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“Outside-to-inside,” “inside-to-
outside,” and “intrinsic”
endogenous pathogenic
mechanisms in atopic dermatitis:
keratinocytes as the key
functional cells involved in both
permeability barrier dysfunction
and immunological alterations

Yutaka Hatano 1* and Peter M. Elias 2

1Department of Dermatology, Faculty of Medicine, Oita University, Oita, Japan, 2Department of
Dermatology, University of California, San Francisco and Veterans Affairs Health Care System, San
Francisco, CA, United States
Permeability barrier disruption has been shown to induce immunological

alterations (i.e., an “outside-to-inside” pathogenic mechanism). Conversely,

several inflammatory and immunological mechanisms reportedly interrupt

permeability barrier homeostasis (i.e., an “inside-to-outside” pathogenic

mechanism). It is now widely recognized that alterations of even a single

molecule in keratinocytes can lead to not only permeability barrier dysfunction

but also to immunological alterations. Such a simultaneous, bidirectional

functional change by keratinocytes is herein named an “intrinsic” pathogenic

mechanism. Molecules and/or pathways involved in this mechanism could be

important not only as factors in disease pathogenesis but also as potential

therapeutic targets for inflammatory cutaneous diseases, such as atopic

dermatitis, psoriasis, and prurigo nodularis. Elevation of skin surface pH

following permeability barrier abrogation comprises one of the key pathogenic

phenomena of the “outside-to-inside” mechanism. Not only type 2 cytokines

(e.g., IL-4, IL-13, IL-31) but also type 1 (e.g. IFN-g), and type 3 (e.g., IL-17, IL-22) as

well as several other inflammatory factors (e.g. histamine) can disrupt

permeability barrier homeostasis and are all considered part of the “inside-to-

outside” mechanism. Finally, examples of molecules relevant to the “intrinsic”

pathogenic mechanism include keratin 1, filaggrin, and peroxisome proliferator-

activated receptor-a (PPARa).
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Introduction

As previously described in numerous review articles,

permeability barrier abrogation has been shown to induce

immunological alterations (i.e., “outside-to-inside” pathogenic

mechanism; Figure 1). Conversely, several inflammatory and

immunological factors have been reported to disturb permeability

barrier homeostasis (i.e., “inside-to-outside” pathogenic

mechanism; Figure 1) (1). In this article, we will highlight

additional associations between permeability barrier abrogation

and inflammatory and/or immunological alterations.

Currently, multiple studies have revealed that modification in

even a single molecule in keratinocytes can induce epidermal

functional changes that not only disrupt permeability barrier

homeostasis but also lead to immunological alterations. Here,

we describe simultaneous functional changes in keratinocytes

in two different directions as an “intrinsic” pathogenic

mechanism (Figure 2).
Induction of both type 2 and type 3
inflammation by the “outside-to-
inside” pathogenic mechanism

Following epidermal permeability barrier abrogation, the

“outside-to-inside” mechanism not only encompasses the

induction and/or secretion of pro-inflammatory cytokines such as

interleukin (IL)-1a, IL-1b, tumor necrosis factor (TNF)-a, and
granulocyte macrophage colony-stimulating factor (GM-CSF) from

epidermal keratinocytes (2), but also elevation of skin surface pH,

accompanied by elevated kallikrein (KLK) activity (1), all key

pathogenic phenomena for inducing inflammation, especially type

2. Initiation of production and/or secretion of so-called danger

signals or alarmins, such as IL-25, IL-33, and thymic stromal

lymphopoietin (TSLP), lead to immunological alterations of type

2 inflammation with or without protease-activated receptor (PAR)

2-dependent responses (3). In addition, permeability barrier

abrogation reportedly induces type 2 and type 3 inflammation

(e.g., IL-17 and IL-22) via activation of KLK5 and the PAR2 axis

(4). In line with this theory, combined treatment with a PAR2

inhibitor and a lactobionic acid (LBA) (‘super acid’) exhibited

therapeutic effects on hapten-induced atopic dermatitis (AD)-like

dermatitis in a murine model in which elevations of epidermal
Abbreviations: IL, interleukin; TNF, tumor necrosis factor; GM-CSF,

granulocyte macrophage colony-stimulating factor; KLK, kallikrein; TSLP,

thymic stromal lymphopoietin; PAR, protease-activated receptor; LBA,

lactobionic acid; AD, atopic dermatitis; FLG, filaggrin; LOR, loricrin; IVL,

involucrin; ELOVL, elongation of very long chain fatty acids protein; CLE,

cornified lipid envelope; ALOX12B, arachidonate 12-lipoxygenase, 12R type;

ALOXE3, epidermis-type lipoxygenase 3; ABHD9, epoxide hydrolase 3; ZO,

zonula occludens; IFN, Interferon; KRT, keratin; SC, stratum corneum; PPARs,

Peroxisome proliferators-activated receptors; RANTES, Regulated upon

activation, normal t cell expressed and presumably secreted cytokine; TARC,

Thymus- and activation-regulated chemokine.
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TSLP paralleled development of the dermatitis (5). Application of

LBA during the induction phase was also reported to prevent the

initial emergence of hapten-induced AD-like dermatitis (6).

Notably, both type 2 and type 3 inflammation are reported to be

involved in the pathogenesis of a hapten-induced AD-like

dermatitis (7), supporting the concept that a combination of

permeability barrier abrogation, elevation of stratum corneum

pH, and PAR2 activation could lead to the induction of type 2

and type 3 inflammation.
Several pro-inflammatory factors are
involved in the “inside to outside”
pathogenic mechanism

Since we first described the “inside to outside” pathogenic

mechanism (1), several inflammatory factors and pathways have

been found to be involved in this mechanism.

Prototypic type 2 cytokines, IL-4 and IL-13, downregulate the

expression of filaggrin (FLG), loricrin (LOR), and involucrin (IVL)

(8, 9). IL-4 also reduces ceramide synthesis and compromises

stratum corneum (SC) cohesion (10–12). Cutaneous permeability

barrier recovery is suppressed by IL-4 (13). Recently, type 2

cytokines were reported to provoke shortening of ceramide

carbon chains via down-regulation of elongase expression, such as

elongation of very long chain fatty acids protein (ELOVL)3 (14).

Type 2 cytokines also downregulate enzymes involved in cornified

lipid envelope (CLE) formation, such as ALOX12B, ALOXE3, and

ABHD9 (15). Likewise, IL-31 reportedly suppresses expression of

FLG (16). Claudin-1, a tight junction-related protein, is

downregulated by IL-4, IL-13, and IL-31 (17).

Considerable data demonstrating the harmful effects of a variety

of inflammatory factors (besides type 2 cytokines) on the

permeability barrier have been accumulated. Type 3 cytokines

(e.g., IL-17 and IL-22) and histamines downregulate expression of

FLG, LOR, and IVL (18, 19), R. Histamine reportedly

downregulates the expression of claudin-1, claudin-4, occludin,

and zonula occludens (ZO)-1 (19). Interferon (IFN)-g, a

prototypic type 1 cytokine, has been demonstrated to reduce

expression of FLG, claudin-1, and ELOVL1 (20–22).
Recognition of a newly emerging
concept, an “intrinsic” pathogenic
mechanism, elucidating the
association between permeability
barrier dysfunction and
inflammatory reactions

Abundant evidence leads us to recognition of the association

between permeability barrier dysfunction and inflammatory

reactions. Alteration of even one molecule in epidermal

keratinocytes can induce functional changes, leading to

simultaneous permeability barrier dysfunction and inflammatory
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and/or immunological dysregulation. Here, such a molecule is

called an “intrinsic” participant, and the pathogenic mechanism

induced by the alteration of these molecules is also called “intrinsic.”

Examples of “intrinsic” molecules are described below (Figure 2).
Keratin 1

Keratins constitute the intermediate filament cytoskeleton in

keratinocytes and play an important role in the mechanical integrity
Frontiers in Immunology 03
of corneocytes, during linkage to cornified envelopes, which is a

critical process for competent permeability barrier formation (23,

24). In fact, permeability barrier abnormalities have been

demonstrated in keratin (KRT)-deficient conditions (25, 26).

Meanwhile, KRT1 abnormalities reportedly lead to cutaneous

inflammation, accompanied by elevations of IL-18, IL-33, and

TSLP (27), which are well-known danger signals in type 2

inflammation induction, a hallmark in AD pathogenesis (3, 28–

30). Interestingly, IL-18 secretion is induced in KRT1 knockout-

cultured keratinocytes in a caspase-1-dependent manner,
FIGURE 1

“Outside to inside, back to outside” pathogenic mechanism via functional alterations in keratinocytes.
FIGURE 2

Examples of the “intrinsic” pathogenic mechanism via functional changes in keratinocytes.
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suggesting that the secretion of IL-18 in KRT1-deficient mice could

be a primary effect of KRT1 depletion, rather than a secondary

effect, following permeability barrier abrogation (27). Together,

downregulation of KRT1 could cause functional, dual directional

alterations in keratinocytes, leading to both permeability barrier

abrogation and allergic inflammation in AD. Accordingly,

expression of KRT1 reportedly is downregulated in atopic lesions

due to elevated levels of inflammatory cytokines, such as IL-33, IL-

4, and IL-13 (31, 32). Thus, the downregulation of KRT1 could

augment not only permeability barrier abrogation but also

allergic inflammation.
Filaggrin

FLG is an epidermal differentiation-related molecule, which plays

important roles in both permeability barrier homeostasis and SC

hydration (33, 34). In fact, epidermis in which the filaggrin gene is

knocked down exhibits substantial alterations in permeability barrier

function (35). Interestingly, it has been recently shown that

keratinocytes transfected with siRNA against the profilaggrin gene

are able to produce greater quantities (versus control) of TSLP, which

is one of the essential cytokines in the induction of type 2

immunological reactions (36). Knockdown of FLG reportedly

increases the production of interleukin (IL)-1a, IL-8, IL-18 and

GM-CSF in stratified human keratinocytes (37). It has also been

reported that keratinocytes of flaky tail (versus wild-type mice), in

which FLG is deficient due to a loss-of-function mutation in

profilaggrin, produce more of the proinflammatory cytokine, IL-1b
(38). In ichthyosis vulgaris, which is caused by loss of function

mutations in FLG, expression of pro-inflammatory cytokines

increases. Together, these results show that an abnormality in FLG,

which has been mainly regarded as a barrier-related molecule, could

simultaneously modulate processes leading to allergic inflammation

in skin (39). Whether such a functional change in keratinocytes

towards a proinflammatory phenotype is attributable to dysfunction

of FLG in KRT aggregation remains undetermined, although in

cultured epidermal keratinocytes knocked down of FLG, KRT1

expression was reported to be unaffected (40).
Peroxisome proliferators-activated
receptor a

Peroxisome proliferators-activated receptors (PPARs) belong to

the nuclear hormone receptor class II and have three subtypes,

PPARa, PPARb/d and PPARg (41). They are called liposensors

because their ligands are lipids or lipid derivatives. Generally, PPAR

signaling has positive effects on barrier homeostasis, but it can also

have anti-inflammatory effects, although there are some differences

in the impact of their subtypes (41). The activation of PPARs

stimulates lipid synthesis and epidermal differentiation, while also

accelerating recovery after permeability barrier disruption (41).

Moreover, epidermal barrier development is delayed in PPARa-
deficient mice (42).
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Activators of PPARa suppress both allergic and irritant

cutaneous inflammation in vivo (43). Interestingly, it has been

reported that PPARa expression in the skin is reduced in patients

with AD and that PPARa-deficient mice develop more severe

hapten-induced AD-like dermatitis than wild-type mice (44).

RNA sequence analysis also revealed that PPARa expression is

down-regulated in AD-like lesions compared with those in non-

lesional flaky tail mice skin (45). In addition, PPARa expression in

epidermis is reduced in similar hapten-induced murine AD models,

and topical activation of PPARa exhibits a substantial therapeutic

effect on murine AD, by restoring permeability barrier function and

by dampening allergic inflammation (46, 47).

Awareness of physiological properties of PPARa in the skin and

the association of decreased PPARa expression with AD suggests that

PPARa might be one of the macromolecules that participates in

“intrinsic” cross talk. In fact, reduction of PPARa expression by

transfection with siRNA against PPARa not only up-regulates

expression of the Regulated-upon-activation, normal-t cell-expressed-

and-presumably-secreted cytokine (RANTES) and the Thymus- and

activation-regulated chemokine (TARC) in cultured keratinocytes, but

also down-regulates expression of transglutaminase 1 and LOR (48),

further suggesting that PPARa modulates functions associated both

with inflammation and with permeability barrier homeostasis in skin.

Discussion

A vicious cycle involving permeability barrier dysfunction and

allergic inflammation is one of the basic mechanisms leading to the

pathogenesis of AD. In this article, in addition to discussing the

concept of the so-called “outside-to-inside, and back-to-outside”

paradigm, we offer an idea that links permeability dysfunction and

allergic inflammation in the pathogenesis of AD. In the “outside-to-

inside and back-to-outside” model, keratinocyte functions are

modified secondarily by external stimuli, such as SC pH, or certain

inflammatory factors. On the other hand, in our “intrinsic” model,

primary functional changes relevant to both permeability barrier and

inflammation can occur in keratinocytes by alteration of even a single

molecule. Secondary alteration of such a molecule may also

contribute to augment the vicious cycle between permeability

barrier dysfunction and allergic inflammation. This concept

demonstrates the importance of keratinocytes as a key player in the

pathogenesis of AD, although it is unclear whether this concept

applies equally to extrinsic and intrinsic AD.

Keratinocytes are well known to have functions related to both

permeability barrier dysfunction and inflammation, meaning that

keratinocytes likely are involved in both of these processes in the

pathogenesis of AD. The concept “intrinsic” highlights molecules in

keratinocytes which are simultaneously involved in both permeability

barrier function and inflammation, and such molecules could be

candidates as therapeutic targets in AD, as in the case of PPARa
activators in the murine AD model. Interestingly, the Janus kinase

inhibitor, JTE-052, now the main ingredient in an ointment called

Delgocitinib, was originally reported to induce filaggrin expression, and

this ointment has been deployed as topical therapy for AD (49, 50),

suggesting that targeting keratinocyte functions is one potential strategy

for treating AD.
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Knowledge that changes in one molecule in keratinocytes can lead

to both permeability barrier abrogation and inflammation has been

already reported, as in the case of KRT1 mutations (27). Moreover,

Akiyama et al. have described an autoinflammatory keratinization

disease paradigm (51–53), and this disease concept seems almost

identical to inflammatory aspects in our “intrinsic” mechanism

described here. Therefore, seeking the pathomechanisms of

autoinflammatory keratinization diseases could help to clarify the

mechanism underlining our “intrinsic” paradigm, and AD might be

recognized as an autoinflammatory keratinization disease in the future.
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