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Introduction: Clear cell renal cell carcinoma (ccRCC) is a prevalent subtype of

kidney cancer that exhibits a complex tumor microenvironment, which

significantly influences tumor progression and immunotherapy response. In

recent years, emerging evidence has underscored the involvement of tumor-

infiltrating B lymphocytes (TIL-Bs), a crucial component of adaptive immunity,

and their roles in ccRCC as compared to other tumors. Therefore, the present

study endeavors to systematically explore the prognostic and molecular features

of TIL-Bs in ccRCC.

Methods: Initially, xCell algorithm was used to predict TIL-Bs in TCGA-KIRC and

other ccRCC transcriptomic datasets. The Log-Rank test and Cox regression

were applied to explore the relationship of B-cells with ccRCC survival. Then, we

usedWGCNAmethod to identify importantmodules related to TIL-Bs combining

Consensus subcluster and scRNA-seq data analysis. To narrow down the

prospective biomarkers, a prognostic signature was proposed. Next, we

explored the feature of the signature individual genes and the risk-score.

Finally, the potential associations of signature with clinical phenotypes and

drugs were investigated.

Results: Preliminary, we found ccRCC survival was negatively associated with

TIL-Bs, which was confirmed by other datasets. Afterwards, ten co-expression

modules were identified and a distinct ccRCC cluster was subsequently

detected. Moreover, we assessed the transcriptomic alteration of B-cell in

ccRCC and a relevant B-cell subtype was also pinpointed. Based on two core

modules (brown, red), a 10-gene signature (TNFSF13B, SHARPIN, B3GAT3,
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IL2RG, TBC1D10C, STAC3, MICB, LAG3, SMIM29, CTLA4) was developed in train

set and validated in test sets. These biomarkers were further investigated with

regards to their differential expression and correlation with immune

characteristics, along with risk-score related mutations and pathways. Lastly,

we established a nomogram combined tumor grade and discovered underlying

drugs according to their sensitivity response.

Discussion: In our research, we elucidated the remarkable association between

ccRCC and B-cells. Then, we detected several key gene modules, together with

close patient subcluster and B-cell subtype,which could be responsible for the

TIL-Bs in ccRCC. Moreover, we proposed a 10-gene signature and investigated

its molecular features from multiple perspectives. Overall, understanding the

roles of TIL-Bs could aid in the immunotherapeutic approaches for ccRCC,

which deserve further research to clarify the implications for patient prognosis

and treatment.
KEYWORDS

clear cell renal cell carcinoma (ccRCC), tumor microenvironment, tumor-infiltrating B
lymphocytes (TIL-Bs), prognosis, biomarker, gene signature
1 Introduction

Kidney cancer is a prevalent malignant neoplasm globally,

particularly in Europe and North America, with an estimated

over 400,000 new cases diagnosed in 2020 (1, 2). Renal cell

carcinoma (RCC), which arises in the renal cortex, accounts for

approximately 90% of all primary kidney neoplasms and

encompasses histological subtypes included clear cell RCC

(ccRCC), papillary RCC (pRCC), and chromophobe RCC

(chRCC) (3). Of these subtypes, ccRCC is the predominant form

(~80%) and exhibits a higher propensity for metastasis and worse

prognostic outcomes (4, 5). Given the high frequency of recurrence

and adverse reactions, clinical research and drug discovery have

shifted their focus towards therapies that target key oncogenic genes

and pathways, or activate the anti-tumor response of the immune

system (6, 7). For example, VHL is a well-known tumor suppressor

gene that is frequently mutated (~70%) in ccRCC (8). It has been

demonstrated to regulate the expression of the HIF/VEGF axis,

which contributes to angiogenesis and neovascularization.

Consequently, target agents such as tyrosine kinase inhibitors

(TKIs) have been developed to inhibit VEGFR activity and are

widely employed in the treatment of ccRCC (9).

ccRCC is commonly recognized as a hot tumor with a mixed

immune microenvironment, leading to the emergence of

immunotherapy as a promising therapeutic approach in clinical

settings (10). Initially, cytokines, such as interleukin-2 (IL-2), were

utilized to directly stimulate the immune system, but high doses

could also result in severe side effects (11). In recent years,

immunotherapy has shifted towards immune checkpoint

inhibitors (ICIs) that target checkpoints (e.g., PD-1, PD-L1,

CTLA-4) and aid in restoring the immune response against

kidney cancer cells (12). They are frequently employed in
02
conjunction with other targeted therapies, such as TKIs for better

clinical outcomes. For example, Pembrolizumab, which targets PD-

1, may be administered with Axitinib as an initial treatment for

individuals with advanced ccRCC (13). Nevertheless, the efficacy of

immunotherapy may vary among patients due to numerous

potential factors, including the considerable heterogeneity of the

tumor microenvironment (TME) in ccRCC (10).

Recently, significant advancements have been achieved in

comprehending the intricate condition of immune cell infiltration

in ccRCC, owing to the swift progress of single-cell RNA sequencing

(scRNA-seq) technology and cutting-edge bioinformatics

algorithms (14–16). For instance, Aleksandar Obradovic and his

colleagues acquired expression data from over 100,000 cells derived

from 11 treatment-naïve ccRCC samples and identified a

macrophage subtype (TREM2+/APOE+/C1Q+) that was linked to

tumor recurrence through the VIPER algorithm (14). In another

scRNA-seq investigation of ccRCC, it was discovered that tumor

epithelia could react to immune cell infiltration and potential

connections between endothelial cells and immunotherapy were

also revealed (17). Alternatively, immune infiltration algorithms,

such as matrix deconvolution and single-sample gene set

enrichment analysis (ssGSEA), offer alternative approach to

exploring the TME within tumors, utilizing numerous bulk RNA-

seq cohorts. Bai et al. utilized the TCGA-KIRC dataset to predict the

level of 29 immune-related signatures and observed subtypes with

high immune scores were associated with favorable prognoses (18).

Additionally, a protective signature regarding ccRCC CD8+ T cell

infiltration was proposed as a means of evaluating survival

conditions and identifying novel therapy targets (19).

Nonetheless, research on tumor-infiltrating B lymphocytes

(TIL-Bs), encompassing both B cells and plasma cells here, is

limited in comparison to other immune cell types. However, their
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potential roles in the TME cannot be understated, as they may serve

as crucial prognostic indicators, biomarkers, and targets for

immunotherapy (20, 21). TIL-Bs are predominantly located in

tertiary lymphoid structures, alongside T cells, macrophages, etc.

Prior investigations have demonstrated that B cells are associated

with favorable anti-tumor responses and improved prognoses in

various malignancies, including breast (22), colon (23), lung (24),

and ovarian cancers (25). Noteworthily, a few studies have

suggested that TIL-Bs may have a pro-tumorigenic effect in

ccRCC, which differs from their impact on other tumor types

(26–28). Therefore, it is imperative to investigate their intricate

functions, as this could provide novel insights into the TME of

ccRCC and facilitate the development of targeted immune

therapies. In this study, we conducted a systematic analysis using

multiple datasets and bioinformatics tools to elucidate the

underlying characteristics of TIL-Bs in ccRCC (Figure 1).

Preliminarily, high level of infiltrating B cells was confirmed to be

correlated with worse survival in ccRCC. Subsequently, we

employed WGCNA to identify important regulatory networks

related to TIL-Bs. Based on which, we also identified a ccRCC

subtype through Consensus analysis and focused a B-cell subcluster

in an scRNA-seq dataset, respectively. According to the hub genes

of two core modules, we furtherly screened candidate molecules to

construct a 10-gene signature that exhibited satisfactory prognostic

efficacy in TCGA train set, as validated by both TCGA test set and

ICGC test set. The multifaceted features of the TIL-Bs related

signature, such as abnormal expression and immune correlation

of model biomarkers, together with close single nucleotide variants

(SNVs) and functions of signature based on the risk-score. Finally, a

nomogram was developed for more precise prognosis, mainly

incorporating tumor stage in clinic. Several prospective drugs

against ccRCC patients in high-risk group were also identified.
Frontiers in Immunology 03
2 Materials and methods

2.1 KIRC transcriptomic data collection

The transcriptome expression (529 primary tumor and 72

normal samples) and mutation information (402 samples) of

TCGA-KIRC cohort was downloaded through TCGAbiolinks R

package, and the corresponding survival and phenotype data were

also collected from previous study (29). The ccRCC cohort (RECA-

EU) from ICGC Data Portal, together with survival data, were also

downloaded. For TCGA and ICGC datasets based on bulk RNA-

seq, the FPKM normalization of raw count expression matrix was

adopted. Another cohort comprised of 101 ccRCC patients were

also obtained from ArrayExpress database, with the accession

number of E-MTAB-1980. Several sequencing datasets were also

collected from GEO database. There were totally 60 tumor samples

involved 4 stages (I, II, III, IV) in GSE150404 dataset, 15 metastasis

and 74 primary tumor samples in GSE19949 dataset. GSE126964

dataset focused on Chinese ccRCC with 55 tumor and 11 normal

samples. The ccRCC scRNA-seq data of 16 RCC related tumors and

10 controls were obtained based on GSE178481. In our analysis, 10

primary ccRCC tumors and 9 controls not involving metastasis or

treatment were selected.

2.2 Cell types infiltrating analysis

The xCell algorithm (15), which could infer infiltration scores of

common immune cell types, was adopted to predict tissue cellular

heterogeneity of samples with normalized bulk RNA-seq or array

sequencing data. For TCGA datasets, the xCell results of 33 cancers

were directly downloaded from TIMER2.0 website (http://

timer.cistrome.org). For other datasets, xCell R package was applied
FIGURE 1

Workflow of the research analytical pipeline.
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to calculate the immune infiltration. Additionally, we collected nine

general marker (BLK, CD19, FCRL2, MS4A1, KIAA0125, TNFRSF17,

TCL1A, SPIB, PNOC) that can reflect B-cell population in tumor

environment from previous research (30), and all of them were

detectable in TCGA datasets except for KIAA0125. The single-

sample Gene Set Enrichment Analysis (ssGSEA) method was

employed to evaluate the enrichment score of the eight genes by

comparing the ranking of them and all genes at individual sample level.
2.3 Survival analysis

The two common survival analysis methods, Log-Rank test and

Cox proportional hazards regression, were mainly executed and

visualized by survival and survminer R package. The Log-Rank test,

a non-parametric statistical test, allowed to compare the survival

outcomes between groups and assess the significance. Unless

otherwise specified, we categorized continuous variables (such as

infiltration score, signature risk score) based on their median values

in order to facilitate analysis while using the Log-Rank test. On the

other hand, Cox regression is a semi-parametric method to evaluate the

impact of single factor and multiple covariates on survival and estimate

the hazard ratios (HRs). An HR greater than 1 indicates a higher risk

with each unit increase, while an HR less than 1 indicates a lower risk.
2.4 WGCNA module identification

Weighted Gene Co-expression Network Analysis (WGCNA)

was employed to identify the underlying gene networks in ccRCC.

Log2 transformed normalized expression matrix of tumor samples

from TCGA-KIRC cohort was used as the input data. Then, the top

variable genes with higher median absolute deviation (MAD) were

selected. Samples with hierarchical clustering distance above 150

were considered as outliers. The signed adjacency co-expression

matrix was constructed by calculating robust gene-pairwise

correlation and gene modules were identified by hierarchical

clustering algorithm. Importantly, the module eigengene (ME)

was also obtained for modules to represent their expression

patterns. Subsequently, the module membership (MM) of genes

was attained by calculating the correlation between gene expression

and ME values. The top 30% genes with the highest MM values of

each module are considered as hub genes. It is noteworthy that grey

module genes are separate from the other clearly defined modules

according to WGCNA method.
2.5 Consensus cluster analysis

We applied ConsensusClusterPlus R package, a resampling-based

clustering algorithm, to discover potential ccRCC subtypes according

to hub genes of TIL-Bs related modules. Specifically, the number of

subsamples (reps) and proportion of items to sample (pItem) were set

to 1000 and 0.8, respectively. The correlation coefficient-based distance
Frontiers in Immunology 04
matrix was adopted to perform paritioning around medoids (pam)

clustering and identify consensus clusters. Then, principal component

analysis (PCA) was used to validate the clustering result based on the

same input data.
2.6 scRNA-seq data analysis

Seurat R package was mainly used to perform scRNA-seq

analysis. Firstly, 22,205 genes and 114,216 cells were remained for

later analysis after sample selection and quality control (max

detected unique genes for cells < 5000, max mitochondria gene

expression percentage for cells < 10%; minimum expressed cells for

genes >10). Through batch correction by harmony algorithm and

clustering analysis (resolution 0.01), we then annotated 7 main cell

types by the expression of maker genes (T cell: CD3D, CD3E, CD3G

for cluster 0; Myeloid cell:CD68, LYZ, AIF1 for cluster 1; Fibroblast

cell:RGS5, BGN, TAGLN for cluster 2; Epithelial cell: KRT18,

EPCAM, PAX8 for cluster 3; Endothelial: VWF, CLDN5, FLT1

for cluster 4; B cell: CD79A, CD79B, MS4A1, MZB1 for cluster 5;

Mast cell: CPA3, TPSAB1 for cluster 6). In particular, we also

obtained 5 subclusters for the B-cell population (resolution 0.5).

Then, we identified differentially expressional genes (DEGs) with

absolute average log2(Fold change) > 0.2, p-value < 0.05 and

calculated the module score for cells using corresponding

functions of Seurat package. Besides, we utilized the CellPhoneDB

software (31) to assess the significance and expression strength of

ligand-receptor pairs between B-cell and other cell types in tumor

or normal samples, respectively. Within each group, up to 3000 cells

of each main cell type were randomly selected for the cell

communication analysis. The B-cell related ligand-receptor pairs

with significant enrichment in tumor or normal group through

CellPhoneDB analysis were extracted. Scissor method that recently

proposed (32) was used to infer survival associated B cells by

integrating TCGA-KIRC dataset. Specifically, cell populations

marked with “Sccisor +”, which could be detected at specific level

resolutions, were thought to be related with poor prognosis.
2.7 Prognostic signature and nomogram
establishment

The TCGA-KIRC samples with valid survival data were randomly

divided into train set (70%) and test set (30%). The independent ICGC

dataset was used as external test set. First of all, the FPKM normalized

data was dealt with log2 transformation. In the train set, we calculated

the HR significance of module hub genes based on univariate Cox

regression. Next, the Lasso model was applied to detect redundant

features with different regularization parameter lambda values using

glmnet R package and the candidate genes were finally confirmed

according to lowest partial likelihood deviance. Among these genes, a

superior prognostic signature model was proposed and the

corresponding risk scores based on the dot product operation of the

expression levels of signature genes and their respective HR coefficients.
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Then, we evaluated the survival prediction efficacy of the score on train

set, test set and external set, separately. In details, we grouped each set

based on the median risk score and used log-rank test to compare the

survival difference. On the other hand, timeROC R package was

adopted to calculate the ROC curve of time-dependent predictive

performance at 1-, 3-, 5-years and corresponding AUC values.

Additionally, nomogram was applied to present the predictions of

Cox regression model based on risk score and other clinical factors by

converting coefficients into intuitive linear scales, which can be

implemented by the rms and regplot R packages.
2.8 Gene expression analysis

For DEGs information of TCGA pan-cancer, we directedly

extracted from GSCA website (http://bioinfo.life.hust.edu.cn/

GSCA), which has analyzed for 14 types of cancers with more

than 10 pairs of tumor-normal samples. Their log2(Fold change)

values and Wilcox test p-values were calculated based on RSEM

normalized mRNA expression data at the platform. For other

datasets, we mainly adopted DESeq2 package to identify DEGs

based raw count expression matrix of bulk RNA-seq data and

limma package to analyze the microarray data under specified

grouping condition. Generally, if a gene with its adjusted p-value

below 0.01 and absolute log2(Fold change) over 1, it was considered

as a significant DEG. For correlation analysis, we calculated the

spearman coefficients between signature genes and multiple

immune infiltration scores in tumor or normal condition,

respectively. Besides, we also obtained 79 immune checkpoint

genes (ICs) from previous research (33) and 67 of them that

found in our datasets were used to explore correlation with the

signature genes.
2.9 Pathway enrichment analysis

For the up-regulated and down-regulated genes between ccRCC

consensus clusters, we performed enrichment analysis among

Reactome pathway database using ClusterProfiler R package,

separately. For the pathway related to signature risk-score,

Metascape platform (https://metascape.org) was used to annotate

top 20 representative biological functions based on significant

DEGs. On the other hand, we also applied GSEA algorithm to

detect dysregulated hallmark processes collected by MsigDB

database (https://www.gsea-msigdb.org/gsea/msigdb).
2.10 Drug prediction strategy

The estimating sensitivity response (IC50) of 274 common

drugs on TCGA patients was obtained from previous research

(34), which were mainly based on cancer cell line data from

Genomics of Drug Sensitivity in Cancer (GDSC) Project and

CCLE database. Then, the correlation between risk scores of

patients and corresponding IC50 values of a drug was calculated.
Frontiers in Immunology 05
The candidate drugs with significantly negative coefficients

were pinpointed.
3 Results

3.1 Pan-cancer survival analysis based on B
cell infiltrating level

We initially calculated the HRs of TIL-Bs across 33 types of

cancer cells using Cox regression model (Supplementary Table 1).

As showed in Figure 2A, this analysis revealed significant

association with negative log10(p-value) less than 1 between TIL-

Bs and overall survival (OS) in eight cancers, as well as progression-

free survival (PFS) in ten cancers. Notably, two RCC subtypes

(KIRC and KIRP) both exhibited the significant HR coefficients

above 1 for OS and PFS events. Subsequently, we categorized the

two cohort into two groups based on the median infiltration level,

respectively. The log-rank test demonstrated higher level of TIL-Bs

had indeed lower survival probabilities among KIRC patients

(Figures 2B, C), while no obvious difference was observed in

KIRP cohort (Figures 2D, E). Furthermore, two independent

ccRCC cohorts also confirmed the noteworthy finding

(Figures 2F, G). Additionally, from 8 reported markers reflecting

B-cell level in tumor environment, some of them, such as PNOC,

FCRL2, CD19, were found to have different degrees of impact on

poorer prognosis on overall survival of ccRCC cohort

(Supplementary Figure 1A). The ssGSEA scores of these genes

among KIRC patients significantly correlated with B-cell infiltration

scores predicted by xCell and display moderate survival difference

(Supplementary Figures 1B, C). Then, the obvious increasing TIL-

Bs was found during the late stage of ccRCC compared to the early

stage in both the TCGA and external GSE150404 (Supplementary

Figures 2A, B) samples. Importantly, two separate survival analysis

on early-stage and late-stage patients both showed a certain degree

of significance, especially for early-stage patients (Supplementary

Figures 2C, D).
3.2 TIL-Bs related gene modules and
ccRCC subcluster

To investigate the gene networks associated with TIL-Bs in

ccRCC, we performed WGCNA to identify co-expression modules

using 529 tumor samples from TCGA-KIRC cohort. No

considerable outlier sample was detected according to the

dendrogram (Figure 3A) and the best soft threshold was set to 9

based on relevant topological characteristics (Figure 3B) of the

expression matrix including 6,000 highly variable genes. Ultimately,

ten modules were successfully identified (Figure 3C; Supplementary

Table 2) and their respective hub genes were determined according

to module eigengene (ME) values. Then, we calculated the

spearman correlation coefficients between TIL-Bs and ME and

identified three modules (brown, magenta, red) that exhibited

significantly positive correlations (Figure 3D). Specifically, brown
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module exhibited the strongest positive correlation, while blue

module exhibited the strongest negative correlation.

Next, we used a total of 431 hub genes of brown and blue

modules to execute the resampling consensus algorithm and two

distinct ccRCC clusters (cluster_1 and cluster_2) were recognized

(Figure 3E; Supplementary Table 3). PCA based on above genes

confirmed clear different expression profile between the two clusters

(Figure 3G). Through survival analysis, cluster_2 was found to

exhibit a significant correlation with worse prognosis outcomes

(Figure 3F) and also had higher level of TIL-Bs compared to

cluster_1 (Figure 3H). To gain an understanding of the

transcriptomic differences at pathway levels, we firstly applied the

DESeq2 tool to identify 1815 DEGs with 1380 upregulated and 435

downregulated (Supplementary Table 3), which were used for

Reactome pathway enrichment analysis, respectively. The results

indicated that the upregulated genes were related to activation of

matrix metalloproteinases, GPCR ligand binding and interleukins

signaling, while the downregulated gene list had a connection with

metabolism of amino acids and derivatives, SLC mediated

transmembrane transport and metabolism of vitamins and

cofactors (Supplementary Figures 3A, B).
Frontiers in Immunology 06
3.3 Transcriptional characteristics of B cells
in ccRCC

We further examined the transcriptomic changes of B cells in

ccRCC tumor. Firstly, a relevant scRNA-seq data (GSE178481)

were obtained, of which 10 tumor samples and 9 normal samples

were considered. After quality control and batch effect correlation

(Supplementary Figures 4A, B), we identified 7 clusters at the

resolution of 0.01 (Figure 4A) and cell type annotation was

performed using marker genes (Figures 4B, C). In details, cluster

5 exhibited the highest expression of CD79A, CD79B, and MS4A1,

indicating its annotation as B cell type. Its proportions in tumor and

normal tissue groups were 5.1% and 2.1%, respectively

(Supplementary Table 4). Utilizing CellPhoneDB analysis, we

calculated and observed some altered ligand-receptor interactions

involving B cells in the tumor microenvironment (Figure 4D). For

example, the CD74-COPA pair, from B cells to epithelial cells, was

highly expressed in tumor group, while it is not observed in normal

group. In addition, we found several activated ligand-receptor

interactions, such as C5AR1-RPS19, from T-cell to B-cell of

tumor condition. Then, through survival phenotype analysis by
B C

D E

F G

A

FIGURE 2

Comprehensive survival analysis for TIL-Bs in pan-cancer and validation of other cohorts for ccRCC. (A) Bubble chart illustrating Cox regression
analysis of TIL-Bs across 33 TCGA cancers, where rows represent cancer types and columns represent survival events. Point size reflects the
significance of the p-value. Points with p-value < 0.1 are outlined in purple (HR > 1) or green (HR < 1). (B–E) Kaplan-Meier survival curves showing
the relationship between TIL-Bs and survival outcomes in TCGA-KIRC cohort based on OS (B) or PFI (C) events, and TCGA-KIRP cohort based on
OS (D) or PFI (E) events. (F, G) Kaplan-Meier survival curves showing the relationship between TIL-Bs and survival outcomes in the ICGC (F) and E-
MTAB-1980 (G) ccRCC cohorts on OS event.
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Scissor, we found that in tumor condition, there were more B cell

subpopulations associated with worse prognosis compared to

normal condition, which qualitatively implied TIL-Bs in ccRCC

could affect the survival outcomes (Figure 4E).

Afterwards, we identified 226 genes that were differentially

expressed by comparing B cells between the tumor and normal

groups (Figure 5A; Supplementary Table 4). The results of fisher’s

exact test showed that brown, red and pink modules was closely

related to these DEGs, especially to the upregulated ones

(Figure 5B). Among the three modules, brown and red modules

were also positively correlated with TIL-Bs according to previous

analysis, thus considered as core modules related to TIL-Bs in

ccRCC. On the other hand, the B cell population was further
Frontiers in Immunology 07
divided into five subclusters (C0, C1, C2, C3, C4). We assessed

the enrichment scores of above two modules among all B cells and

the mean scores of each subcluster were compared between tumor

and normal condition in the level of sequencing samples. As

Figure 5C illustrated, there were 3 subclusters displaying

significantly higher brown module scores in tumor group. For C3

subcluster particularly, we also found its composition proportion

was higher in ccRCC tissues (Figure 5D). The subcluster was

subsequently annotated as plasma cells due to high expression of

markers such as XBP1, CD27 (Figure 5E; Supplementary Table 4).

Log-rank test analysis on TCGA-KIRC cohort implied that the

proportion of plasma B cell type was significantly associated with

unfavorable overall survival (Figure 5F).
B

C

D E F

G H

A

FIGURE 3

Investigation of TIL-Bs related modules and identification of one ccRCC subtype using WGCNA and Consensus cluster analysis. (A) Dendrogram
showing the similarity among 529 TCGA-KIRC tumor samples. (B) Scatter plot illustrating the relationship between different soft thresholds and scale
independence (R2) values. (C) Dendrogram of modules generated by WGCNA, representing the hierarchical clustering of genes before and after
dynamic merging. (D) Heatmap depicting the spearman correlation between ME values and TIL-Bs levels, implemented by the corrplot R package.
Cell colors indicate the magnitude of the correlation, where redder cells indicate more positive correlation, and bluer cells indicate more negative
correlation. “X” symbols mark cells with p-values > 0.01, which is considered insignificant. Cell size is correlated with absolute correlation coefficient.
(E) Clustering heatmap generated by ConsensusClusterPlus R package. (F) Kaplan-Meier survival curves of two distinct ccRCC subtypes. (G) Scatter
plot for the result of PCA for the two subtypes. (H) Violin plot visualizing the differences in TIL-Bs between the two subtypes.
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3.4 Prognostic signature establishment
and validation

As brown and red module could represent important roles of B-

cell in ccRCC through above analysis, we subsequently aimed to

identify potential biomarkers and build a prognostic model from

383 hub genes of the two modules. We randomly divided the

TCGA-KIRC dataset into train set and test set in 7:3 ratio (Table 1;

Supplementary Table 5). In the train set, 91 genes with significant

HR values of Cox regression analysis (adjusted P value < 0.01) were

prioritized (Figure 6A) among above hub genes. Using the Lasso

model, we further narrowed down the selection to 20 candidate

genes with regularization effect (Figure 6B). Among them, we found

although several genes exhibited moderate predictive performance

such as B3GAT3, SHARPIN, the accuracy on external ICGC set

were unsatisfactory (Supplementary Figures 5A–C). Therefore,

through multivariate Cox regression, the combined model with

adjusted coefficients of multiple genes from above candidate genes

were constructed, and a 10-gene signature (TNFSF13B, SHARPIN,

B3GAT3, IL2RG, TBC1D10C, STAC3, MICB, LAG3, SMIM29,

CTLA4) was finally proposed (Figure 6C). Based risk-score of the

signature among the train set, the survival difference between the

two groups stratified by the median value cutoff is considerably

significant, with the high-score group exhibiting worse prognosis

(Figure 6D). The AUC values at 1-, 3-, and 5-year overall survival
Frontiers in Immunology 08
time could reach to 0.79, 0.72, 0.73, respectively (Figure 6E). Using

the same methods, we assessed the performance of the model in

TCGA test set (Figures 6F, G) and overall TCGA set (Figures 6H, I),

which indicated satisfactory efficacy. Importantly, the model also

performed well on the ICGC external test dataset, showing its

acceptable generalization ability (Figures 6J, K).

3.5 Aberrant expression of signature
biomarkers in ccRCC

We assessed the differential expression of the 10 signature genes

relative to corresponding normal tissues across TCGA cancers and

observed significant upregulation of most genes in the KIRC cohort,

followed by BRCA, KIRP, HNSC and STAD (Figure 7A;

Supplementary Table 6). Particularly, abnormally higher

expression of TBC1D10C was detected exclusively in ccRCC

cancer. We further analyzed an Asian cohort (GSE126964), which

exhibited similar patterns to those observed in TCGA-KIRC, except

for SMIM29, SHARPIN, B3GAT3 (Figure 7B). Moreover, six out of

ten upregulated genes in ccRCC tumors also displayed elevated

expression in metastatic ccRCC samples (GSE19949), such as LAG3

and IL2RG (Figure 7B). Interestingly, B3GAT3 and SHARPIN were

also found to be highly expressed in this comparison.

Then, through correlation analysis, we revealed that the

biomarkers constituting of the prognostic model were unrelated
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FIGURE 4

Transcriptomic differences of B cells from a ccRCC scRNA-seq dataset. (A) Dimension reduction plot illustrating the distribution of the 7 identified
clusters (labelled 0, 1, 2, 3, 4, 5, 6, respectively) under the resolution of 0.01. (B) Bubble plot showing the expression of canonical markers across
each cluster, where the color and size of the points correspond to the expression levels and percentages, respectively. (C) The pie charts displaying
the cell type annotation results separately for the normal and tumor groups. (D) Bubble plot showing the expression of ligand-receptor pairs in
normal and tumor groups, separately. The dot’s size and color indicate the overall mean expression of ligand-receptor partners in corresponding
pairs of cell types. If the interaction is not significant according to CellPhoneDB analysis, the expression is considered as 0. Up panel represents B
cells as ligands, and down panel represents B cells as receptors. (E) Bar chart displaying the percentage of B cells considered as ‘Scissor+’ in the
normal and tumor groups under different resolution conditions analyzed by Scissor, with Fisher’s exact test to calculate the distribution difference.
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to B-cell infiltration, and a few even show a negative correlation in

normal condition (Figure 8A). However, their significantly positive

correlations were observed with both B-cell and its subtypes in

ccRCC tumors (Figure 8B). Besides, the correlations with other

immune scores were also considerably altered in the tumor

environment, such as T cells, Endothelial cells and Monocytes.

On the other hand, we also analyzed the relationship with the

common ICs (Figure 8C). The results indicated seven of them

showed obvious association in both conditions and some notable

changes were also observed. For example, CTLA4, STAC3,

TBC1D10C and TNFSF13B were found to show weaker

correlation with KIR (Killer Cell Immunoglobulin-like Receptor)

family genes in tumor condition.
3.6 Risk-score related clinical phenotypes,
SNVs and pathways

Firstly, we evaluated the distribution differences of risk scores

across different phenotypes and did not detect significant difference in

gender or age grouping (Supplementary Figure 6). On the other hand,
Frontiers in Immunology 09
patients in advanced stage or high grade tended to have higher risk

scores (Supplementary Figure 6). Then, the KIRC cohort was divided

into high-risk and low-risk groups based on the median risk score.

Combined with matched SNV data from TCGA, we separately

identified top 10 SNVs with the highest mutation frequencies in each

group (Figures 9A, B), which existed some distinctions, such as BAP1,

ATM, SYNE1.We furtherly employed Chi-squared test to compare the

number of patients in high-risk and low-risk within the wild group or

mutant group of above genes. As Figure 9C showed, the mutations of

BAP1, SED2, SYNE1 were found to be more closed to high-risk

patients. In particular, two of them (BAP1, SYNE1) were also related

to worse survival (Figure 9D).

Next, we identified 1258 significant DGEs between the two risk

groups, which were used to annotate the twenty most associated

functions by the Metascape platform (Figure 10A; Supplementary

Table 7). The enrichment results mainly involved extracellular matrix

and matrisome, GPCR (G protein-coupled receptor) ligand binding,

humoral immune response, cell population proliferation, cell fate

commitment. Through GSEA analysis based on hallmark pathways

from MSigDB database (Supplementary Table 7), we found 12

upregulated terms including IFN-alpha response, IFN-gamma
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FIGURE 5

Identification of key modules and related B-cell subpopulations. (A) Volcano plot illustrating the differential genes of B cells between the tumor and
normal groups. (B) Bar charts displaying the number of intersections between each WGCNA module and all differential genes (left panel) or upregulated
genes (right panel) in B cells. The significance of the intersection gene proportion was analyzed by Fisher’s exact test. ***p<0.001, *p<0.05, NS p>0.05.
(C) Box plots illustrating the distribution differences in the brown module scores of the subclusters between the tumor and normal groups at the
sequencing sample level. (D) Donut charts displaying the composition proportions of the 5 subclusters within B cells in normal (left panel) or tumor (right
panel) condition. (E) Stacked violin plots showing the expression levels of top 10 differential genes of C5 across five B-cell subclusters. (F) Kaplan-Meier
survival curves showing the relationship between plasma B-cell and survival outcomes in TCGA-KIRC cohort based on OS event.
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response, IL-6/JAK/STAT3 signaling (Figure 10B) and 14

downregulated terms including protein secretion, fatty acid

metabolism, androgen response (Figure 10C).
3.7 General nomogram model based on
risk score, stage and age of patients

Based on the validated prognostic value of the 10-gene

signature, we further confirmed its independent contribution to

survival prediction while adjusting for other potential covariates

such as age, sex, and stage. The results of multivariable Cox

regression analysis demonstrated that the risk score, patient age

and AJCC stage, with hazard ratios above 1, had significant effects

on survival outcomes (Figure 11A). The overall concordance index

(C-index) reached 0.78, indicating good predictive performance in

the train set. Consequently, an intuitive nomogram was established

by summing up the scores for above three factors (Figure 11B).

Then, AUC values at 1-year, 3-years, 5-years of time points based

on the nomogram were evaluated on TCGA-KIRC train (0.88, 0.82,

0.77) and test set (0.83, 0.81, 0.79), which both showed significant

efficacy (Figure 11C). Importantly, the predictive performance of

the combined model was found to be superior to that of simple

model based on any individual factor (Figure 11D).
3.8 Potential therapeutic drugs against
high-risk patients

Finally, we intended to discover potential therapeutic drugs for

ccRCC patients with higher risk scores based on the TIL-Bs related
Frontiers in Immunology frontiersi10
signature. Combining with the predicted IC50 data of 274 drugs

across TCGA-KIRC patients, we calculated their pearson

correlation coefficients with risk scores. Then, 38 compounds that

display strong negative correlation (R < -0.3) were screened. For the

top 10 of them (Table 2), we found high-risk group patients are

more sensitive with significantly low drug IC50 compared that of

low-risk group, such as AZD6738, AICA Ribonucleotide, Bosutinib

(Supplementary Figure 7).
4 Discussion

The TME in solid tumors is primarily composed of various

immune cells, including T cells, B cells, macrophages, dendritic

cells, natural killer cells, and neutrophils. While B cells are

recognized as significant contributors to humoral immunity and

have been extensively studied in the context of autoimmune

diseases, their precise roles within cancer remain incompletely

understood, partly due to their relatively lower abundance in the

TME (35, 36). Furthermore, a few studies have investigated the

potential anti-tumor response of TIL-Bs considering their potential

ability to secrete immunoglobulins or support T cell responses in

the fight against cancer (37). However, it has been reported that

TIL-Bs in ccRCC could have a different impact on patient survival,

and previous studies have not fully explored their multifaceted

features. Therefore, it is worthwhile to conduct a systematic

investigation into the prognostic significance and molecular

characteristics of TIL-Bs on ccRCC tumors and the underlying

mechanisms, which can provide further insights into the complex

tumor microenvironment in ccRCC and facilitate the development

of novel treatment strategies.
TABLE 1 The distribution of clinical phenotypes in TCGA-KIRC train and test set.

Test Train Overall

(N=155) (N=372) (N=527)

Gender

FEMALE 60 (38.7%) 124 (33.3%) 184 (34.9%)

MALE 95 (61.3%) 248 (66.7%) 343 (65.1%)

Age

Mean (SD) 61.6 (12.7) 60.3 (11.9) 60.7 (12.1)

Median [Min, Max] 63.0 [29.0, 90.0] 60.0 [26.0, 90.0] 61.0 [26.0, 90.0]

OS

Alive (0) 104 (67.1%) 248 (66.7%) 352 (66.8%)

Dead (1) 51 (32.9%) 124 (33.3%) 175 (33.2%)

Stage

I 76 (49.0%) 187 (50.3%) 263 (49.9%)

II 17 (11.0%) 39 (10.5%) 56 (10.6%)

III 37 (23.9%) 85 (22.8%) 122 (23.2%)

IV 23 (14.8%) 60 (16.1%) 83 (15.7%)

[Discrepancy] 2 (1.3%) 1 (0.3%) 3 (0.6%)
n.org

https://doi.org/10.3389/fimmu.2023.1238312
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yue et al. 10.3389/fimmu.2023.1238312
First of all, B-cell infiltration levels of TCGA-KIRC cohort

predicted by xCell algorithm were confirmed to be associated

with worse survival outcomes in OS and PFI events of patients

among 33 TCGA cancer types. The finding was further validated by

another two ccRCC cohorts and several TIL-Bs related markers.

Next, we identified 10 co-expression modules in ccRCC tumor

tissues using the WGCNA method, and calculated their correlation

with TIL-Bs to uncover potential gene regulatory networks. Among

three positively related modules (brown, magenta, red) and four

negatively modules (blue, black, green, turquoise), the brown and

blue modules showed remarkable correlation, respectively. Based on

hub genes of the two modules, we performed consensus cluster

analysis, revealing a distinct KIRC subtype characterized by high B-

cell infiltration level and poor prognosis. Furthermore, the
Frontiers in Immunology 11
upregulated and downregulated pathways of this subtype were

annotated by corresponding DEGs. According to the results, we

inferred an underlying extracellular matrix (ECM) remodeling

process in cluster_2 subtype, which could influence the

recruitment and activity of immune cells (38). Besides, both

interleukins signaling and NF-kB pathway can also participate in

B-cell regulation and function (39–41).

On the other hand, we sought to explore the underlying

relationship of above modules to the transcriptomic changes of B

cells in tumor environment. Based on a public ccRCC scRNA-seq

dataset, we annotated a cluster of over 3,000 cells with higher

expression of B-cell markers such as CD79A, CD79, and MS4A1,

and furtherly identified five subpopulations. Firstly, cell

communication and Scissor phenotype analysis revealed that B
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FIGURE 6

Development and performance of a 10-gene prognostic signature. (A) Scatter plot illustrating the ranking of significance in Cox regression analysis for hub
genes. (B) Scatter plot illustrating the selection of the optimal parameter (lambda) using the ten-time cross-validation method in the Lasso model. (C) Forest
plot showing the multivariate cox proportional hazards model of the 10-gene signature based on OS event. (D, F, H, J) Kaplan-Meier survival curves of two
groups divided by median risk score in TCGA train set (D), test set (F), all set (H) and ICGC set (J) based on OS event. (E, G, I, K) Time‐dependent ROC curve
analysis of risk score at 1-, 3-, and 5-years OS time in TCGA train set (E), test set (G), all set (I) and ICGC set (K).
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cells in tumor group indeed played a different role in the interaction

with other cell types and would be unfavorable for patient survival,

which both suggested that the unignorably altered expression of

TIL-Bs were existed. Consequently, we found three modules

(brown, red, pink) that were considerably close to the DEGs of

TIL-Bs. Noteworthily, brown and red modules showed significantly

positive correlation with B-cell infiltration in previous analysis.

Therefore, the brown module with 806 genes and red module with

472 genes could be the two core networks which helped us to

understand the characteristic of TIL-Bs and explain their impact on

survival prognosis of ccRCC patients.

Additionally, we also investigated the B-cell subclusters through

module scoring analysis and 3 of them showed increasing

expression score for above brown module in tumor samples. For

C3 subcluster in tumor group particularly, we found it was
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amplified compared to that in normal group. Then, we designated

this subcluster as plasma B cells due to its specific expression of

CD27, IGJ, XBP1, etc. and survival analysis confirmed this subtype

was also related to worse survival in KIRC cohort. Previous research

have found TIL-Bs exhibited general phenotypes including naïve,

activated and memory B cells, germinal center B cells, and plasma

cells (42). Among these phenotypes, plasma cells, which are

responsible for antibody production, represent one of the final

stages of B-cell development. In a study on non-small cell lung

cancer (NSCLC), plasma B cells were found to play contradictory

roles at different stages of NSCLC (43).

Based on the two core modules through above analysis, our

consequent objective was to narrow down the potential biomarkers

associated with TIL-Bs in ccRCC and build a relevant prognostic

model. Initially, we divided the TCGA-KIRC cohort into train set
BA

FIGURE 7

Differential gene analysis of signature genes in TCGA-KIRC and other datasets. (A) Bar plots displaying the log2(Fold change) of signature genes
between tumor and normal groups across 14 cancer types, derived from GSCA. If the adjusted P-value is greater than 0.01, it is denoted as 0. (B)
Radar charts displaying the log2(Fold change) of signature genes across three datasets, analyzed by DESeq2 (bulk RNA-seq) or limma (microarray)
package. Up panel: TCGA-KIRC dataset, tumor versus normal tissue. Middel panel: GSE126964 dataset, tumor versus normal tissue. Down panel:
GSE19949 dataset, metastatic versus primary tissue. If the adjusted P-value is greater than 0.01, it is denoted as 0.
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and test set, with the ICGC cohort serving as an external test set.

Through univariate Cox regression analysis and Lasso model

analysis on the training set, we screened 20 candidate molecules

from 383 hub genes of the brown and red module. Ultimately, a 10-

gene signature was proposed and the risk score calculated based on

the model showed good predictive performance on train set and test

set from TCGA samples, with higher values indicating worse

survival outcomes. Specially, we also found its generalization

ability on independent ICGC set were satisfactory and better than

that of most single candidate gene.

Through pan-cancer analysis, the 10 markers composed of the

signature were found to show varying degrees of upregulation in

ccRCC. Among them, some genes have been confirmed to be

associated with the development and proliferation of B cells. For

example, TNFSF13B (TNF Superfamily Member 13b) is responsible

for encoding a cytokine, named BAFF (B cell-activating factor),

which belongs to the tumor necrosis factor (TNF) family (44). It has

been known as important ligand for 3 receptors (BCMA, TACI,

BAFF-R) expressed by B cells and consequently participate in B-cell
Frontiers in Immunology 13
differentiation, proliferation, survival, and functional responses (45,

46). One clinical research recently reported that BAFF significantly

associated with worse OS in patients with metastatic ccRCC (47).

Regarding to SHARPIN (SHANK Associated RH Domain

Interactor), we found that although its expression alteration was

not remarkable in primary tumor tissues, it was significantly

upregulated in metastatic ccRCC. Its encoding protein was one of

essential subunits to form the linear ubiquitin chain assembly

complex (LUBAC) (48, 49). Previous researches found there is a

diminished activation of the IKK complex and NF-kB in B cells in

mice with SHARPIN deficiency (49) and LUBAC could involve in

B-cell activation by regulating CD40 signaling (50). Another report

indicated knockdown of SHARPIN could inhibit ccRCC tumor

growth in xenograft models (51). TBC1D10C (TBC1 Domain

Family Member 10C), also named Carabin, is an inhibitor of both

the Ras signaling pathway and calcineurin (52). We found it showed

exclusively upregulation in ccRCC in our pan-cancer analysis.

Interestingly, the gene exhibited a significant HR value above 1.

However, in the combined signature model, its adjusted HR was
B
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FIGURE 8

Correlation analysis of signature genes with immune infiltrations, immune checkpoints in TCGA-KIRC dataset. (A, B) Heatmap displaying the
spearman correlation coefficients between signature genes and immune infiltration scores among TCGA-KIRC normal (A) and tumor (B) samples,
respectively. Grids with p-values above 0.05 in the correlation analysis are colored in gray. (C) Heatmap displaying the pearson correlation
coefficients between signature genes and immune checkpoints expression among TCGA-KIRC normal or tumor samples. Grids with p-values above
0.05 in the correlation analysis are colored in gray.
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below 1, meaning an oppositely protective role. Recent research

found it indeed could be a key suppressor of B-cell receptor

signaling and proliferation via Ras/extracellular signal-regulated

kinase pathway in B-cell lymphoma (53).

Afterwards, we calculated the correlation of the signature genes

with common immune infiltration scores and immune checkpoint

genes, and compared the differences between normal and tumor

tissues. As expected, we observed the significant positive correlation

with B-cell infiltration in tumor tissue. Moreover, CD8+ T cells related

scores also showed notably increasing correlation with most of the 10

genes, which played important role in tumor immunotherapy (54). In

addition, 2 (CTLA4 and LAG3) of the 10 genes belong to classical

immune checkpoints, which could contribute to tumor cells in evading

immune surveillance (55). Consequently, we also explored the links to

common ICs using the same way. According the result, more than half

of the signature genes showed significantly positive correlations on

both conditions. For the remain three genes had little relationship in
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normal group and slightly negative correlation in tumor group. Above

findings revealed that the signature was not only related to TIL-Bs but

also had underlying links with CD8+ T cells mediated immune

response to ccRCC.

Next, the overall characteristics of the ILB-related signature

were also examined. Firstly, we observed that patients with higher

risk scores were often found at advanced stages, which aligned with

the primary survival analysis. Furthermore, we identified several

SNVs which were related to patients in high-risk group. Two (BAP1

and SYNE1) of them showed worse survival compared to their wild

type. In particular, of 40 patients with BAP1 mutation, 80% were in

high-risk group, while previous study found that it was recurrent in

both earlier and advanced ccRCC (56). Another research on

melanoma illustrated the absence of BAP1 correlates with an

increase in the activity of the NF-kB pathway (57). Through

pathway analysis based on the transcriptomic difference between

high-risk and low-risk patients, we revealed potential related
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FIGURE 9

SNVs related to patients in high-risk or low-risk group. (A, B) Oncoplots showing the top 10 SNVs of low-risk (A) or high-risk (B) group, implemented
by the maftools R package. (C) Bar charts displaying the percentages of high-risk and low-risk patients within the mutant or wild-type groups for
each gene, with corresponding p-values of chi-square analysis marked, implemented by the ggstatsplot R package. (D) Kaplan-Meier survival curves
between wild-type and mutant groups of BAP1 and SYNE1 based on OS event.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1238312
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yue et al. 10.3389/fimmu.2023.1238312
B

C

A

FIGURE 10

Pathways related to difference between patients in high-risk and low-risk groups. (A) Network diagram, where each term is depicted as a circle and
its size reflecting the number of associated input genes. Node color denotes cluster identity (left panel) or p-value (right panel), while edges connect
terms with similarity scores > 0.3 (edge thickness indicates similarity) (B, C) GSEA plot showing the top 5 pathways, with most positive (B) or negative
(C) enrichment scores, in the high-risk group compared to the low-risk group.
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FIGURE 11

Nomogram combined risk-score and other clinical phenotypes. (A) Forest plot showing the multivariate Cox regression model of the risk score and
other clinical phenotypes. (B) Nomogram for predicting survival probability by integrating risk score, tumor stage, patient age. Each factor is assigned
a score contributing to the total point assessment. (C) Time‐dependent ROC curve analysis of the nomogram at 1-, 3-, and 5-years OS time in
TCGA-KIRC train set and test set. (D) Line charts depicting the AUC values at 1-, 3-, and 5-years OS time for the nomogram and three individual
factors.
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processes such as extracellular matrix which was similar with the

characteristics of above TCGG-KIRC subtype identified by TIL-Bs

related modules. Besides, we also observed the enrichment for cell

population proliferation and B-cell mediated humoral immune

response. Furthermore, the upregulation of inflammation-related

pathways was detected, such as IL6/JAK/STAT3 signaling,

interferons-alpha (IFN-a), and interferon-g (IFN-g) response.

Additionally, we found a negative enrichment of androgen

receptor (AR) response, which has been shown in previous

research to suppress the development and activation of B cells (58).

As preliminary survival analysis has indicated the relationship

of TIL-Bs with tumor stage, therefore, we aimed to build a

comprehensive model by merging the gene signature and

common clinical phenotypes. Ultimately, we established a

nomogram based on three independent factors (risk score, tumor

stage and patient age) and its AUC performance on test set

generally increased to 0.8. On the other hand, we also screened

some potential drugs that displayed more sensitive IC50 values on

high-risk group. Among the top 10 drugs, AICA Ribonucleotide

(AICAR) was known as an activator of AMPK, which has been

considered as a possible target for RCC (59, 60). Recent two studies

also found AMPK could also could inhibit NF-kB activation (61,

62). In addition, according to a preclinical study, the combination of

AICAR and rapamycin has been reported to slow down the

progression of kidney tumors (63).

In conclusion, our study uncovered the prognostic and

transcriptomic characteristics of TIL-Bs in ccRCC, revealing their

association with poor survival, which distinguishes them from most

other cancers. Through gene co-expression network analysis, we

identified several modules associated with TIL-Bs and consequently

detected one unique cluster of ccRCC patients and one abnormal
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TIL-Bs subcluster based on several key ones. By considering two

core modules, we ultimately constructed a prognostic signature

consisting of 10 potential biomarkers. We thoroughly explored and

discussed the key features of both individual signature genes and the

signature as a whole at multiple levels. Furthermore, we investigated

the potential clinical applications of the signature, including

nomogram survival prediction and drug discovery, which yielded

promising results. It is also important to acknowledge the

limitations of our research. Further in-depth biological

interpretation of our findings is warranted, and wet laboratory

experiments are essential for future validation. Clinical assessments

of the proposed signature are needed to evaluate its potential in

guiding treatment decisions and patient management. Nonetheless,

our study offers valuable insights into the roles of TIL-Bs in ccRCC.
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TABLE 2 The top 10 drugs most negatively correlated with the risk-score.

Rank Name
PubChem

CID
Molecular
Formula

R
(pearson)

P.value Target Target.pathway

1 AZD6738 54761306 C20H24N6O2S -0.578664723 1.60E-48 ATR Genome integrity

2
AICA

Ribonucleotide
65110 C9H15N4O8P -0.513031165 8.74E-37 AMPK agonist Metabolism

3 Bosutinib 5328940 C26H29Cl2N5O3 -0.468464746 3.70E-30 SRC, ABL, TEC Other, kinases

4 MK-8776 16224745 C15H18BrN7 -0.425603419 1.21E-24
CHEK1, CHEK2,

CDK2
Cell cycle

5 Tubastatin A 49850262 C20H21N3O2 -0.425040135 1.41E-24
HDAC1, HDAC6,

HDAC8
Chromatin histone

acetylation

6 Ulixertinib 11719003 C21H22Cl2N4O2 -0.422751508 2.65E-24 ERK1, ERK2 ERK MAPK signaling

7 GSK343 71268957 C31H39N7O2 -0.420283431 5.18E-24 EZH2
Chromatin histone

methylation

8 BIX02189 135659062 C27H28N4O2 -0.419452228 6.49E-24 MEK5, ERK5 ERK MAPK signaling

9 Cyclopamine 442972 C27H41NO2 -0.405539225 2.55E-22 SMO Other

10 AZD7762 11152667 C17H19FN4O2S -0.389473139 1.43E-20 CHEK1, CHEK2 Cell cycle
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