central nervous system

In diseases related to the central nervous system, research has

indicated that OSM plays various roles with both detrimental and

beneficial outcomes. Studies have been conducted displaying

various negative effects that OSM has on the central nervous

system. Diseases such as HIV-1-associated neurocognitive

disorders and Alzheimer’s disease have displayed elevated levels

of OSM (73). Specifically, through JAK/STAT3 signaling, OSM

inhibits glutamate uptake in astrocytes resulting in neuronal

excitotoxicity (73). OSM also induces blood brain barrier

impairment in mice, through prolonged STAT3 signaling in

pericytes (74). As discussed previously, STAT3 activation initiated

through OSM signaling in vivo has also been shown to increase

neurogenic heterotrophic ossifications in damaged muscles

following spinal cord injuries (35).

In diseases characterized by the loss of myelination such as

multiple sclerosis, overexpression of OSM has been shown to

mediate the expression of tissue inhibitor of TIMP-1, promoting

a beneficial remyelination (75). Following mild and severe spinal

cord injuries, elevated OSM signaling results in improved recovery

and neuroprotective effects by promoting neurite outgrowth,

increasing serotonergic fiber plasticity, and protecting primary

neurons from cell death (76). OSM also stimulates the expression

of myeloid cell lukemia-1 (MCL-1), in turn enhancing

mitochondrial bioenergetics and increasing neuroprotective effects

against 3-nitropropionic acid in cortical neurons (77). The

pleotropic nature of OSM is clearly demonstrated with respect to

the central nervous system, especially concerning the inflammatory

response following spinal cord injuries.
2.9 Heart

When it comes to function of the heart, research has indicated

that OSM plays various roles with both detrimental and beneficial

outcomes. Regarding atherosclerosis development and progression,

the vast majority of research suggests that prolonged STAT3

activation through OSM signaling has a negative impact on

arterial vessels, which leads to atherogenesis (78–81). However,

one recent study showed that chronic OSM administration in mice

reduced atherosclerosis development, and patients with higher

levels of serum OSM had improved coronary heart disease

survival probability (82). This differing research continues to

cloud the role OSM plays in the heart.

Cardiomyocytes are the workhorse of the heart, and OSM plays

a key role in the dedifferentiation of cardiomyocytes (83, 84). This

dedifferentiation leads to protective effects during and following

acute myocardial infarction (MI) (83–85). Knockout of OSM

signal ing fol lowing MI in mouse models suppressed
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cardiomyocyte dedifferentiation, resulting in decreased heart

function, while OSM treatment induced remodeling, stem cell

marker expression, and improved cardiac function (84).

Inhibition of OSM treatment reduced cardiomyocyte function

following MI, however, improved performance in dilated

cardiomyopathy (DCM) indicates negative effects of OSM long-

term (84). Other studies done in mice have shown that OSM

increases cardiac function following MI through the inhibition of

apoptosis and fibrosis, while stimulating angiogenesis. OSM treated

mice had significantly increased capillary density as well as

increased expression of pAKT and the angiogenic factors, VEGF

and basic fibroblast growth factor (bFGF) (85). More in vivo studies

have indicated that OSM alleviates post MI dysfunction by

enhancing cardiomyocyte autophagy through the inhibition of

mammalian Ste20-like kinase 1 (Mst1) (86). Activation of Mst1

has been shown to cause (DCM) as well as inhibit cardiomyocyte

autophagy (86). OSM signaling is a crucial component to the heart’s

response to acute stressors, but when its presence is prolonged, it

can have other effects.
2.10 Wound healing

It is well known that following almost any cut or abrasion an

inflammatory response is triggered. OSM has been shown to be an

important player in the early stages of the wound healing process

under normal and diabetic-impaired healing conditions in vivo

(92). This increase in OSM at the site of inflammation has been tied

to the early influx of polymorphonuclear neutrophils into the

wound site, but if OSM is around for too long it can actually

impair the healing process in chronic diabetic wound conditions

(92). Other studies have demonstrated the role OSM has in the

scarring process (93, 94). Hypertrophic and keloid scars are both

abnormal wound responses to trauma, inflammation, surgery, or

burns. Keloid scars are typically considered worse than

hypertrophic scars as keloid scars often increase in size, can

develop months after surgery, and fail to improve appearance

over time even with surgical intervention (93). Increased levels of

OSM have been found in hypertrophic scars but not keloid scars,

and it has been demonstrated that the increase in OSM served as

protection against excessive scarring through suppression of

TGFb1-induced ECM protein expression (94). Other studies have

shown similar benefits that OSM has in respect to late and early

wound healing, differentially demonstrating an anti-inflammatory

effect (95). It again seems that in the case of wound healing and

scarring, more research is needed to clarify the contributions

of OSM.
2.11 Pregnancy

A lot of changes take place in a person’s body during pregnancy.

Studies done in humans have shown OSM is present in high

concentrations in pregnant women when compared to non-

pregnant women, as well as in placental tissue in all three

trimesters (96). OSM is especially relevant in the early stages of
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pregnancy through the upregulation of human chorionic

gonadotropin, demonstrating importance in placental endocrine

function (96). Through STAT3 and ERK1/2 signaling, OSM and

LIF are responsible for trophoblast invasion and placental

development, both important steps in the early stages of

pregnancy (97). In vitro studies show trophoblast invasion is

induced through the upregulation of matrix metalloprotease 2

(MMP2) and MMP9 by both OSM and LIF, either synergistically

or separately, in some but not all cell types used (97). Other studies

also suggest that OSM increases protein expression and enzymatic

activity of MMP2 and MMP9, leading to the invasion of primary

trophoblasts through STAT3 signaling under hypoxic conditions

typically found during trophoblast invasion in early pregnancy (98).

While OSM presence is increased during pregnancy and is a known

STAT3 activator, there is more research suggesting LIF signaling is

primarily responsible during early pregnancy.
2.12 Cytokine storm and COVID-19

The coronavirus disease 19 (COVID-19) is caused by the novel

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

and has sparked a global pandemic since its introduction in humans

in late 2019. It is well known that cytokines play an important role

in developing an innate immune response during viral infection.

There has been evidence suggesting that cytokine storms,

characterized by an excessive and dysregulated immune response,

play a significant role in pathogenesis of SARS-Cov-2 infection (87–

89). Retrospective research studies conducted around the world

have shown that a hyperinflammatory state, indicated by the

presence of IL-6, IL-10, and TNF-a, is a significant predictor of

mortality (89). A different study found increased OSM along with a

number of other inflammatory proteins present in lung and spleen

tissue in 13 postpartum subjects with fatal COVID-19 infections

(90). Other retrospective studies done in Hong Kong and Atlanta

Georgia have demonstrated an increase in cytokines and

proinflammatory mediators such as IL-6, TNSF14, EN-RAGE,

and OSM are correlated with disease severity (91). While there is

a lot to be said about the role of cytokines in COVID-19, OSM’s role

has yet to be fully elucidated.
3 OSM in cancer

As previously stated, the pleiotropic nature of OSM causes it to

exert differing effects on various cell types. While OSM has been

investigated in a multitude of diseases, a particular area of interest is

cancer biology. In the tumor environment, OSM often acts in a

deleterious fashion through multiple different mechanisms, though

it is noted that OSM can have a positive effect on specific cancer

types, making it a particularly interesting cytokine to study (99–

101). In this section, we will provide a thorough analysis of the role

OSM plays in a multitude of cancers. Table 2 provides a list of the

cancers that will be discussed in the following section.
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3.1 Breast

Breast cancer is the most common cancer among women, and

the second leading cause of cancer-related deaths in the United

States. While OSM has historically been identified as an inhibitor of

breast cancer proliferation (15, 102, 103), overexpression of OSM

and OSMRb has been linked to decreased overall survival,

decreased reoccurrence-free survival and decreased metastasis free

survival in breast cancer patients (104–107). Immunohistochemical

analysis in benign human breast lesions have shown low expression

of OSMRb (11.7%) and gp130 (23.5%) proteins. However, in

infiltrating carcinomas; high expression of OSMRb (77.5%) and

gp130 (74.1%) proteins have been seen, with OSM localized in 100%

of tumor samples studied (107). At the molecular level, OSM via

STAT3 signaling has been shown to inhibit c-Myc expression in

human mammary epithelial (HMEC) cells, but constitutively

overexpressing c-Myc HMEC cells gain the capacity for

anchorage-independent growth in the presence of OSM-mediated

PI3K-AKT signaling, suggesting c-Myc acts as a molecular switch to

alter response of mammary epithelial cells (108). OSM has also been

shown to promote a cancer stem cell (CSC)-like phenotype and pro-

survival phenotype for breast cancer cells (36, 109). It can also

create a pre-metastatic environment in bone by inducing osteoclast

differentiation, increasing the possibility of bone metastases for

breast cancer cells expressing a high level of OSM suggesting that

the role of OSM in breast cancer is not tumor proliferation, but

rather migration and invasion (36, 110, 111).

Examining patient tissue using microarray analysis, OSM

expression was revealed to be the highest in patients with ductal

carcinoma in situ (DCIS) (109). This highlights the possible role

that OSM could have in progressing early grade tumors. Paracrine

and autocrine signaling of OSM has been shown in vivo to increase

the amount of circulating tumor cells (CTC), epithelial to

mesenchymal transition (EMT), as well as increased metastasis to

lungs and decreased survival (109). OSM can also induce CD44 high/

CD24low phenotype allowing OSM to promote a CSC- like property,

as well as increase detachment and migration of ER+ cells, while

EMT remains independent of CD44 induction (112).

Recently, there has been increasing evidence that OSM operates

differently in the varying subtypes of breast cancer (104, 106). At

diagnosis, breast cancer patients are categorized into different

subtypes based on expression of three receptors: estrogen

receptor-alpha (ERa), progesterone receptor (PR), and human

epidermal growth factor receptor 2 (HER2) (113–120). ERa
status is important for clinical management of breast cancer since

tumor cells that are ERa+ are usually less aggressive and can be

treated with endocrine therapies (121). OSM has shown the ability

to downregulate the expression of ERa, which in turn increases the

OSM signaling cascade and migratory effects that its pathways have

in vitro (105). In vivo, high OSM expression was correlated with

decreased ERa (p < 0.01) and PR (p < 0.05) expression, and a

shorter reoccurrence-free survival (p < 0.0001) (105). OSM has also

been shown to promote secretion of IL-6 in ERa- cells and not in

ERa+ cells, further suggesting that OSM plays unique roles in ERa+
versus ERa- breast cancer (104, 106). This illustrates that OSM can
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increase the metastatic potential of breast cancer cells as well as

make them more difficult to treat in a clinical setting.

Triple negative breast cancers (TNBCs) are highly aggressive,

metastatic, and therapeutically difficult to treat due to their lack of,

or low expression of receptors commonly targeted for therapeutics

(122, 123). It has been shown that patients with TNBC and high

OSM expression have a greater abundance of cells with a cancer

stem cell (CSC) phenotype due to OSM/STAT3/SMAD3 signaling,

which promotes growth of the tumor and leads to poor clinical

outcomes for patients (111, 124). Similar research also evaluated

OSM-mediated MEK/ERK signaling and found that blocking ERK

abolished the growth inhibition characterized by OSM, but only in

triple-negative MDA-MB-231 cells (21). Interestingly, interferon-

b (IFN-b) can repress this OSM-mediated tumor initiation and

CSC phenotype, but mRNA of endogenous IFN-b is repressed
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directly by OSM. IFN-b is suggested as a possible therapeutic to

OSM in TNBCs, following a more comprehensive investigation of

the relationship between these two cytokines (125). OSM can also

perpetuate a chronic inflammatory environment that is

detrimental to the prognosis of breast cancer patients due to the

recruitment and/or induction of other inflammatory cytokines

that are known to promote a metastatic phenotype in breast

cancer. Induction of IL-6 is directly caused by the synergistic

effects of both OSM and IL-1b (106). Analysis of The Cancer

Genome Atlas (TCGA) breast cancer dataset shows that these

three cytokines in high concentrations lower patient’s survival rate

(p < 2.2x10-23) (106).

The tumor microenvironment (TME) plays a large role in the

progression of breast cancer, through the complex interactions of

tumor cell-to-cell communications, secretions of infiltrating
TABLE 2 OSM in Cancer.

Location Cancer Type Impact of OSM Reference

Pro-tumorigenic Effects of OSM

Breast Ductal Carcinoma Overexpression linked with poor prognosis and creates a more CSC phenotype;
Increases EMT, motility, invasion, and metastasis; Recruits neutrophils and
surrounding tissue to express OSM

(20, 102–135)

Cervical Squamous Cell Carcinoma OSMRb overexpression leading to EMT and increased skeletal metastasis (135–143)

Ovarian Epithelial Carcinoma Auto/paracrine signaling loop in malignant OC; Increased proliferation, and metastasis
dependent on STAT3 Increase in keratinocyte proliferation and differentiation

(144–148)

Prostate Ductal Adenocarcinoma Increased VEGF and u-PA expression and induced EMT in prostate epithelial cells (149–155)

Testicular Leydig Cell Carcinoma Upregulation of OSM in functioning neoplasms (156, 157)

Colon Adenocarcinoma More advanced and aggressive CRC have higher OSM serum level and lower survival;
OSMRb polymorphisms

(158–163)

Gastrointestinal Adenocarcinoma Differential expression of OSM in the grades of GI cancers could be used as biomarker. (164–169)

Pancreatic Ductal Adenocarcinoma Overexpressed OSM in the serum, causes EMT, and greater metastasis to the lung in
vivo dependent on STAT3

(170–175)

Bladder Urothelial Genetic mutations can cause an overexpression of the OSMRb, leading to increased
signaling

(176–178)

Lung Adenocarcinoma Induce EMT, increase fibroblast activation, OSMRb overexpression is correlated to
poor prognosis

(179–187)

Brain Astroglioma, astrocytoma, adenoma,
glioblastoma, glioma, medulloblastoma,
meningioma

Three-fold increase in VEGF, seven-fold when in conjunction with IL-1b (52, 182–184,
188–198)

Squamous Cell
Carcinoma

Cutaneous & Oral Squamous Cell
Carcinoma

Promotes proliferation, migration, and inflammation in vitro and in vivo (199–210)

Kaposi’s
Sarcoma

Sarcoma Mitogen and autocrine growth factor, promoter of bFGF (4, 136, 211–
217)

Misc. Sarcomas Osteosarcoma, Chondrosarcoma, Ewing
Sarcoma

Increased MMP2, VEGF, and proliferation (218–227)

Melanoma Melanoma Antigen-silencing, resistance to inhibitory OSM singling in > Stage 3 patients (225, 228–
240)

Anti-tumorigenic Effects of OSM

Multiple Chondrosarcoma Cell cycle arrest through JAK3/STAT1 signaling, decreased proliferation and enhanced
apoptosis

(225)

Skin Melanoma Activates STAT5B and MAPK inhibiting proliferation; Increased SOCS3 with decreased
OSMRb expression

(225, 228–
240)
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immune cells, and communications of surrounding tissues (126–

129). OSM has been shown to directly bind to extracellular matrix

proteins, which can protect it from proteases and preserve bioactive

accumulation of OSM near within the TME for long periods of time

(130). Stromal OSM production has also been recently shown to

play a significant role in breast cancer progression by

reprogramming fibroblasts within the TME towards a more

tumorigenic phenotype and increase proinflammatory myeloid

cell recruitment (131). OSM signaling also leads to TME

remodeling in breast cancer as OSM induces the expression of

lysyl-oxidase like 2 (LOXL2), which leads to crosslinking and

alignment of collagen I fibers present in the stromal ECM (132).

Presence of OSM within the breast tumor microenvironment has

been shown to be provided by tumor associated neutrophils

(TAN ’s), tumor associated macrophages (TAM ’s), and

monocytes. Stromal OSM/OSMRb has recently been shown to

play a distinct role in breast cancer progression (131). TAN’s co-

cultured with human breast cancer cell lines have also been shown

to increase TAN-mediated secretion of OSM throughout the tumor

microenvironment, which in turn leads to increased secretion of the

pro-angiogenic factor VEGF from human breast cancer cells (133).

Neutrophils co-cultured with human breast cancer cells, MDA-MB-

231 and T47D, also increased the number of viable cells that

underwent detachment and increased invasive capacity in vitro, as

measured by cell-cell/cell-substratum detachment and Matrigel

invasion assays (133). This suggests that TANs can increase the

expression of OSM at the site of the tumor and promote

angiogenesis and metastasis of breast cancer cells.

Adipose tissue has also been shown to play a role in the

progression of breast cancer, with obese post-menopausal women

having twice as high of a mortality rate as compared to low body-

mass-index post-menopausal women (134). Breast cancer-

associated adipose tissue from patient tumors display high

secretion of OSM, alluding to the paracrine signaling that could

initiate a metastatic phenotype in breast cancer cells (20). When co-

cultured with breast cancer cells, the adipose tissue induced EMT

and increased the invasiveness of the breast cancer cells in a STAT3

dependent manner (20). Another direct target for OSM/STAT3

signaling is fascin, an actin-bundling protein that localizes to

filopodia and functions in cell-to-cell interactions and cellular

motility. STAT3 can directly bind to the promoter region of the

fascin gene to upregulate its expression to increase cellular

migration (241).

All of this evidence collectively highlights the role OSM has in

breast cancer progression and metastasis. As metastatic breast

cancer has the poorest survival rate at 29% (135), developing a

therapeutic to inhibit OSM may dramatically prolong the life of

patients and lead to better survival outcomes.
3.2 Cervical cancer

Cervical carcinoma ranks as the second most common cause of

cancer deaths among women, with approximately 270,000 deaths

per year globally (135). A vast majority of cervical carcinomas are

squamous cell carcinomas (SCC) that arise from precursor
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squamous intraepithelial lesions (199). In 2007, Ng et al evaluated

potential genes showing high-frequency copy number-driven

changes in expression in cervical SCC and discovered that the

OSMR gene was significantly higher in cervical SCC cases when

compared to patients with precursor cervical squamous

intraepithelial legions and gain of OSMR was significantly

associated with adverse overall patient survival, (p=0.046) and

may increase radio-resistance in cervical SCC (242). Additional

work by this group directly examined the consequences of OSMR

overexpression in vitro and discovered that OSM signaling

dramatically increases cell migration, invasion, and induction of

tumorigenic factors such as IL-6, HIF2-a , VEGF, and

transglutamase 2 (TGM2) a calcium-dependent crosslinking

enzyme that catalyzes post-translational protein modifications, yet

no evidence of OSMR overexpression improving radio-resistance

was found (243–245). A separate group investigated the sensitivity

of cisplatin therapy of cervical SCC cells and found that while

STAT3 phosphorylation dramatically increased in pre-cancerous

cervical cancer legions, it declined when comparing to cervical SCC,

and cervical SCC cells pre-treated with OSM were more responsive

toward cisplatin-based chemoradiotherapy, via upregulation of

STAT3-mediated interferon-regulatory factor 1 (IRF1) expression

(246, 247). More recent work has also evaluated OSMR

overexpression utilizing clinical data from the TCGA CESC

(cervical cancer) database and found that patients with high

OSMR expression display increased expression of mesenchymal

makers such as SNAI1, SNAI2 and zinc finger E-box-binding

homeobox (ZEB1) (248). Additionally, using 3D culture models

and mouse in vivo models and found that OSMRb-overexpressing
cervical SCC cells exhibit increased EMT, stem cell-like properties

as well as increased lung colonization and skeletal metastases in vivo

(248). These studies together suggest that cervical cancer cells with

increased OSM signaling and OSMRb overexpression are more

aggressive, and lead to worse overall survival in cervical SCC

patients. While few studies have implicated a possible

radioresistant role for high OSMRb patients, it has not been fully

evaluated. Nonetheless, OSMRb overexpression may be a potential

clinical marker for cervical cancer patients, HER2 in breast cancer,

and an anti-OSMRb monoclonal antibody could improve outcome

for patients with cervical cancer.
3.3 Ovarian

Ovarian cancer is the fifth most common cancer in woman and

the leading cause of death among gynecological cancers (135).

While IL-6 family cytokine members have been evaluated in the

progression of ovarian cancer, OSM has not been extensively

studied (136). A small study consisting of 29 malignant ovarian

carcinoma patients revealed OSM was expressed in all 29 primary

malignant ovarian carcinomas (MOC). Additionally, the same

group analyzed 25 primary ovarian carcinomas samples (OC) for

LIFRb and OSMRb expression and found all 25 primary OC

samples expressed LIFRb and 14 out of 25 expressed OSMRb
(137). Overexpression of both LIFRb and OSMRb in turn has

been shown to constitutively activate STAT3 nuclear signaling in
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74% of MOC’s tested, suggesting OSM signaling is frequently

present in malignant ovarian carcinoma (137). Li et al. further

supported this work, showing that OSM treatment enhanced

proliferation of OC cells in vitro in a STAT3 dependent manner

(138). Interestingly, in contrast to these studies, a group evaluating

239 epithelial ovarian cancer patients (19 with low stage and 220

with high stage) and 169 controls identified that OSM was

significantly downregulated (-2.62-fold change in early stage and

-2.65 in late stage) in the leukocytes fraction of ovarian cancer

patients compared to healthy patients (139). More recent research

however has further evaluated the role of OSM in ovarian cancer

and found that OSMR is highly expressed in ovarian cancer cells,

cancer associated fibroblasts, and endothelial cells of patient

samples, and is highly expressed when compared to normal

adjacent tissues. Additionally, this study showed human ovarian

cancer cell lines overexpressing OSMRb were found to promote

colony formation, migration, invasion, and spheroid-forming

capabilities, and that an anti-OSMRb monoclonal antibody

reduced the growth and peritoneal spread of ovarian cancer cells

using a mouse in vivo ovarian cancer model (140). From this

evidence, while the presence of OSM in ovarian cancer patients is

not confounded, OSM-mediated STAT3 signaling does impact

ovarian cancer progression. It could be hypothesized that

similarly to cervical cancer, OSMRb rather than OSM is the more

favorable target against ovarian cancer metastasis and could be used

as a clinical marker for disease progression and patient outcomes.
3.4 Prostate

Prostate cancer (PC) is both the second most common cancer

and second leading cause of cancer related deaths in men. PC is one

of the four most common cancer types, and with reduction rates

within the population plateauing, there is a need to better

understand the mechanisms that PC utilizes to persistently

remain present within the population (141).

OSM treatment on prostate carcinoma cells (DU145) in vitro

has been shown to increase the amount of urokinase-type

plasminogen activator (u-PA), a serine protease that degrades

ECM proteins leading to increased invasion and metastasis in

vitro, as well as VEGF measured by means of ELISA (142). This

correlation was also seen clinically evaluating 47 male patients: 20

with benign prostatic hyperplasia (BPH), 20 with non-metastatic

PC, and 7 with metastatic PC. Patients with metastatic PC displayed

a significant increase in plasma levels of IL-6 (p<0.0001), OSM

(p<0.009), VEGF (p<0.016), and u-PA (p<0.0001) compared to the

other disorders (142). Interestingly, OSM was also shown to induce

tumorigenic properties, including EMT progression and migration

of non-transformed human prostate epithelial cells via STAT3

signaling (143). A separate study also highlighted miR-181b-5p as

a potential inhibitor of OSM-mediated prostate cancer progression

using in vitro mouse prostate cancer cell lines. In the presence of

OSM, miR-181b-5p was shown to inhibit proliferation, invasion

and metastasis of mouse cell lines, while also repressing the levels of

osteoclastogenic factors such as IL-6, AREG, and OPG that could

prevent prostate cancer metastasis to bone (144).
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PC commonly starts as an androgen-dependent tumor, making

androgen-depriving therapeutics a useful first-round treatment

strategy; however, 20-30% of patients exhibit recurrence of PC

with a more aggressive androgen-negative phenotype that is difficult

to treat (142, 145). Recent research has examined how exercise

affects patients with advanced prostate cancer or patients receiving

androgen deprivation therapy and have noticed elevated levels of

OSM (146, 147). The implications of this, however, are not very well

understood. All of this evidence combined shows that the OSM

plays a pivotal role in the development and progression of prostate

cancer and could be a valuable therapeutic target to improve stage

outcomes in PC patients.
3.5 Testicular carcinoma

Testicular cancer is relatively rare, affecting only 1 in 250 males,

however it develops in patients at a younger age, with an average

diagnosis age at 33 years old (135). The role of OSM in testicular

cancer has not been extensively studied, however De Miguel et al. in

1999 evaluated the presence of OSM in Leydig cells (cells in the

testes responsible for testosterone production) as well as in various

testicular carcinomas, including carcinoma-in-situ (CIS), germ cell

tumors, and benign functioning Leydig cell tumors (148). OSM has

been shown to cause a two-fold increase in the amount of Leydig

cell progenitors, through stem Leydig cell differentiation in normal

tissue samples. It was also found to be present in normal

functioning and differentiated Leydig cells, therefore suggesting a

role in normal Leydig cell differentiation and maintenance as shown

by immunohistochemical staining (148, 149). OSM was also found

within Leydig cells of patients with carcinoma-in-situ and in the

parenchyma of neoplastic cells, however immunoreaction between

cancerous and non-cancerous controls were similar, indicating

OSM did not affect immune cell recruitment (148). Interestingly,

functioning Leydig cell neoplasms showed a very strong

immunoreaction to OSM, suggesting an upregulation of OSM in

Leydig cell carcinoma may impact recruitment of immune cells

(148). These preliminary studies evaluating OSM in testicular

cancer suggest a possible role for OSM in Leydig cell

differentiation and function of mature Leydig cells and recognize

the presence of OSM in Leydig cell carcinoma and carcinoma in

situ. However, no studies have yet to evaluate the tumorigenic

properties of OSM in testicular cancer.
3.6 Colon

Colon cancer is the third most common type of malignancy and

third leading cause of cancer-related deaths among men and

women world-wide (135). The first connection of OSM in

colorectal cancer was through discovering that the OSMR gene is

highly methylated in non-invasive colorectal cancer patients, but

not in normal controls, and has been suggested as a highly specific

prognostic marker for colon cancer detection and severity of disease

(150–152). In addition, a direct correlation between colorectal

carcinoma (CRC) tumor grade and OSM expression level has
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been identified after examining the blood serum levels of OSM in

colorectal cancer patients. High T staged CRCs (stages 3 and 4) have

significantly higher levels (p < 0.001) of OSM present in the serum

compared to low stage CRC as well as in healthy patient controls

(153). Additionally, Rajamaki et al. identified hypomethylation and

subsequent overexpression of OSMR in inflammatory bowel

disease-associated CRC (IBD-CRC) patients, which may result in

EMT of CRC cells and promote resistance to anti-TNFa therapies

(mentioned in the Inflammatory Bowel Disease section) (154).

Camptothecin (CPT) is a chemotherapeutic agent frequently

used in CRC and is aimed at the inhibition of topoisomerases (153).

CPT has been shown to increase the expression of programmed

death-ligand 1 (PD-L1) as well as other cytokines, including OSM

(155). Examination of the TCGA colorectal cancer (COAD) and

pan-cancer (PANCAN) database of ~4500 patients where high and

low OSM expression was analyzed showing that high OSM

expression was correlated with decreased patient survival (p <

0.001) further correlating the role of OSM in progression and

metastasis in CRC (155).
3.7 Gastrointestinal

Every year, almost 1 million patients are diagnosed with gastric

cancer worldwide, and almost 750,000 die, making it the second

most common cause of cancer death worldwide (156–158). The role

of OSM in gastric cancer has yet to be studied, but OSM has been

shown to be overexpressed in pre-cancerous lesions and in gastric

cancer (GC) when compared to normal gastric tissue, as well as in

cancer-derived mesenchymal stem cells isolated from patients (159,

160). OSM expression in gastric high-grade intraepithelial neoplasia

(HGIN) and early gastric cancer (EGC) tissues was significantly

higher than that of low-grade intraepithelial neoplasia (LGIN)

tissues based on expression profiling (p < 0.001) (159). RT-qPCR

analysis of the OSM gene in EGC patients had a higher expression

of OSM mRNA than that in HGIN (p < 0.05) and LGIN (p < 0.01),

while immunohistochemical staining of OSM in LGIN was

significantly lower than that in HGIN (p= 0.008) and EGC (p =

0.044) (159). These studies show that OSM could be a useful

independent biomarker for possible staging of gastric cancer, and

that the difference in OSM staining between HGIN and LGIN could

be used as an early marker for gastric cancer.

OSMRb has also been shown to be overexpressed in GC,

highlighting the possibility of increased OSM-OSMR signaling in

GC patients (161). Treatment with OSM increased proliferation and

EMT in vitro. GC cells transfected with shRNA to knockdown

OSMRb expression had a reduction in the rate of proliferation

(37.5%) as well as a reversal of EMT (161). These effects have been

shown to be dependent on the activation of STAT3, FAK, and SRC

through OSM OSM-OSMR signaling (161). Treatment with OSM

increased GC tumor size and incidence of peritoneal dissemination

in vivo with attenuation being reached through OSMRb inhibition

(161). These findings underline the effects of OSM within GC,

resulting in increased proliferation, cell migration, invasion, and

EMT dependent on OSM-OSMR signaling, as well as its potential as

a T staging biomarker.
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3.8 Pancreas

While pancreatic cancer has a low incidence rate due to lack of

symptoms and early detection screening methods, pancreatic

cancer has one of the worst prognosis rates, with 5-year survival

at 12% for late-stage pancreatic cancer (135). OSM has been shown

to play an important role in the progression of pancreatic ductal

adenocarcinoma (PDAC), the most common form of pancreatic

cancer originating from ductal cells within the pancreas by

promoting EMT and by creating a more CSC phenotype in the

pancreatic tumor microenvironment (162). Treatment of multiple

human pancreatic cancer cell lines with recombinant human OSM

(rhOSM) induced EMT via reduction of E-cadherin and induction

of ZEB1 as well as upregulation of OSMRb, leading to a positive

feedback loop of increased OSM-mediated STAT3 signaling that

maintains the malignant phenotype of these cells (162). In vivo

analysis using xenografts of OSM producing PDAC cells showed

that increased amounts of OSM in the TME caused greater primary

tumor burden, increased metastatic spread, and led to a greater

capacity to colonize the lungs (162). Co-culture models of human

pancreatic cancer cells (HPAC) and human fibroblast

overexpressing OSM also induced a CSC phenotype when

compared to HPAC cells co-cultured with control fibroblasts

(162). Lee et al. also found that OSM-OSMR signaling induces

inflammatory fibroblasts within the TME in an in vivo PDAC

model and promotes tumor growth and metastasis (163). A separate

study also identified that similarly in breast cancer, OSM induces

LOXL2 expression, subsequent collagen fiber alignment, and

metastasis in vivo (164). Due to the low survival rate of PDAC

patients, and lack of screening methods for early diagnosis, OSM,

along with an array of other cytokines, have been shown to be

overexpressed in the serum of pancreatic cancer patients and recent

bioinformatics data has implicated OSM to promote radio

resistance and poor prognosis in patients (163, 165, 166). This

suggests OSM may be a useful clinical marker for diagnosis, and a

therapeutic may increase survivability for pancreatic cancer

patients. In contrast to these studies, Nistal-Villan et al. developed

two oncolytic virus models encoding human OSM and, when

administered to an aggressive orthotopic pancreatic cancer model

in Syrian hamsters, was found to stimulate immune responses

against cancer cells and had a significant anti-tumor effect (167).

This work has not been examined further but may suggest a possible

mechanism for recruitment of anti-tumorigenic immune cells to

prevent cancer progression in pancreatic cancer.
3.9 Bladder

According to the American Cancer Society, in 2022 there are

expected to be over 80,000 patients diagnosed with bladder cancer

and nearly 17,000 deaths (135). While the role of OSM in bladder

cancer has not been extensively studied, in 2019 Deng et al.

published a study of 306 bladder cancer patients of Han residents

within the Sichuan province of China and identified two novel

single nucleotide polymorphisms (SNPs) within the promoter

region of the OSMR gene (168). The two SNPs identified,
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rs2278329 and rs2292016 were identified in bladder cancer patients

as well as healthy control patients. While rs2278329 allele variants

showed no risk factors for bladder cancer progression, and patients

with rs2292016 allele variants were associated with higher tumor

grade and higher recurrence rate when compared to healthy control

patients (168). Furthermore, a recent study performing whole

exome sequencing of patients with bladder squamous cell

carcinoma, also displayed significantly higher expression of OSM,

OSMRb, and IL-31, suggesting both OSM-OSMR and IL-31-OSMR

signaling may impact bladder cancer progression (169). Recent

evidence also suggests upregulation of OSM in metastatic bladder

cancer patients (170). These studies illustrate that while the role of

OSM and OSMRb in bladder cancer has yet to be fully elucidated,

OSMRb allele variants may serve as a biomarker prognosis test for

patients with bladder cancer, and therapeutics targeting OSMRb
may be a beneficial target for bladder cancer patients.
3.10 Lung

Lung cancer is the leading cause of cancer related deaths in both

men and women, and the second most commonly diagnosed cancer

(135). The current body of literature is conflicted on the role OSM

plays in lung cancer progression. Some studies suggest OSM may

repress lung cancer growth (171), but can promote lung cancer

metastasis via activation of STAT3 and STAT5, thus increasing

expression of tumorigenic factors such as tissue type plasminogen

activator (tPA) (172, 173). Early work examining OSM in lung

adenocarcinoma suggested it as a tumor promoter, including in

vitro work showing OSM, and IL-6 to a lesser degree, as a potent

inducer of human lung cancer differentiation. OSM combined TGF-

b1 was also shown to regulate hyaluronan and may modulate lung

cancer metastasis (174, 175). More recent work has also identified

OSM as a tumor promoter in vivo. Adenovirus vector expressing

mouse OSM induced a 13-fold increase in lung tumor burden and

an increase in tumor size when compared to control cell lines. This

effect was mitigated in OSMRb KO mice, suggesting OSM-OSMRb
signaling is necessary (176). Other studies confirmed the pro-

metastatic nature of OSM, demonstrating that it induces EMT in

non-small cell lung cancer. Additionally, when lung cancer cells

were co-cultured with cancer associated fibroblasts, there was an

upregulation of phosphorylated-STAT3, OSMRb, and LIFRb,
coupled with the downregulation of E-cadherin, suggesting an

important role for fibroblasts in the activation of OSM signaling

and the progression of lung tumors while protecting the cells from

targeted therapies in an OSMRb/JAK1/STAT3 dependent manner

(177). This theory is also supported by Wysoczynski et al. who

showed that lung cancer cells secrete an increased number of

microvesicles when in the presence of stress factors like hypoxia

and irradiation. Increased microvesicles lead to the activation of

cancer associated fibroblasts and subsequent overexpression of pro-

angiogenic factors such as OSM, IL-8, IL-11, VEGF, LIF, MMP-9,

and tissue-type plasminogen activator (tPA) (172, 178). Shien et al.

also analyzed patient data using the TCGA and PROSPECT lung

adenocarcinoma databases and found a positive correlation of

OSM, IL-6 and LIF in lung cancer patients, while also showing
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compared to patients with a low OSMRb expression (p = 0.0096

for recurrent-free survival), indicating that OSM and OSMRb play

a significant role in lung cancer (177). However, there is research

that suggests OSM can suppress lung metastasis by inhibiting the

EMT promoter SLUG, modulating mesenchymal-epithelial

transition of lung cells by reducing EMT markers via STAT1

(179, 180). This combined research has not yet fully parsed out

the mechanism of OSM in lung cancer, however patient data

suggests a pro-tumorigenic and pro-metastatic role for OSM.

Additionally, a study published by Chen et al. evaluated the

expression of a short non-functioning form of OSMRb, dubbed
OSMRs, that is highly expressed in lung cancer patients, and acts a

decoy receptor for OSM and thus resulting in mitigating OSMs

oncogenic capabilities (181). This confounding factor may explain

the contradictory results in lung cancer.
3.11 Brain

Brain cancer is a blanket term related to a variety of tumors

based upon the cell type that becomes cancerous and includes both

benign and malignant tumors. OSM has been shown to play a factor

in a variety of brain tumor types including astrogliomas,

astrocytomas, pituitary adenomas, glioblastomas, gliomas,

medulloblastomas, and meningiomas (182–186, 189, 249). In

vitro, OSM mediates tumorigenesis by activating STAT3 or

STAT1 thus promoting expression of genes responsible for cell

migration, ECM remodeling, and angiogenesis including, PLAU

(plasminogen activator of urokinase), CHI3L3 (chitinase-like

protein 1) and VEGF in several different human brain tumor cell

types (183, 187, 249). In astroglioma cells, OSM induces an

approximately three-fold increase in VEGF, while OSM and IL-

1b together induce an approximately seven-fold increase of VEGF

after 48 hours in astroglioma cells, in a STAT3 dependent manner

(183). Additionally, OSM stimulation has been shown initiate the

activation of the RelB/p50 proteins of the NF-kB pathway both in

vitro and in vivo, perpetuating a tumor inflammatory environment

in brain cancer cells (183). OSM-OSMR signaling mediated through

STAT3, promoted MMP-9 upregulation over two-fold and

increased the invasive potential of glioblastoma cells. OSM itself,

however, did not influence tumor cell viability or proliferation

(183). Two studies in fact suggest OSM may inhibit proliferation

of glioma, astroglioma, and glioblastoma, although these studies

have not been further evaluated (190, 191). Interestingly, Jahani-Asl

et al. identified that OSMRb is an essential co-receptor for

EGFRvIII, and knockdown of OSMRb strongly suppressed cell

proliferation and tumor growth in mouse glioblastoma cells and

human brain tumor stem cells in a xenograft mouse model (184).

Waters M. R., et al. analyzed the correlation of OSM in brain cancer

using brain tumor TCGA database and found OSM expression was

most strongly correlated with poor glioblastoma multiforme (GBM;

a heterogeneous mixture of cells containing brain tumor stem cells

that are both tumorigenic and self-renewing) patient survival (182).

They also discovered that OSM is produced in the brain solely by

macrophages and microglia, and that chronic elevation of OSM
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leads to the progression of GBM (182). Macrophage-derived OSM

has been shown to increase the mesenchymal like phenotype of

OSM, mediated via STAT3 signaling both in vitro and in vivo (183,

186). Most recently, Chen et al. found that high OSM level is

correlated with poor prognosis in several cancers, particularly with

GBM, and found that OSM promotes migration and invasion of

U251 glioblastoma cells while also exhibiting a more mesenchymal

phenotype indicative of aggressive disease (192). OSMRb has also

been shown to be overexpressed in aggressive GBMs via STAT3

signaling and is correlated to a decrease in survival among patients

(183, 184). Studies targeting OSMRb and STAT3 suggest that a

clinical therapeutic that disrupts OSM/OSMRb/STAT3 signaling

can repress brain tumor growth and increase chemoresistance in

aggressive brain tumors (183, 249).
3.12 Squamous cell carcinoma

Cutaneous squamous cell carcinoma (cSCC) is the second most

common keratinocyte malignancy, being responsible for 20% of skin-

cancer deaths due to the lack of therapies (193). While OSM has not

been extensively analyzed in all varieties of skin cancer, OSM has

been shown to promote normal keratinocyte proliferation, migration,

skin inflammation, and epidermal hyperplasia both in vitro and in

vivo (52). OSM has also been shown to be overexpressed in cSCC

patients, and overexpression of OSM in vitro and shown to induce

STAT3 and ERK phosphorylation and activation, as well as increased

proliferation and migratory capacity in vitro (194–196). Interestingly,

during in vivo studies OSM was not found in the keratinocyte cells,

but rather, it was found in large quantities at the periphery of the

tumor due to infiltration of neutrophils, macrophages, and other

inflammatory cells that secrete OSM in a paracrine fashion (194).

OSM has also been shown to be highly expressed in

keratoacanthoma; originally believed to be a benign form of skin

cancer, but rare cases act in a similar form to skin SCC have been

reported (195). In OSM-knockout mice, cSCC tumor volume was

reduced by approximately 30% when compared to wild-type mice

after one month, however there were still significant amounts of IL-6,

IL-1b, IL-23a, CXCL1, IL-4, and IFNg present in the tumor tissue

compared to normal skin (194). The most understood environmental

cause of cSCC is ultraviolet (UV) radiation (197). OSM signaling has

been shown to suppress UV induce apoptosis of human keratinocytes

and may be crucial towards early cancer progression in vitro via an

increase in cell motility through ECM remodeling (197). This

indicates that OSM may not only be crucial for cSCC progression,

but also may lead to a higher incidence of squamous cell carcinoma,

via repression of apoptosis in keratinocytes.

In addition to cSCC, OSM has also been implicated in oral

squamous cell carcinoma (OSCC). In OSCC cells, treated with the

known oral carcinogen arecoline, induced the expression of IL-6,

STAT3, and c-Myc (198). The upregulation of c-Myc has been

shown to suppress the expression of micro-RNA-22 (MiR-22)

subsequently leading to an upregulation of OSM (198). This is

reinforced by the observation that the expression of OSM and MiR-

22 are inversely related (198). MiR-22 overexpression was able to

suppress cell proliferation and migration by directly inhibiting
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OSM, suggesting the role of OSM in OSCC may be dependent on

miRNA regulation (198).

Esophageal squamous cell carcinoma (ESCC) is the seventh

most common malignancy in the world and is common among

Asian populations (199). Due to difficulties of early screening,

nearly half of patients are diagnosed as having locally advanced

disease (200). The effect of OSM in ESCC has not been extensively

studied, and preliminary reports suggest OSM plays a minor role. A

recent study evaluating inflammation biomarkers in ESCC patients

in Japan identified OSM as negatively correlated to the disease,

while another study evaluating 173 cases in the ESCC TCGA dataset

correlated OSM with a worse prognosis (201, 202). However,

Kausar et al. identified a soluble form of OSMRb (sOSMRb) to

be present in 9 out of 11 cell ESCC cell lines, and the presence of

sOSMRb protein was detected in the sera of patients. Furthermore,

while high expression of OSM (94% of patients) was confirmed via

IHC, full length OSMRb was only detected in 23% of patients,

suggesting that sOSMRb may be acting as a neutralizing receptor

for OSM in ESCC (203).
3.13 Kaposi’s sarcoma

OSM was first identified as a major growth factor in Kaposi’s

sarcoma (KS) in 1992 when evaluating media from patients with

AIDS-associated KS (4). Kaposi’s sarcoma is a relatively rare form

of cancer but is endemic in several regions of the world and is

estimated to be the leading cause of cancer incidence and mortality

in several countries in Southern and Eastern Africa (199). When

evaluating AIDS-KS cell lines, OSM was found to be a potent

mitogen and autocrine growth factor (204, 205). Other studies

showed OSM as a promoter of basic fibroblast growth factor (bFGF)

which in turns promotes growth of Kaposi’s sarcoma and

endothelial cells through activation of AP-1 response elements in

the bFGF promoter (206, 207). It has also been proposed that KS-

encoded cyclin K inhibits the anti-proliferative effects of OSM by

directly inhibiting STAT3, although previous work suggests OSM

signaling promotes growth via MAPK/ERK and JNK signaling (208,

209). Further studies also suggest that in KS, OSM and bFGF induce

RAFTK, a focal adhesion kinase downstream of JNK, which acts as

a convergence site for intracytoplasmic kinases and adapter

molecules and increase cytokine signaling cascades and

promoting cell growth (210). Additionally, AIDS-associated KS

cells have been shown to express OSMRb but not LIFRb or IL-6

receptor, and inhibition of gp130 blocks the growth stimulating

effects of OSM in AIDS-KS cells suggesting inhibition of OSM

signaling may be beneficial strategy for patients with KS (211).
3.14 Miscellaneous sarcomas

Osteosarcoma (OSA) is the most common malignant bone

disease in humans (135). Fossey et al. discovered that several OSA

cell lines express OSM, OSMRb, and gp130 receptor complex

proteins, but interestingly not IL-6 or IL-6R. Activation of these

receptor complexes occur with the binding of OSM leading to a
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time dependent increase in the levels of pSTAT3, pJAK2, and pSrc.

While OSM does not increase proliferation of OSA cells (212–214),

it does increase invasion via expression of glial fibrillary acidic

protein (GFAP); a protein responsible for cytoskeletal

reorganization in osteoblasts, MMP-2, cathepsin secretion and

activity, as well as VEGF in a STAT3 dependent manner (212,

215–217). These features of OSM in OSA can increase the

metastatic potential of OSA cells in vivo.

Chondrosarcomas (CSA) are difficult to treat, with

chemotherapy and radiotherapy resistance, surgery remains the

singular treatment option (218). Treatment with OSM induced cell

cycle arrest in the S phase of murine SRC cell line in vitro and in G0/

G1 of three other cells in vitro and is dependent on the JAK3/

STAT1 pathway (218). Overexpression of OSM in the tumor cells,

by adenovirus gene transfer, led to decreased tumor proliferation

and enhanced apoptosis in vivo (218). These findings show that

OSM treatment locally to the tumor environment of CSA could be a

possible therapy to improve the prognosis of CSA patients.

Very little evidence exists for OSM and Ewing sarcoma (ES);

however, the OSM gene has been shown to be differentially

methylated in an ES microarray dataset (65% compared to

healthy patients), although this did not significantly correlate with

survival rate (219). Unlike OSA or CSA, OSM has been shown to

increase the proliferation of ES cells in an OSMRb/STAT3
dependent manner via upregulation of c-Myc (220). Based on the

information given above, OSM inhibition would benefit CSA

patients but burden OSA and ES patients.
3.15 Melanoma

Invasive melanoma accounts for only 1% of all skin cancer cases

but is responsible for the vast majority of skin cancer deaths (135).

Historically, OSM has been identified as a strong inhibitor of

melanoma (221–223). Exogenous OSM has been shown to

activate STAT3, STAT5b and the MAPK pathways via OSMRb to

strongly inhibit the proliferation of melanoma cells (221, 222, 224–

226). OSM is also able to bind to collagens in a bioactive form and

inhibit proliferation of A375 melanoma cells in vitro (227).

Interestingly, OSM has also been shown to promote LIF

expression, which could prolong the inflammatory effects of OSM

(228). OSM also increases expression of membrane bound ICAM-1

in vitro, which also may suggest higher immune surveillance in

human myeloma (229).

As melanoma reaches an advanced stage, cells appear to become

resistant to the inhibitory effects of OSM (225). This has been

shown in vitro and in vivo to be partly caused by the constitutive

expression of suppressor of cytokine signaling-3 (SOCS-3) mRNA

and subsequent high level of SOCS-3 protein (230). Accompanying

the increase in SOCS-3 mRNA/protein is a downregulation of the

OSMRb subunit, due to a decrease in the amount of histone

acetylation in the promoter region of the OSMRb gene (231).

Paracrine signaling of OSM in antigen-negative melanoma cells to

antigen-positive will lead to antigen-silencing, possibly affecting the

outcome of antitumor vaccine immunotherapies (232). OSM

sensitivity in human melanoma cells also has importance for
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melanoma (233). Patients that were unresponsive to OSM

expressing TILs due to phosphorylation defects of STAT3 on Ser-

727, as well as activation of AKT on Ser-473, were shown to have an

increased resistance to OSM anti-proliferative activity (233). The

development of OSM resistance in melanoma cells has a significant

role in creating a more aggressive phenotype, which appears to be

specific to melanoma. This could be treated by increasing the

amount of OSM ligand in the system through the use of an

OSM therapeutic.
4 Therapeutic intervention of OSM

As mentioned in the previous sections, developing an effective

targeted therapeutic against OSM signaling could be crucial for the

treatment of numerous diseases, including a variety of cancers.

While several therapies have been developed and approved that

target IL-6 and other IL-6 family members, currently no FDA

approved treatments exist for OSM. This section will outline

previous and current strategies for developing effective

therapeutics against OSM and OSM receptor, including unique

strategies that are in early stages of testing. The specific drugs and

patents for drugs against OSM and OSMRb are described

in Table 3.
4.1 Anti-OSM therapeutics

In 2000, Deller et al. published the first molecular structure for

OSM, paving the way for the development of potential anti-OSM

therapeutics (5). OSM’s tertiary structure consists of four a-helical
bundles (helices A-D; Figure 2A) and has two distinct sites

responsible for receptor complex binding (Figure 2B) (5). The

Site II motif, consisting of regions of helices A and C, is

responsible for OSM ’s binding to gp130. Site-directed

mutagenesis has revealed four amino acid residues: Gln-16, Gln-

20, Gly-120, and Asn-124, shown to be the primary residues

responsible for this interaction (5, 16). The Site III epitope,

located within a loop between helices A-B (Figure 2A), and near

the N-terminal end of helix D, is the primary site by which OSM

binds to OSMRb and LIFRb. This region is highly conserved for

both OSM and LIF, thus making it difficult to generate a specific

therapeutic against OSM. However, recent research efforts have

shown that OSM possesses a unique amino acid composition that is

necessary for specific interactions with OSMRb. Alanine-scanning
experiments and substitution experiments comparing OSM and LIF

revealed that Tyr-34, Gln-38, Gly-39, and Leu-45 (in AB loop) and

Pro-153 (in helix D) are responsible for OSMRb binding, while

Phe-160 and Lys-163 of D-helix are necessary for interaction with

both OSMRb and LIFRb (16, 234, 235).

The pharmaceutical giant GlaxoSmithKline (GSK) has

supported the production of two separate anti-OSM neutralizing

antibodies, both of which target the Site II region of OSM, and to

date, these are the only anti-OSM therapeutics to advance into

clinical trials. GSK315234 is a humanized anti-OSM IgG
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monoclonal antibody developed for the treatment of patients with

active rheumatoid arthritis (RA), designed to bind to the Site II

region of OSM and prevent dimerization with gp130 (236). A phase

two clinical trial was initiated with the goal of investigating the

safety, pharmacokinetics (PK), and pharmacodynamics (PD) of
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GSK315234 in patients with RA. The study contained a total of 135

patients with RA, was divided into four groups (double-blind,

placebo-controlled, and randomized, and evaluated the following:

i) an intravenous (IV) method of delivery, ii) a subcutaneous (SC)

method of delivery, iii) a single dose delivery (single versus multiple
TABLE 3 Anti-OSM and Anti- OSMRb Therapeutics.

Drug Name/Patent
Number

Company /Uni-
versity

Type Disease Progress References

Anti-OSM therapeutics

GSK315234 GlaxoSmithKline mAb Rheumatoid Arthritis Stage II clinical trial
(failed)

(236)

GSK233081 GlaxoSmithKline mAb Systemic Scleroderma Stage II clinical trial
(failed)

(237–240,
250)

US7858753B2 GlaxoSmithKline mAb Non-specific Pre-clinical (240)

US6706266B1
WO2020127884A1

GlaxoSmithKline
Universite de Poiters

Aptamer
mAb

Rheumatoid Arthritis
Inflammatory Skin Disease/
Cancer

Pre-clinical
Pre-clinical

(240)
(251)

US20170327573A1 University of Padua Broad
Therapeutic

Diabetes/Cardiovascular
diseases

Pre-clinical (252)

US9550828B2 Boise State University SMI Cancer Pre-clinical (253)

Anti-OSMR therapeutics

US9663571B2 Kiniksa Pharmaceutical mAb Atopic Dermatitis Pre-clinical (254)

US10493149B2 Kiniksa Pharmaceutical mAb Non-specific Pre-clinical (255)

WO2013168829A1 Wakayama Medical
University

mAb Atopic Dermatits/Puritis Pre-clinical (256)

US20090300776A1 Universitie D’angers siRNA Inflammatory Skin Diseases Pre-clinical (257)

US7572896B2 Raven Biotechnologies mAb Cancer Pre-clinical (258)

WO 2010139742A1 Max Plank Society Broad
Therapeutics

Heart Failure Pre-clinical (259)
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FIGURE 2

OSM structure and receptor binding sites. (A) OSM is a four a-helical bundle protein consisting of helices A (red; aa 10 –37), B (green; aa 66-90), C
(purple; aa 106-131), and D (blue; aa 159-185) (truncated X-ray crystallography PDB:1EVS). (B) Site-directed mutagenesis experiments have identified
two separate binding sites responsible for receptor-ligand interactions. Site II is located near the N-terminal region in helices A and C, and three
amino acids (Gly-16, Gly-20, Asn-124) have been identified as crucial for OSM interaction with gp130. Site III is located in the A- B loop with a small
portion of the D helix (dark purple) that is responsible for binding of OSM to LIFRb and OSMRb. Substitution experiments with OSM and LIF revealed
that Lys-163, and Phe-160 are required to bind to both receptor complexes, but Tyr-34, Gln-38, Gly-39 and Leu-45 are specifically needed for
interactions with OSMRb.
g
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delivery) and iv) a multiple dose delivery, all over a period of 154

days. Patients selected to participate in the study were required to

have active RA with a Disease Activity Score 28 (DAS28) of > 4.2 at

screening. DAS28 is a composite score analyzing the number of

swollen/tender joints (that includes 28 joints), as well as examining

concentration of erythrocyte sedimentation rate (ESR) and C-

reactive protein (CRP) in the blood stream. Patients selected to

participate in the study were also required to have had previously

received at least three months of treatment with methotrexate.

Overall, evidence from this study suggests that repeated dosing

with GSK315234 did not demonstrate statistically significant

efficacy. While there appears to be minimal toxicity in patients

who received GSK315234, the monoclonal antibody exhibited poor

binding affinity (2.5 nM) and a rapid off-rate (1.73 x 103) when

compared to the higher affinity of OSMRb (approximately 150 pM).

Interestingly, patients in the group which received a single 3 mg/kg

dose of GSK315234 by IV displayed a statistically significant

reduction in DAS28 score compared to the placebo group (p-

value <0.05 at days 56, 84, and 91), as did the patients that

received a 10 mg/kg dose by IV (at day 84). However, groups

receiving larger single doses (20 and 30 mg/kg IV), repeated dosing

(6 mg/kg IV), or SC injection (500 mg) exhibited no significant

difference in clinical score. Due to the high off-rate and binding

affinity, as well as the poor significance and inconclusive results in

the study, GSK315234 clinical trials were halted.

Another GSK anti-OSM monoclonal antibody, GSK2330811,

has entered clinical trials for treatment of systemic scleroderma

(237, 238). A phase one, randomized, double-blind, placebo-

controlled SC administered clinical trial with 30 healthy subjects

showed a favorable safety profile in participants. Patients were

divided into 6 groups, with patients given either placebo or

varying concentration of a single SC dose of GSK2330811 (0.1,

0.3, 1, 3 or 6 mg/kg respectively). No clinically relevant change from

baseline laboratory values were observed in any of the groups, and

GSK2330811 exhibited pharmacokinetics over all five of the dose

ranges with a binding affinity estimated at approximately 0.58 nM

(95% CI 0.455, 0.710). This drug has recently finished evaluation in

phase two clinical trials for patients with diffuse cutaneous systemic

scleroderma involving 35 patients randomized to placebo receiving

100 mg or 300 mg treatment subcutaneously every other week for

12 weeks. There were no clinical differences between GSK2330811

and placebo groups. Additionally, all patients in the 300 mg

treatment group reported at least one adverse effect ;

including decreased hemoglobin, anemia of varying severity,

decreased platelet counts, decreased neutrophil counts, and

thrombocytopenia (239). A separate clinical trial (NCT04151225)

was also initiated with GSK2330811 for patients with Crohn’s

disease; however, the study was halted by an internal sponsor

before patient enrollment began due to a potentially narrow

therapeutic window (238, 240, 250).

In addition to the previously mentioned monoclonal antibodies

that have advanced to clinical trials, GlaxoSmithKline possesses a

patent (US7858753B2) (240) for another anti-OSM antibody. While

the previous ones were designed to specifically interact with Site II of

OSM (Figure 2), this is designed to inhibit OSM/gp130 interaction

without directly binding to any amino acids within Site II. Instead, it is
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designed to interact with amino acids; Pro82, Ser83, Glu84, Leu90,

Gly94, Pro112, Gln115, Asp122, Leu123, and Cys152 of OSM. It is

unclear how this antibody interferes with OSM/gp130 dimerization,

but further studies may reveal its mechanism.Within a separate patent

(US6706266B1) (240), GlaxoSmithKline also has RNA aptamer

designs that are highly specific towards OSM with a KD at

approximately 7 nM; however, both of these patents have yet to be

tested in vitro, in vivo, or through clinical trials.

Researchers at the Universite de Poiters have also developed a

patent (WO2020127884A1) relating to specific binding proteins,

such as an antibody, that binds specifically to OSM to inhibit

interaction with OSM and gp130, and/or LIFR, to be used with any

disease associated with elevated levels of OSM, with a particular

interest in inflammatory skin diseases and cancer (251).

A different patent, submitted by the University of Padua

(US20170327573A1) (252), is designed to develop an anti-OSM

therapeutic that will increase mobilization of bone marrow stem

cells in patients with diabetes. This patent allows for the design of a

variety of inhibitors that would inhibit OSM production or OSMRb
signaling at the cellular level such as enzyme inducers, an enzyme or

receptor inhibitor, a ligand for a receptor, a compound that is toxic

for cells, or an antisense RNA.

Utilizing a separate approach, Boise State University has

submitted a patent (US9550828B2) (253) developing small

molecule inhibitors against the Site III region of OSM, preventing

OSM binding to OSMRb. The compounds proposed in this patent

are designed to reduce tumor cell detachment, invasion, and

metastasis. Recently, a specific small molecule inhibitor named

SMI-10B was characterized and shown to bind to specific amino

acids within Site III of OSM via HSQC-NMR (260), and was

subsequently confirmed by an independent group using

molecular dynamics simulation (261). To date, this is the only

patent designed for small molecule inhibition of OSM.
4.2 Anti-OSMRb therapeutics

As outlined in Figure 1, OSM interacts with gp130, which then

results in the dimerization of both LIFRb and OSMRb, however it
is thought that human OSM binds with a much stronger affinity to

OSMRb than to LIFRb. Another cytokine, IL-31, also uses

OSMRb as part of its receptor complex (along with its receptor

IL-31RA), making OSMRb, specifically, a beneficial target to

inhibit OSM as well as IL-31 signaling (262, 263). Challenges

exist for this strategy due to the unknown structure of OSMRb.
Recent work utilizing computational in silico analysis and

homology modeling of the structurally similar LIFRb has

provided framework for structural modeling of the OSM-OSMR

complex, providing more detailed information for those designing

therapeutics against OSMRb (257). Furthermore, with the recent

advancement in molecular modelling, particularly with

AlphaFold, a predicted structure for OSMRb has been created,

which may help pave the way for specific targets against the

receptor protein (264, 265). Currently, no therapeutics targeted

against OSMRb are clinically available, and to date, none have

advanced into clinical trial stages. However, several patents have
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been submitted for a variety of compounds designed as inhibitors

of OSMRb and will be outlined below (see Table 3).

As highlighted previously, OSM has been shown to play a role

in various inflammatory skin diseases. To combat this, Kiniksa

Pharmaceutical currently has two patents, all describing

monoclonal antibodies, that are designed to inhibit OSMRb in

inflammatory skin conditions. The first (US9663571B2) (254) is

designed for the treatment of atopic dermatitis and chronic puritis

in patients who have yet to receive treatment with a corticosteroid,

or for patients with serum IgE levels lower than 300 IU/mL. Both

OSM and IL-31 have been linked to atopic dermatitis. OSMRb,
which is part of the receptor complex for both proteins, makes it a

desirable target to inhibit both OSM and IL-31 signaling. This

patent outlines three separate antibodies that describe an IC50 range

between 157 pM and 1.35 nM and an average KD of 0.2 nM. Kiniksa

Pharmaceutical’s second patent, (US10493149B2) (255) is also a

monoclonal antibody is for unspecified diseases. Furthermore, two

other patents have been developed for inflammatory skin disorders.

Wakayama Medical University has submitted a patent

(WO2013168829A1) (256) for a monoclonal antibody against

OSMRb designed to inhibit both OSM and IL-31 induced

inflammation in patients with atopic dermatitis. Universitie

D’angers has also written a patent (US20090300776A1) (257) for

a small interfering RNA (siRNA) that is designed to inhibit OSMRb
mRNA expression in keratinocytes that would subsequently result

in repressed inflammation in a variety of inflammatory skin

diseases. This patent also encompasses molecules designed to

inhibit a variety of cytokines linked with keratinocyte-mediated

inflammation, including OSM, IL-17, TNFa, IL-31, and IFN-y.

Additionally, two pharmaceutical companies have patents

targeting OSMRb in both cancer and heart disease. Raven

Biotechnologies has developed an anti-OSMRb antibody

(US7572896B2) (258) designed for diagnosis of human cancers

with high OSMRb expression, as well as treatment for a variety of

human cancers. Mouse model experiments using human ovarian

and lung cancer cells indicate this antibody is effective at reducing

proliferation both in vitro and in vivo. Furthermore, the Max Plank

Society has written a patent (WO 2010139742A1) to develop an

anti-OSMRb therapeutic for the treatment and/or prevention of

heart failure (259). The patent is broad in nature, and is written to

encompass an aptamer, siRNA, shRNA miRNA, and/or ribozyme.

While current efforts for an anti-OSM or anti-OSMRb drug have

not yet succeeded in making it through clinical trials, it is clear that

a therapeutic is needed for a variety of diseases. Developing novel

therapies that target OSM or OSMRb with high specificity and low

toxicity will hopefully provide the necessary therapeutics for

patients with abnormal OSM or OSMRb expression.
5 Discussion

Throughout the course of this review, we have shown the

important role OSM plays in a variety of diseases including many

types of cancer. OSM activates several signaling pathways, frequently

leading to inflammation, migration, or regeneration and

differentiation (19–23). OSM can be produced and secreted by
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many different cell types, mostly activated immune cells such as

macrophages and neutrophils, to intensify some inflammatory

diseases, as shown in Table 1 (1, 2, 24). Several studies have linked

OSM overexpression with an overall worse prognosis for a variety of

diseases, including arthritis, IBD, and most recently COVID-19 (25,

26, 39, 42, 90). However, OSM expression has the possibility to be

beneficial to healing injuries, particularly regarding the CNS, bone,

liver, heart, and general external skin wounds (33, 37, 64, 68–72, 75–

77, 83–85, 92). Negative effects due to chronic expression of OSMmay

outweigh its positives, yet inhibiting the signaling systemically may

cause issues within other physiological processes.

The role of OSM in cancer has also been mysterious (see

Table 2). While OSM was initially discovered as an inhibitor of

cancer cell growth in melanoma cells (221–223), OSM has been

shown to play an important role in cancer progression. In fact, while

OSM expression has been shown to repress tumor growth in some

cancer types it also may promote tumor growth in other types (15,

102, 103, 161, 162, 171). The specific mechanisms by which OSM

operates under different cancer subtypes has yet to be fully explored.

However, increased OSM signaling has been shown to increase the

proliferation, motility, and metastatic potential of multiple cancers

(36, 109, 140, 143, 162, 177, 183, 186, 248). It is also interesting to

consider OSM or OSMRb as a possible biomarker for certain types

of cancers such as cervical, colon, GI, and pancreatic cancer (153,

159, 165, 242). Overexpression of OSM and/or OSMRb is seen

more commonly in a multitude of advanced tumors and is linked to

decreased patient survival in several cancer types, including breast,

cervical, colon, pancreatic, lung, and brain cancer (109, 153, 165,

177, 192, 242). Patients in a clinical setting could benefit greatly

from an anti-OSM therapeutic, but the market remains empty for

oncologists and their patients.

There are several therapeutics currently in development designed

to inhibit the OSM signaling cascade, some by binding to OSM and

others by binding its receptor, OSMRb (see Table 3). The current

strategies being implemented represent diverse and novel approaches

to develop the most effective inhibitor. Significant inhibition of

cytokines has proven to be a challenge clinically. To date, IL-6

remains the only member of its family to have FDA approved

clinical therapeutics (266, 267). Targeting OSM, however, has

proven to be more challenging. While two monoclonal antibodies

against OSM have been the only potential therapies to reach clinical

trial stages, both struggled with poor binding affinity and lack of

clinical significance (236, 237). It is possible an alternative strategy is

needed for an effective anti-OSM therapeutic. Monoclonal antibodies

tend to have lengthy half-lives (on the order of days or weeks) that

may affect normal inflammatory response mechanisms in cases of

infection or injury, and serious wound healing might require pausing

therapy (268). In the case of GSK2330811, the half-life was reported

to be approximately 24 days (237). Furthermore, both clinical trials of

GSK315234 and GSK233081 reported long-term accumulation of

OSM-mAb complexes, directly resulting from their long half-life,

which in combination with rapid off rate and poor binding affinity,

may result in lengthening active OSM in the bloodstream of subjects

(236, 237). The wide variety of techniques being implemented,

including small molecule inhibitors, aptamers, and other biologics,

may eliminate long-term issues with accumulation, provide a highly
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specific and minimally toxic therapeutic for patients, and allow for

therapy to be paused when necessary.

In addition to targeting OSM, several drugs are currently in

development to inhibit OSMRb rather than OSM. While targeting

OSMRb is a valid strategy, and several attempts have been initiated,

none of them have entered into clinical trials. As a target, OSMRb
possesses its own unique challenges, lacking a completed crystalized

structure; forcing medical chemists to rely on computational

modeling for targeting amino acids necessary for OSM/OSMRb
(269). Furthermore, targeting the other OSMR subunit gp130 itself

is a risky venture due to its diverse role in all IL-6 family cytokine

receptor complexes, although one group is investigating inhibition

of gp130 for specific cytokines in the context of inflammatory

diseases and multiple cancers (270–272).
6 Conclusion

Throughout this review, we have outlined the evidence for

identifying OSM as a therapeutic target for numerous diseases, as

well as a variety of cancers. While efforts have been initiated to

develop clinical therapeutic for patients, to date, none exist.

Creating an anti-OSM or an anti-OSMRb therapeutic is a much-

needed venture for patients and clinicians alike, and work must be

continued to synthesize and generate an FDA approved therapeutic.
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