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application of thymosin in the
treatment of lung cancer

Yafeng Liu and Jibin Lu*

Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
Cancer is one of the leading causes of death worldwide. The burden of cancer on

public health is becoming more widely acknowledged. Lung cancer has one of

the highest incidence and mortality rates of all cancers. The prevalence of early

screening, the emergence of targeted therapy, and the development of

immunotherapy have all significantly improved the overall prognosis of lung

cancer patients. The current state of affairs, however, is not encouraging, and

there are issues like poor treatment outcomes for some patients and extremely

poor prognoses for those with advanced lung cancer. Because of their potent

immunomodulatory capabilities, thymosin drugs are frequently used in the

treatment of tumors. The effectiveness of thymosin drugs in the treatment of

lung cancer has been demonstrated in numerous studies, which amply

demonstrates the potential and future of thymosin drugs for the treatment of

lung cancer. The clinical research on thymosin peptide drugs in lung cancer and

the basic research on the mechanism of thymosin drugs in anti-lung cancer are

both systematically summarized and analyzed in this paper, along with future

research directions.
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1 Introduction

Cancer is one of the main causes of death on a global scale (1). Cancer has been

acknowledged to be an increasing public health burden (2). Lung cancer (LC) is the leading

cause of cancer deaths worldwide, and it has a relatively high incidence (3). With the

popularity of low-dose computed tomography as an early screening test, more and more

early lung cancers, particularly early lung adenocarcinoma (LUAD), are being detected (4,

5). LC includes non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and

NSCLC contains numerous pathological types such as lung squamous cell carcinoma

(LUSC) and lung adenocarcinoma, of which LUAD is the most prevalent pathological type

of LC (6). After surgical resection, early-stage LC, especially LUAD including ground-glass

opacity components, has a very favorable long-term survival outcome (7, 8). In recent

years, the emergence and development of targeted therapy and immunotherapy as well as

the application of these methods to neoadjuvant therapy, have also greatly improved the
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prognosis of LC patients (9–12). Even though the survival rate of

lung cancer patients has gradually increased, the survival of patients

with advanced lung cancer is not encouraging, and the 5-year

survival rate of patients with advanced LC is even lower than 20%

(13). Today, there are still issues such as drug resistance, negative

gene mutations, and negative immunotherapy targets for LC

patients or poor treatment effects and incapacity to tolerate the

toxic side effects of treatment. Therefore, for LC, whether it is the

discovery of innovative, safe, and effective treatment options or the

investigation of auxiliary therapeutic drugs, the need is still

very urgent.

The thymus gland is an organ in the body that has

immunological and endocrine functions (14, 15). In the 1960s,

researchers extracted hormones such as thymosin from the thymus

gland, based on this discovery, the primary active substance of

thymosin, thymosin fraction 5, was then isolated and further

separated and purified as thymosin II and thymosin alpha1 (Ta1)
(16). Thymosin is a class of physiologically active polypeptides

released by the thymus gland, and the most widely used thymosin

drugs in clinical practice mainly include thymosin, thymosin alpha-

1, and thymopentin (17). Thymosin is a mixture of peptides

extracted from the thymus glands of animals. Ta1, also known as

thymalfasin, is a medication completely consistent with human

Ta1, which is a small molecule bioactive polypeptide obtained by

isolation and purification of thymosin component 5, made up of 28

amino acids and a molecular weight of 3,018 Da (18, 19). The

immunoreactive center of thymosin II, a polypeptide fragment

composed of 5 amino acids, located in the 32-36th position of the

polypeptide, is called thymopentin (20, 21). The most common

dosage forms of thymosin drugs include thymosin injection, Ta1
injection, thymopentin injection, and thymosin enteric-coated

tablets/capsules. Thymosin drugs have an immunomodulating

and boosting immunity function, suited for treating individuals

with a compromised immune status caused by sepsis, and other

illnesses (22–24). Additionally, thymosin drugs are also frequently

used in the treatment and adjuvant treatment of cancer (25–27).

There have been numerous clinical studies and basic mechanism

studies that have demonstrated the effectiveness of either thymosin

monotherapy or combination therapy for the treatment of LC (26).

This fully illustrates the potential of thymosin for the treatment of

LC. However, there is currently a lack of systematic summarization

of thymosin in the treatment of LC. Therefore, this study organizes

and analyzes basic and clinical research in this field (Figure 1), to

clarify the current situation and explore future research directions.
2 Summary of the mechanism of
thymosin in the treatment of LC

Many scholars have advanced the mechanism of thymosin in

LC and undertaken in-depth and extensive research. Numerous

mechanisms have been identified so far, including inhibition of LC

growth , pro l i fera t ion , invas ion , and migrat ion , and

immunomodulatory effects that regulate the activity and function

of natural killer cells, T lymphocytes, and immunosuppression, to

exert anti-LC effects. The mechanism and effects of thymosin in the
Frontiers in Immunology 02
treatment of LC are summarized in detail in Figures 2, 3,

and Table 1.
2.1 Inhibit the growth, proliferation,
invasion, and migration of LC

At present, a large number of studies have confirmed that

thymosin drugs in combination with other drugs or monotherapy

have the effect of inhibiting the growth of LC (28–30, 33–35). Both

in vitro and in vivo experiments have demonstrated that Ta1
monotherapy can significantly inhibit the growth of NSCLC (28).

Chemoprevention, a method, and strategy to reduce cancer

incidence and mortality, is defined as the use of natural or

synthetic substances, biological agents, and other pharmacological

agents in the early stages of cancer to achieve the purpose of

impeding, arresting, or even reversing the development of cancer

(41). Chemoprevention has a wide range of applications in the field

of LC and is one of the potential therapeutic options to reduce the

risk of LC (42). According to studies, Ta1 can be used as a

chemopreventive drug that can effectively prevent the occurrence

of LUAD, and Ta1 also has a direct inhibitory effect on the growth

of LUAD (29, 30). In addition to the monotherapy of thymosin

drugs, many scholars have also paid attention to the effect and

mechanism of thymosin drugs combined with other drugs on LC,

these studies shown that Ta1 in combination with interferon (IFN)

a/b or interleukin-2 (IL-2) can inhibit LUAD growth and that Ta1
has a synergistic effect with IFNa/b or IL-2, and the combination

has a better effect of inhibiting tumor growth than Ta1
monotherapy (33–35). The dysregulation of the JAK/STAT

pathway is closely related to LC and other cancers, STAT3 plays

an important role in the JAK-STAT signaling pathway, and STAT3

is primarily involved in tumor growth, differentiation, migration,

and invasion regulat ion (43, 44) . A kind of matrix

metalloproteinase named MMP2 can degrade type IV and type V

collagen and elastic fibers, thereby destroying the basement

membrane and extracellular matrix, and promoting tumor

invasion and metastasis (45). Bo et al. discovered that Ta1
inhib i ted the t ranscr ip t ion of MMP2 by inhib i t ing

phosphorylation of STAT3, resulting in a decrease in MMP2
FIGURE 1

The summary of clinical research and the basic research on the
mechanism of thymosin drugs in anti-lung cancer.
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protein expression and inhibiting the migration and invasion of

NSCLC cells with programmed cell death ligand 1 (PD-L1) high-

expressing, which suggests that Ta1 may inhibit the STAT3-MMP2

signaling pathway by stimulating PD-L1 (31). One of the main
Frontiers in Immunology 03
components produced by oxidative stress in the body is reactive

oxygen species (ROS), which has the role of driving the

development of cancer and other diseases, and the increase of

ROS can promote the growth, migration, and invasion of tumors

(46). ROS is also one of the main causes of LC occurrence and

progression (47). A study has confirmed that Ta1 has the effect of

inhibiting the proliferation and migration of LUAD cells, and Ta1
also can inhibit the antioxidant activity of LUAD cells by reducing

ROS levels and increasing the activity of antioxidant enzymes like

catalase, superoxide dismutase, and glutathione peroxidase (32).

Thymosin b4 (Tb4) is also thought to be associated with LC in

addition to Ta1. Tb4, a polypeptide with 43 amino acids that is

distributed in various tissues of the human body and is one of the

main actin regulators in the human body, makes up the largest

proportion of b-thymosin (48, 49). According to Huang et al., Tb4
was overexpressed in NSCLC, and after Tb4 was silenced, the

activation of Notch1 was inhibited, which inhibited the

proliferation and migration, and invasion of LUAD cells (40).
2.2 Immunomodulatory effects

2.2.1 Natural killer cell
Natural killer (NK) cells are important immune cells in the

human body and the main effector cells of innate immunity. The

use of anti-tumor immunotherapy based on NK cells is being

investigated (50). Some of the side effects of chemotherapy are

related to its suppression of the immune system. In animal models

of LC after chemotherapy, NK cell activity was restored

simultaneously with the inhibition of LC growth and an

improvement in the prognosis for LC which may be related to the

role of NK cells in inhibiting LC growth and metastasis (33, 34, 36).

The benefits of Ta1 and IFNs in animal models of LC after

chemotherapy also disappeared after the consumption of NK

cells, further proving that the effectiveness of Ta1 in LC

treatment is likely to be obtained by modulating NK cells (35).
FIGURE 3

The major mechanism of thymosin in the treatment of lung cancer
By upregulating IFN-g and CD86, as well as inhibiting CD31,
thymosin inhibited the growth of LCLC/LUAD and boosted the
immune response of T lymphocytes. Thymosin inhibited the
proliferation, migration, and antioxidant activity of LC by inhibiting
the expression of ROS, upregulating catalase, peroxide dismutase,
and glutathione peroxidase. Thymosin increased CD8+ T cell levels,
inhibited the growth of LUAD. Thymosin inhibited the invasion and
migration of LC by inhibiting STAT3 and then MMP2. ROS, reactive
oxygen species; IFN-g, interferon-g; STAT3, signal transducer and
activator of transcription 3; MMP2, matrix metalloproteinase 2;
LCLC, large cell lung cancer; LUAD, lung adenocarcinoma; LC, lung
cancer. The figure is partly generated using Servier Medical Art
provided by Servier, licensed under a Creative Commons Attribution
3.0 Unported License.
FIGURE 2

The effects of thymosin monotherapy and combination therapy (with chemotherapeutic drugs, IFN or IL-2) on the treatment of lung cancer
Thymosin monotherapy and combination therapy inhibit the growth, proliferation, invasion, migration, carcinogenesis, and antioxidant activity of
lung cancer. Thymosin plus IFN and IL-2 exert positive immunomodulatory effects on T lymphocyte by upregulating CD8+ T cell levels, increasing T
cell activation, and enhancing the immune response of T lymphocytes. Thymosin restores the activity of NK cells, enhances the effectiveness of
chemotherapeutic drugs. IFN, interferon; IL-2, interleukin-2; NK, natural killer. The figure is partly generated using Servier Medical Art provided by
Servier, licensed under a Creative Commons Attribution 3.0 Unported License.
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2.2.2 T lymphocytes
T lymphocytes are the main components of lymphocytes and

play a crucial role in cellular immunity (51). For instance, the

success of anti-T lymphocyte inhibitory receptor therapy for PD-L1

and cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) in LC

also highlights the important role of CD8+T cells in anti-tumor

immunotherapy (52, 53). In animal models with LUAD, Ta1
monotherapy, and Ta1 in combination with gemcitabine have

both been shown to increase CD8+T cell levels (37). The anti-

tumor positive effects of Ta1 and IFNs were counteracted when T

lymphocytes are consumed, and after the application of Ta1 and

IFNs, there was a significant T lymphocyte infiltration in the

necrotic area of LC (35). These observations all confirm the idea

that the regulation of T lymphocytes is one of how Ta1 exerts anti-
LC effects. Targeted drug ligands like the arginine-glycine-aspartic

acid (RGD) peptide are a class of polypeptides that have garnered a

lot of attention for their use in the transportation of anti-cancer

drugs (54). RGD peptide can target drug delivery into tumors by

binding to integrins, such as avb3 and avb5, which are highly

expressed in tumor blood vessels (55). RGD peptides with high

affinity with av integrins and neuropilin-1 are known as iRGD

peptides (56). It has been demonstrated in the large cell lung cancer

(LCLC) model that the use of iRGD and Ta1 fusion to form

modified Ta1, or Ta1-iRGD, can promote T cell activation, can

restore thymus index and spleen index, and also activate T

lymphocytes by increasing the expression of CD86 to exert their

immune effect (38). In addition, compared to Ta1, the modified

Ta1 has better immunomodulatory activity and stronger LC

inhibition and also exhibits lower tumor vascular density, which

is associated with the improved targeting of the modified Ta1-
iRGD. A study also confirmed that binding Ta1 to RGD peptides
Frontiers in Immunology 04
compensated for the lack of tumor targeting of Ta1 (39). RGDR can

bind to highly expressed avb3 and NRP-1 domains on the tumor

surface because it includes the RGD sequence. Integrin avb3 is an

integrin protein closely related to tumor angiogenesis and

specifically able to recognize RGD sequences (55). NRP-1 is a

transmembrane glycoprotein that is widely expressed in tumor

tissues and plays a key role in tumor angiogenesis (57, 58).

Therefore, Ta1-RGDR formed by fusing Ta1 with RGDR can

achieve a good tumor-targeting effect. Ta1-RGDR showed

stronger anti-LUAD and anti-LCLC effects than the Ta1, and it

can boost the immune response of T lymphocytes by increasing IL-

2 and IFN-g levels and promoting the invasion of CD4+T cells and

CD8+T cells into tumor tissues to exert anti-LC effects.

2.2.3 Immunosuppression
Ta1 has potent anti-LC and immunomodulatory effects when

used alone or in combination with other medications. However, Ta1
and chemotherapy drugs show a stronger anti-lung cancer and

immunomodulatory effect than Ta1 alone, which may be related to

the synergistic effect of Ta1 with other medications. A study showed

that neither Ta1 nor gemcitabine (GEM) alone could inhibit the

growth of LUAD, but when combined Ta1 with GEM showed higher

levels of CD8+T cells and the ability to significantly inhibit LUAD

growth, indicating that GEM and Ta1 do have a certain synergistic

effect (37). The study also discovered that Ta1 monotherapy can

upregulate Arginase 1 (ARG1) to activate myeloid-derived

suppressor cells (MDSCs) in animal models of LUAD to produce

inhibitory anti-tumor immune effects, which may account for the

limited effect of Ta1 monotherapy. According to some reports, Ta1
interacts with toll-like receptors (TLRs) and activates MyD88

signaling in dendritic cells, and upregulation of ARG1 relies on the
TABLE 1 The major mechanism and effects of thymosin in the treatment of lung cancer.

Drug/gene Major mechanism and effects References

Ta1 STAT3-MMP2 ↓, ROS↓, catalase↑, peroxide dismutase↑, glutathione peroxidase↑;
Prevented lung carcinogenesis, and inhibited the growth, proliferation, invasion, migration, and the antioxidant
activity of lung cancer

(28–32),

Ta1 and IFN/IL-2 Inhibited the growth of lung cancer, restored NK cell activity (33)

Ta1 and IFN a/b and
cyclophosphamide

Inhibited the growth of lung cancer, enhanced the effectiveness of cyclophosphamide and restored NK cell
activity

(34)

Ta1 and IL-2 and
cyclophosphamide

Inhibited the growth of lung cancer, enhanced the effectiveness of cyclophosphamide (35)

Ta1 and ab-IFN and
cyclophosphamide

Restored NK cell activity (36)

Ta1 and gemcitabine ARG1↑, TLRs/MyD88↑;
Increased CD8+ T cell levels, inhibited the growth of lung adenocarcinoma, promoted the activation of myeloid-
derived suppressor cells

(37)

Ta1-iRGD CD86↑; Inhibited the growth of large cell lung cancer, promoted T cell activation (38)

Ta1-RGDR IL-2↑, IFN-g↑, CD31↓;
Inhibited the growth of large cell lung cancer/lung adenocarcinoma, boosted the immune response of T
lymphocytes

(39)

Tb4 (silencing) Notch1↓;
Inhibited proliferation and invasion of lung adenocarcinoma

(40)
Ta1, thymosin alpha1; STAT3, signal transducer and activator of transcription 3; MMP2, matrix metalloproteinase 2; ROS, reactive oxygen species;IFN, interferon; IL-2, interleukin-2; ARG1,
arginase 1; TLRs, toll-like receptors; MyD88, myeloid differentiation primary response gene 88; RGD, arginine-glycine-aspartic acid; Tb4, thymosin b4.
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TLRs/MyD88 signaling pathway (59, 60). That is, Ta1 increases the

expression of ARG1 by activating TLRs/MyD88 signaling pathways,

thereby activating the immunosuppressive ability of MDSCs.
3 Summary of the clinical studies of
thymosin in the treatment of LC

Ta1 is frequently used in clinical practice because it acts as an

immunomodulator, boosting the body’s defenses and enhancing the

quality of life for LC patients (61). Numerous clinical studies have

demonstrated that the use of Ta1 in combination with

chemotherapy, radiotherapy, concurrent chemoradiotherapy

(CCRT), targeted therapy, or as postoperative adjuvant therapy

can significantly increase the clinical efficacy of LC patients, lower

their risk of recurrence, and lengthen their time of survival. All the

clinical studies mentioned in the paper are summarized in Table 2.
3.1 Combination with chemotherapy

Chemotherapy is a common treatment for patients with

advanced LC and those with early-stage, high-risk LC (69, 70).

Compared to the control group of NSCLC patients receiving only

ifosfamide chemotherapy, patients receiving Ta1 and low-dose

interferon-a in addition to chemotherapy had higher response

rates (33% vs. 10%) and longer times to progression (TTP)

(p=0.0059), according to a phase II clinical study. In the

chemotherapy group, CD4+, CD8+, and NK cell counts

significantly declined. Combination therapy with Ta1 reduced the

toxicity of chemotherapy while leaving lymphocyte counts

essentially unchanged from before chemotherapy (62). The
Frontiers in Immunology 05
effectiveness of thymosin in combination with chemotherapy was

assessed in a meta-analysis of 10 randomized controlled trials

(RCTs) in a total of 724 patients with advanced (stage III, IV)

NSCLC regimens, primarily cisplatin plus vinorelbine (NP)

regimens and gemcitabine plus cisplatin (GP) regimens.

Thymosin plus NP was found to increase overall response rate

(ORR) (odds ratio (OR) 1.86) compared with the control group

using NP-only chemotherapy, and the addition of thymosin also

increased tumor control rate (TCR) (OR 3.06), 1-year survival rate

(OR 3.05) and improved the quality of life (QOL) (OR 3.39).

Thymosin and GP-containing chemotherapy showed superior

ORR (OR 1.67), TCR (OR 2.38), and QOL (OR 3.84) compared

to GP-only chemotherapy. These findings imply that for patients

with advanced NSCLC, thymosin plus NP/GP chemotherapy is

preferable to NP/GP chemotherapy alone (63). Another meta-

analysis included 27 RCTs involving a total of 1925 patients with

stage IIIa-IV NSCLC, of whom 976 received combination therapy

with synthetic thymic peptides (sTPs) (including Ta1 and

thymopentin) and chemotherapy and 949 received chemotherapy

alone to evaluate the clinical effects of sTPs plus chemotherapy (64).

In comparison to chemotherapy, the use of sTPs significantly

improved QOL [relative risk (RR) = 2.05, P<0.00001], ORR [RR

= 1.28, P = 0.0001], and one-year overall survival (OS) rate [RR =

1.43, P = 0.001], as well as increased disease control rate (DCR) [RR

= 1.10, P = 0.02]. The combination of sTPs and chemotherapy

demonstrated that the combination therapy was clinically effective.

Combination therapy with sTPs and chemotherapy increased

CD3+T cell levels [P<0.00001], CD3+CD4+T cell levels

[P<0.00001], NK cell numbers [P<0.00001], and the proportion of

CD4+/CD8+T cells [P<0.00001] at the lymphocyte level, and it can

lessen the immunotoxic effects of chemotherapy when combined

with sTPs. Additionally, the risk of chemotherapy-related side
TABLE 2 The clinical effects of thymosin in the treatment of lung cancer.

The usage of
thymosin

Drug Conclusion References

Ta1 and
low-dose
IFN-a

Increased the response rates of chemotherapy, prolonged the time to progression (62)

Combination with
chemotherapy

Ta1 Increased ORR, TCR, 1-year survival rate and QOL (63)

Ta1/
thymopentin

Increased ORR, QOL, one-year OS rate, DCR, CD3+ T cell levels, CD3+CD4+ T cell levels, NK cell
numbers, and the proportion of CD4+/CD8+ T cells, decreased the risk of neutropenia, thrombocytopenia,
and gastrointestinal reactions

(64)

Combination with
radiotherapy

Ta1 Improved OS, DFS, and restored T helper cell levels (65)

Combination with
concurrent
chemoradiotherapy

Ta1 Decreased the incidence of grade 2 or higher RP and grade 3 to grade 4 lymphopenia, increased total
lymphocyte count, and decreased CRP

(66)

Combination with
targeted therapy

Ta1/
thymopentin

Improved median OS and median PFS, restored the number of CD3+ T cells and CD3+CD4+T/CD3+CD8+

T subsets
(67)

Postoperative adjuvant
therapy

Ta1 Increased 5-year OS rate and 5-year DFS rate (68)
Ta1, thymosin alpha1; IFN, interferon; ORR, overall response rate; TCR, tumor control rate; QOL, quality of life; DCR, disease control rate; NK, nature killer; OS, overall survival; DFS, disease-
free survival; RP, radiation pneumonitis; CRP, C-reactive protein; PFS, progression free survival.
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effects like neutropenia (RR=0.75, P=0.04), thrombocytopenia

(RR=0.68, P=0.0002), and gastrointestinal reactions (RR=0.62,

P<0.00001) was decreased by sTPs. To compare the two sTPs of

Ta1 and thymopentin, further subgroup analysis was done. The

results showed that Ta1 could significantly increase ORR [RR: 1.32,

P=0.0003] and DCR [RR: 1.11, P=0.02], but that there were no

statistically significant differences in OR and DCR in the

thymopentin subgroup. Ta1 and thymopentin could also increase

the level of peripheral blood lymphocytes. It was demonstrated that

Ta1 could boost clinical effectiveness while also boosting

immune function.
3.2 Combination with radiotherapy

Although radiation therapy is one of the most effective

treatments for advanced lung cancer, it invariably results in side

effects, such as immune response (71). An RCT study analyzed the

effect of synthetic Ta1 on immune recovery properties in NSCLC

patients after radiotherapy (65). The findings revealed that

thymosin treatment following radiotherapy significantly improved

OS (P=0.009) and disease-free survival (DFS) (P=0.04) compared

with placebo, and thymosin restored the decrease in T helper cell

levels brought on by radiotherapy (p=0.04). This proved that Ta1
can both enhance the efficacy of radiotherapy and reverse

immunosuppression brought on by radiotherapy. The

experimental group received two regimens of subcutaneous

injection twice a week with Ta1 900 mg/m2 (body surface area)

or continuous thymosin 900 mg/m2 subcutaneous injection once

daily for 14 days, followed by twice-weekly subcutaneous injection.

The study evaluated the difference in efficacy between different

dosing regimens, with the control group receiving a placebo

subcutaneous injection regimen. The results showed that the

control group showed shoddy results. In the experimental group,

there was no discernible difference between the two regimens,

indicating that both regimens might be practicable.
3.3 Combination with
concurrent chemoradiotherapy

For stage II I unresectable NSCLC, consol idat ion

immunotherapy followed by concurrent chemoradiotherapy

(CCRT) is the gold standard of care (72). Radiation pneumonitis

(RP) and pulmonary fibrosis are the two stages of radiation lung

injury (RILI), a common side effect of radiation therapy (RT) in the

chest (73, 74). One of the major barriers to the use of consolidation

immunotherapy following CCRT is RP, which has a detrimental

effect on survival and quality of life in patients with locally advanced

NSCLC (LANSCLC). The GASTO-1043 study, a Phase II clinical

trial, was explored the efficacy of Ta1 in the treatment of RP in

patients with LANSCLC receiving CCRT (66). 138 patients with

LANSCLC in total were enrolled in the study, 69 of whom received

CCRT alone in the control group and 69 of whom received Ta1
treatment from the start of CCRT to 2 months after it ended in the

experimental group. Compared to the control group, the
Frontiers in Immunology 06
experimental group had a lower incidence of grade 2 or higher

RP (36.2% vs. 53.6%, P=0.040), lower incidence of G3 to G4

lymphopenia (19.1% vs. 62.1%, P<0.001), and significantly higher

total lymphocyte count (TLC) (0.51 k/mL vs. 0.30 k/mL, P<0.001).

Patients with maximum C-reactive protein (CRP) ≥ 100 mg/L

(13.8% vs. 29.7%, P = 0.029) and patients with 2 to 3 weeks

during CCRT CRP ≥ 10 mg/L (23.5% vs. 48.5%, P = 0.003) were

significantly less common in the experimental group. Patients with

LANSCLC who used Ta1 during and after CCRT showed lower

rates of grade 2 RP and G3 to G4 lymphopenia compared to the

control group, as well as higher TLC levels and lower CRP,

demonstrating that Ta1 can treat side effects and immune

dysfunction brought on by CCRT. Additionally, patients receiving

Ta1 had a longer median progression free survival (PFS) (14.4

months vs. 10.7 months, P=0.131) and a longer median OS (34.8

months vs. 28.7 months in the control group, P=0.062). Despite

being superior to the control group in both OS and PFS, however,

the Ta1 experimental group did not achieve a statistically

significant difference, which may be related to the smaller

sample size.
3.4 Combination with targeted therapy

Patients with LUAD who have an EGFR target mutation that is

positive can benefit from EGFR-tyrosine kinase inhibitors (TKI)

targeted therapy, which is now one of the standard treatments for

LC (75). In patients with IV-stage LUAD and EGFR mutations,

some researchers have compared the clinical effects of EGFR-TKI

monotherapy and EGFR-TKI plus thymosin therapy (67). To

balance the baseline differences, propensity score matching (PSM)

was carried out in a 2:1 ratio between the control group and the

experimental group, with 130 LUAD patients being treated with

first-generation EGFR-TKI (gefitinib/erlotinib/icotinib) and as part

of the experimental group 65 LUAD patients being treated with

EGFR-TKI plus thymosin (including Ta1 and thymopentin). The

results revealed that the median PFS (14.4 months vs. 9.2 months,

HR=0.433, P<0.0001) and median OS (29.5 months vs. 19.8

months, HR=0.430, P<0.0001) in the EGFR-TKI plus thymosin

group were both significantly longer than those in the EGFR-TKI

group, respectively. These findings demonstrated that EGFR-TKI

plus thymosin was extremely effective in lowering the risk of relapse

and improving prognosis in patients with LUAD compared with

EGFR-TKI alone. The safety of EGFR-TKI plus thymosin was

acceptable because there was no significant difference in ORR and

DCR between the two groups, nor was there any significant

difference in side effects. The number of CD3+T cells and the

number of CD3+CD4+T and CD3+CD8+T subsets after treatment

were significantly reduced in the EGFR-TKI monotherapy group

(P<0.05), but there was no difference between these parameters in

the EGFR-TKI plus thymosin group, indicating that the addition of

thymosin based on targeted therapy has some effect on restoring the

body’s immune activity. Further subgroup analysis revealed that in

most subgroups, including age, EGFR mutation type (exon 19

deletion or exon 21 L858R mutation), presence or absence of

bone metastases, central nervous system metastases, adrenal
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metastases, multiple lung metastases, pleural metastases, gefitinib or

erlotinib, EGFR-TKI plus thymosin demonstrated a superior PFS

advantage over EGFR-TKI monotherapy. There was no statistically

significant difference in OS or PFS between the EGFR-TKI plus

thymosin group and the single-agent group in patients with ECOG

score of 2 who had liver metastases, received icotinib, and received

EGFR-TKI as second-line therapy. Male patients could benefit from

combination therapy in OS, and patients with LUAD who received

radiotherapy solely for bone metastases benefited from combination

therapy in PFS(P=0.041), while patients with LUAD who received

radiotherapy for the remaining causes did not benefit in terms of OS

or PFS. A comparison of the two thymosin medications revealed no

statistically significant difference in PFS or OS between Ta1 and

thymopentin, suggesting that the use of both thymosin medications

in combination with an EGFR-TKI may be possible.
3.5 Postoperative adjuvant therapy

Because it boosts human immunity and enhances patients’

quality of life after LC surgery, Ta1 is frequently used in clinical

practice as adjuvant therapy for postoperative LC patients. The long-

term survival effects of Ta1 as postoperative immunomodulatory

therapy were examined in a large, real-world study involving 5746

patients with NSCLC who underwent surgery and achieved R0

resection (68). The study compared 1027 operable (stage I–IIIA)

NSCLC patients who received thymosin treatment to 1027 patients

who did not receive thymosin treatment using PSM analysis. When

compared to the control group without Ta1 treatment, the use of

Ta1 in postoperative patients can lower the risk of recurrence and

death in NSCLC patients. Even after multivariate analysis, Ta1
treatment still showed very significant differences in DFS

(HR=0.655, P<0.0001) and OS (HR=0.548, P<0.0001). Additionally,

following PSM, the Ta1 treatment group outperformed the control

group in terms of 5-year DFS (77.3% vs. 64.7%, P<0.0001) and 5-year

OS (83.3% vs. 72.7%, P<0.0001). Ta1 therapy may be an efficient

postoperative adjuvant therapy in the early stage, especially in

patients with stage IA NSCLC, as evidenced by the fact that the

benefits of OS and DFS in patients with stage IA were more

advantageous than those of all other stages in terms of staging

(P<0.0001). According to pathological classification, other non-

adenocarcinoma and non-squamous cell carcinoma subtypes were

independently linked to worse OS (HR=2.019, P=0.0009) and DFS

(HR=1.706, P=0.0038). The results of the subgroup analysis showed

that patients who used Ta1 for more than 24 months had the best OS

and DFS efficacy. The treatment effect was proportional to the length

of treatment, with the best effect for more than 24 months, followed

by treatment for 12–24 months, and the worst effects for less than 12

months. The 5-year DFS rates of the three groups were 84.7%, 81.0%,

and 66.1%, respectively, and the 5-year OS rates were 92.2%, 83.7%,

and 64.5%. This suggests that to reap the greatest benefits, patients

with NSCLC may use Ta1 for longer than 24 months. Ta1 could

show efficacy in OS and DFS in patients of any age, sex, Charlson

Comorbidity Index (CCI), smoking status, and any stage of

pathologic TNM, as well as patients with non-squamous cell

carcinoma NSCLC who did not receive targeted therapy and
Frontiers in Immunology 07
BMI<28 kg/m2. This was confirmed by subgroup analysis. Ta1
only demonstrated OS efficacy in postoperative NSCLC patients

who received chemoradiotherapy, and it did not affect OS or DFS

in patients with a BMI>28 kg/m2, the pathological type of squamous

cell carcinoma, targeted therapy, or combination therapy (including

targeted therapy plus chemotherapy, targeted therapy plus

chemoradiotherapy). Ta1 can be used as an adjuvant therapy after

surgery to lower the risk of recurrence and increase the long-term

survival of LC patients as well as an immunomodulatory therapy to

enhance the postoperative quality of life of LC patients.
3.6 Combination with immunotherapy

Immunotherapy, an emerging therapeutic approach in recent

years, has not only improved patient prognosis but also significantly

altered the initial treatment regimen of LC patients. In the field of

LC, immune checkpoint inhibitors (ICIs) that represent PDL1/PD-

1 have the most applications and the best efficacy (76). The gold

standard for immunotherapy in patients with advanced NSCLC is

high PDL1 expression (PD-L1 Tumor Proportion Score 50%).

Patients with NSCLC with high PDL1 expression can achieve

better immunotherapy outcomes (77), this has also been

confirmed by many RCTs (78, 79). Patients with high PDL1

expres s ion in the i r NSCLC may re spond be t t e r to

immunotherapy. After long-term follow-up, a study of patients

with metastatic melanoma who were given Ta1 discovered that

those who also received the CTLA-4 ICI ipilimumab had an

advantage in overall survival (80), this suggests that Ta1 and ICIs

work in concert. It is expected that the combination of Ta1 and

ICIs, represented by PD-1 inhibitors, may also have a beneficial

synergistic effect on the treatment of LC. The prognosis of LC

patients can be significantly improved by ICIs, but their clinical use

is constrained by a few drawbacks. First off, a large number of LC

patients are unable to respond to ICIs treatment effectively because

some LC patients belong to cold immune tumors (such as immune-

desert type and immune-excluded type), which lack lymphocyte

infiltration (81, 82). If cold immune tumors can be transformed into

hot immune tumors, this will greatly expand the clinical application

range of ICIs and increase their clinical efficacy. The degree of

immune cell infiltration in the tumor microenvironment (TME) is

the primary distinction between cold immune tumors and hot

immune tumors. NK cells and CD3+, CD4+, and CD8+T

lymphocytes are currently thought to be the primary immune

cells in the TME, with CD8+T lymphocytes playing a significant

role in tumor killing (83, 84). Ta1, as an immunomodulator of

thymic hormones, belongs to active immunity (18). As previously

stated, using Ta-1 to treat LC can increase CD8+T cell counts,

restore NK cell activity, and activate T lymphocyte immune

function by increasing CD86 expression. When chemotherapy

was combined with thymosin, more CD4+, CD8+, CD3+, and NK

cells were present. Additionally, the CD4+/CD8+T cell ratios were

higher than when chemotherapy was used alone. Thymosin also has

the effect of increasing the helper T cell counts that have been

decreased as a result of radiotherapy. Thymosin was also added to

address the negative effects of EGFR-TKI treatment on the quantity
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of CD3+T cells produced by LC patients as well as the number of

CD3+CD4+T and CD3+CD8+T subsets. In addition to improving

Ta1 targeting, Ta1-RGDR promoted CD4+ and CD8+T cell

infiltration of LC tissues and increased the immune activity of T

cells by raising levels of IL-2 and IFN-g. These findings imply that

Ta1 can increase CD4+T, CD8+T, CD3+CD4+T, and NK cell

numbers in LC patients. Ta1 has the potential to convert LC

patients with cold immune tumors to hot immune tumors by

increasing the cellular level and cell activity of immune cells like

CD8+T cells, enhancing the clinical effectiveness of ICIs. Similarly,

Ta1 can inhibit the migration and invasion of NSCLC with high

expression of PD-L1 (31) and a favorable effect on immune cells,

suggesting that the combination of Ta1 and ICIs may enhance the

clinical effect of ICIs and even increase the proportion of LC

patients who have an effective response to ICIs. Second,

immunotherapy with ICIs is associated with adverse effects such

as colitis and/or diarrhea (85). Studies have shown that Ta1 can

enhance the small intestine tissue structure and barrier function of

mice with cystic fibrosis (86). Additionally, a study has shown that

Ta1 can successfully prevent ICIs-induced colitis in preclinical

models by fostering the immune pathway of indoleamine 2,3-

dioxygenase 1-dependent tolerance (87). These studies

demonstrate that Ta1 has reduced the side effects of ICIs on the

digestive system.
4 Discussion

Although the potential benefits of Ta1 in combination with

immunotherapy in the treatment of LC patients have been outlined

above, some issues still need to be resolved before actual clinical use.

Numerous studies have shown that Ta1 increases the number and

immune activity of immune cells in LC patients, but more basic

studies are required to elucidate the detailed regulatory mechanism.

The degree to which Ta1 promotes TME lymphocyte infiltration in

LC is another area that needs to be studied more in the future, but

there is currently a dearth of research in this area. However, this

hypothesis needs to be confirmed in further clinical studies. The

current clinical evidence is insufficient, and before they can be

cautiously applied to clinical practice, exploratory clinical trials with

the support of basic research conclusions must be conducted for LC

patients treated with ICIs because the addition of Ta1 may also lead

to immune dysfunction and interfere with immunotherapy. Ta1
has demonstrated the ability to reduce immunotherapy-related

adverse reactions in addition to the potential to enhance the

efficacy and effectiveness of the response of LC patients to

immunotherapy. However, the current basic research is

momentarily insufficient, necessitating more extensive basic

research and preclinical research on the precise mechanism of

Ta1 and ICIs in combina t ion therapy for LC and

immunotherapy-related adverse reactions, which is also one of

the possible research directions of Ta1 in the future. In the field

of immunotherapy, NK cells have demonstrated effective anti-

tumor immunity in addition to ICIs, whether through their

immune activity, adoptive cell therapy of NK cells, or even the

use of CAR-NK cell therapy (88, 89). This article summarizes how
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Ta1 affects NK cell activity to function as an inhibitor of LC growth

and metastasis. An in-depth investigation of the precise mechanism

by which Ta1 enhances NK activity in LC models following

chemotherapy, as well as the precise mechanism by which Ta1
and IFNs have a synergistic effect, is a very valuable research

direction. Additionally, determining whether Ta1 and CAR-NK

have a synergistic effect in the treatment of LC is another important

research question.

The side effects of chemotherapy, radiotherapy, surgery,

targeted therapy, and CCRT can all be significantly reduced with

Ta1. The impact of Ta1 on reducing complications in LC patients

who receive CCRT plus immunotherapy consolidation is something

to look forward to because it makes it possible to perform

consolidation immunotherapy after CCRT by reducing

complications like RP associated with CCRT. The combination of

Ta1 and chemotherapy for LC has the most studies, both basic and

clinical studies, and the conclusion that Ta1 increases efficacy and

reduces the toxicity of chemotherapy is firm. However, the

chemotherapy regimens in these studies either include LC

patients receiving NP/GP regimens or use cyclophosphamide to

treat animal models, Ta1 and other chemotherapy drugs have not

ye t been supp lemented . The ac t i va t ion of MDSCs ’

immunosuppressive activity by Ta1 monotherapy is one of the

mechanisms that Ta1 monotherapy can inhibit anti-tumor

immunity. It is also proposed that Ta1’s anti-tumor efficacy can

be restored by blocking the MyD88 signaling pathway, raising the

possibility that future research may examine ways to mitigate Ta1’s
adverse effects when used to treat LC. The specific mechanism of

potential side effects when Ta1 is combined with targeted therapy

drugs and immunotherapy drugs, as well as the investigation of

whether Ta1 has other side effects, are also worthwhile research

areas because prior basic research has only combined chemotherapy

drugs. Although baseline differences were balanced using PSM

analysis in the large real-world study that showed that Ta1
significantly improved OS and PFS in patients with LUAD

undergoing surgery, this is retrospective, and prospective clinical

trials are still required to provide higher-level evidence-based

medical evidence. Ta1 as an immunomodulator can improve PFS

and OS and reduce postoperative complications in patients with LC,

but it is unclear what effect of Ta1 in the short term after LC

surgery. A new perioperative management strategy called

“enhanced recovery after surgery” (ERAS) seeks to improve

surgical outcomes and quality of life by reducing postoperative

complications and hospital stays in surgical patients while also

speeding up their recovery and rehabilitation (90). ERAS was

initially mainly used in colorectal surgery (91), the ERAS concept

however, has become increasingly popular in recent years among

patients undergoing thoracic surgery, especially pneumonectomy

(92). The long-term OS and PFS benefits of Ta1 in LC patients have

been confirmed, and Ta1 also has the potential to reduce

complications, restore immune function, and improve quality of

life in the short term after surgery, so future clinical studies are

needed to determine whether Ta1 can be used postoperatively to

further enhance the effect of ERAS.

We discovered that some studies had some restrictions and

flaws. Meta-analyses had the highest level of evidence-based
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evidence, however, the quality of meta-analyses depended on the

quality of the studies included in the analyses, which could vary

widely from meta-analysis to meta-analysis (93). Although both

meta-analyses decided to include only RCTs, many of the trials

included in the studies were of poor methodological quality, except

a small number of studies that explicitly proposed the use of the

envelope method as a randomization regimen, and the remaining

studies did not report methods of randomization. Two meta-

analyses assessing the effects of thymosin in combination with

chemotherapy were reviewed above. There were differences in

some variables’ heterogeneity and the timing of index tests across

studies. In addition, compared to typical phase III RCTs, the RCTs

included in these two meta-analyses still have several flaws, most

studies are small studies, most studies only involve not more than

100 patients, and there are few trials and samples that can be used to

analyze survival. None of the trials reported PFS, these two meta-

analyses of RCTs concluded that they did not reach the highest level

of evidence because the majority of studies lacked NCT numbers,

and the quality of the primary and secondary outcomes was

moderate to very low according to GRADE grading. These

shortcomings may be related to the earlier publication years of

about half of the included studies. As the saying goes, “We can’t

make bricks without straw,” these randomized studies have been

able to demonstrate the efficacy of thymosin-combined

chemotherapy in treating LC, and higher-quality meta-analyses

need to be updated following the completion of well-designed

large-scale RCTs.

Additionally, we discovered that Ta1 usage duration, dosage,

and frequency varied significantly between studies. Continuous

injection of Ta1 for more than 24 months had the best

therapeutic effect in studies of Ta1 as a postoperative adjuvant

therapy for LC patients, but there were significant differences in the

duration of Ta1 use in other studies, such as clinical trials

investigating the therapeutic effect of Ta1 on CCRT-induced side

effects, which were used from the beginning of receiving CCRT to 2

months after the end of CCRT. These differences may be because

different treatments often correspond to different clinical stages.

Although the goal of adding Ta1 to various treatments varies, it is

necessary to standardize the time of Ta1 usage for treatments. The

majority of studies used Ta1 twice weekly, while a small subset used

it on a weekly schedule. Ta1 usage frequency was also inconsistent.

The dosage of Ta1 is typically 1.6 mg, and 1.6 mg per time is the

current mainstream usage of Ta1. However, the use scheme is still

somewhat unclear, necessitating additional research to determine

the bes t trea tment s t ra tegy and implement unified ,

standardized treatment.

Conclusions from various clinical studies disagree with one

another (66, 68). In the GASTO-1043 study, LC patients receiving

CCRT failed to achieve a statistically significant median OS

d1ifference after adding Ta1 (34.8 vs. 28.7 months, P=0.062), and

in a retrospective analysis examining the function of Ta1 as

postoperative adjuvant therapy, LC patients receiving

chemoradiotherapy could benefit from OS after Ta1 as adjuvant

therapy. The difference between the conclusions of the two studies

may be that patients with LC who received Ta1 as postoperative

adjuvant therapy underwent surgery, and patients with improved
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treatment efficacy and could receive surgery had an earlier stage of

TNM, and the GASTO-1043 study included patients with advanced

LC, had a relatively small sample size of 138 patients, and had

relatively insufficient postoperative follow-up time, which may have

contributed to the failure to achieve a statistically significant

difference in OS after the addition of Ta1 to CCRT. To

determine the OS benefit of Ta1 in LC patients receiving CCRT,

phase III clinical trials with longer follow-up times are required.

The combination of thymosin and targeted therapy is also

controversial. According to the studies reviewed above, the

combination of thymosin and EGFR-TKIs showed superior

benefits for OS and DFS compared to EGFR-TKI monotherapy

(67), whereas postoperative adjuvant therapy with Ta1 plus EGFR-
TKIs (including targeted plus chemotherapy, targeted plus

chemoradiotherapy) did not show better benefits in OS and DFS

in LC patients with LC who were adjuvant with Ta1 plus EGFR-

TKIs (68). As postoperative patients with LC treated with adjuvant

thymosin were stage I-IIIA and primarily stage I, whereas the other

study included LUAD patients in the analysis were stage IV, the

different effects of EGFR-TKIs in combination with thymosin may

be related to staging. Additionally, LC patients received first-

generation EGFR-TKI in studies of thymosin combined with

targeted therapy, and variations in staging and EGFR-TKIs may

be the reason why the findings of the two studies are completely

dissimilar. Two studies investigating the combined use of EGFR-

TKIs and thymosin included 130 and 112 patients, respectively, and

both are retrospective studies. The level of evidence-based medical

evidence is not sufficient, and future prospective studies with larger

sample sizes are needed to determine the actual benefits of EGFR-

TKIs combining thymosin to treat LC in OS and DFS.

The side effects of thymosin drugs must also be taken into

consideration in addition to their beneficial effects. Severe allergic

reactions have been linked to thymopolypeptides injection.

Thymopolypeptides injection is a mixture of peptides extracted

from the thymus of animals, and complex peptide components are

thought to be the main contributor to allergic reactions. Even

though the thymosin drugs used in the studies discussed in this

article are STPs with a single composition, it is still important to be

aware of their side effects to prevent serious adverse events. It is not

necessary for all LC patients to use thymosin drugs because the

immune system is constantly in a state of dynamic balance and

attempting to improve immunity will not necessarily result in a

healthier body. The most fundamental requirement for safe drug

use is a strict understanding of the indications, so using thymosin

drugs blindly is not desired.

Thymosin drugs are more widely used for Ta1 and

thymopentin, the conclusions of Ta1 were largely consistent

across studies, but thymopentin was not. When combined with

chemotherapy or EGFR-TKI, thymopentin has been shown to

increase the number of T lymphocytes and NK cells in LC

patients. Thymopentin in combination with chemotherapy did

not demonstrate superior effects to chemotherapy alone in terms

of ORR and DCR in the meta-analysis examining the effects of sTPs

in combination with chemotherapy (64). However, there is a clinical

advantage for OS when thymopentin and EGFR-TKI are combined

(67). Thymopentin combined with various treatment modalities
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may have different therapeutic effects. These two studies are only

retrospective, the level of evidence-based medical evidence is low,

and the precise conclusions need to be proven by future high-level

clinical trials. Additionally, there is a lack of basic and clinical trial

research on the use of thymopentin in the treatment of LC.

Therefore, before clinical promotion, there must be adequate

evidence-based medical evidence and basic experimental support.

In addition to Ta1 and thymopentin, other thymosins are also

closely related to LC. Tb4 is highly expressed in NSCLC tissues, as

was previously mentioned, and part of the mechanism by which

Tb4 promotes LC progression has been discovered (94). Tb4 high

expression is associated with a poor prognosis, and its ability to

promote cancer has also been demonstrated in gastric cancer and

colorectal cancer (95, 96). Then, for Tb4 as a target, one of the

future research directions is the development of related drugs as

well as the ongoing, in-depth study of the mechanism of Tb4
promoting LC.
5 Conclusion

Thymosin is known to inhibit LC growth, proliferation,

invasion, and migration as well as have immunomodulatory

effects by controlling the quantity, activity, and function of NK

cells and T lymphocytes, according to a large number of basic

experiments. The findings of these studies lend some support to the

clinical application of thymosin in LC patients. However, the

findings of current basic studies on the addition of combination

treatment are all based on preclinical chemotherapy models. This

means that the current basic research does not include the

evaluation of the combined effects of Ta1 and radiotherapy,

CCRT, targeted therapy, and immunotherapy, and it is necessary

to improve these preclinical models to provide theoretical support

for the combined application of Ta1 and real-world clinical

treatment of LC. Although the thymosin drugs represented by
Frontiers in Immunology 10
Ta1 have some results in the treatment of LC, they urgently

require additional in-depth, creative basic research and higher-

level evidence-based medical evidence support, both in basic

experiments and clinical efficacy.

Finally, we anticipate further large-scale and carefully-planned

prospective clinical trials to provide a higher level of evidence-based

medical evidence support for the use of thymosin drugs in the field

of LC, as well as an increasing number of in-depth basic studies to

further reveal the specific mechanism of thymosin drugs for LC.
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