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Targeting Th17 cells: a promising
strategy to treat oral mucosal
inflammatory diseases

Ying Wang, Ningning Xue, Ziyuan Wang, Xin Zeng,
Ning Ji* and Qianming Chen

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research
Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China
Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
With the improved quality of life, oral health is under increased pressure.

Numerous common oral mucosal diseases, such as oral lichen planus(OLP)

and gingivitis, are related to the destruction of the oral immune barrier. The

cytokines secreted by T-helper 17 (Th17) cells are essential for maintaining oral

immune homeostasis and play essential roles in immune surveillance. When

antigens stimulate the epithelium, Th17 cells expand, differentiate, and generate

inflammatory factors to recruit other lymphocytes, such as neutrophils, to clear

the infection, which helps to maintain the integrity of the epithelial barrier. In

contrast, excessive Th17/IL-17 axis reactions may cause autoimmune damage.

Therefore, an in-depth understanding of the role of Th17 cells in oral mucosa

may provide prospects for treating oral mucosal diseases. We reviewed the role

of Th17 cells in various oral and skin mucosal systemic diseases with oral

characteristics, and based on the findings of these reports, we emphasize that

Th17 cellular response may be a critical factor in inflammatory diseases of the

oral mucosa. In addition, we should pay attention to the role and relationship of

“pathogenic Th17” and “non-pathogenic Th17” in oral mucosal diseases. We hope

to provide a reference for Th17 cells as a potential therapeutic target for treating

oral mucosal inflammatory disorders in the future.

KEYWORDS

T helper cells, Th17, oral inflammatory diseases, oral mucosa, periodontitis, oral
mucosal immunity
1 Introduction

The immune environment can change with different tissues, and usually due to tissues

adapting to different functional requirements (1). The concept of barrier immunity has existed

for many years. But most studies of barrier immunity originated from intestine, lung, and skin

(2, 3). These studies do not necessarily apply to oral immunity because of the tissue and site

specificity of the oral cavity. The oral cavity is the environment that continuously experiences

physical and microbial stimuli, with maintaining a high level of immunity (4). Numerous oral
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mucosal diseases are related to chronic inflammation (5–7), including

OLP, oral leukoplakia, recurrent aphthous ulcers, and gingivitis. Oral

mucosal inflammatory diseases usually lack effective etiological

treatment (8–10). Furthermore, the treatment is often lengthy and

accompanied by dental erosion and pain, which causes inconvenience

to the patients (11, 12). Then researchers have been attempting to find

effective therapeutic methods by understanding the pathogenesis (13,

14). However, the potential solutions have been very few thus far.

Clinically, the treatment of oral mucosal inflammatory diseases mainly

focuses on symptomatic treatment (15, 16). In recent years, there has

been a new understanding of oral mucosal immunity, and it is

suggested that mucosal inflammation may be related to an

imbalance in immune homeostasis (17–19). T-helper 17 (Th17) cells

play an important role in oral mucosal barrier immunity (19, 20).

Th17 cells are an important subset of CD4+ T cells, which can

secrete a series of cytokines (including IL-17A, IL-17F, IL-21, IL-22,

and GM-CSF). Th17 cells are associated with multiple mucosal

inflammatory diseases (21, 22). And they can resist external

pathogens, maintain barrier immunity, and undergo unique

differentiation processes in different internal and external

environments (23, 24). High-throughput sequencing revealed that

Th17 cell development includes multiple positive and negative

regulatory modules, illustrating the complexity of Th17 cell

generation (21). The significant factor in Th17 cell differentiation
Frontiers in Immunology 02
is the activation of signal transducer and activator of transcription 3

(STAT3). The binding of IL-6, IL-21, and IL-23 with receptors

allows Janus kinases(JAKs) to phosphorylate the receptors, leading

to recruitment and phosphorylation of STAT3. STAT3

subsequently undergoes dimerization and gets translocated to the

nucleus to enhance the expression genes (25) (Figure 1). STAT3

induces the expression of the transcription factor orphan nuclear

receptor gt (ROR-gt). ROR-gt is thought to be a major regulator of

Th17 cells (26, 27). The initial study suggested that the inducing

factor of Th17 cells was IL-23, but naïve T cells did not express the

IL-23 receptor, and other conditions were needed to induce the

differentiation of primordial T cells into Th17 cells (28, 29).

Subsequent studies have shown that transforming growth factor-b
(TGF-b) and IL-6 can activate RORgt (30). RORgt can bind to

transcription factors, such as STAT3, and promote the expression of

IL-17A and IL-17F (31). Th17 cells produce IL-17 and IL-10, also

known as “non-pathogenic” Th17 cells (32). Th17 cells can produce

IL-17 and IFN-g and induce pathogenic inflammation while

fighting pathogens; therefore, it is called “pathogenic” Th17 cells

(33). In other words, the presence of TGF-b may induce Th17 cells

to exert different functions. However, some scholars believe the role

of TGF-b in promoting Th17 cell differentiation is unclear (34, 35).

SKI is a factor whose deregulation is closely associated with

tumorigenesis, 1p36 deletion syndrome, and Shprintzen–Goldberg
FIGURE 1

The significant factor in Th17 cell differentiation is the activation of signal transducer and STAT3. The binding of IL-6, IL-21, and IL-23 with receptors
allows JAKs to phosphorylate the receptors, leading to recruitment and phosphorylation of STAT3. STAT3 subsequently undergoes dimerization and
gets translocated to the nucleus to enhance the expression genes. STAT3 induces the expression of the ROR-gt. Th17 cells produce IL-17 and IL-10,
also known as “non-pathogenic” Th17 cells. Th17 cells can produce IL-17 and IFN-g and induce pathogenic inflammation while fighting pathogens;
therefore, it is called “pathogenic” Th17 cells. TGF-b neutralized SMAD4-mediated inhibition without affecting SMAD4 binding to the Rorc site and
promoted Th17 cell differentiation by reversing SKI/SMAD4.
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syndrome (36). At the same time, SKI is a transcription factor and

inhibits H3K9 acetylation, RoRc expression and Th17 cell

differentiation through SMAD4-dependent pathway. In contrast,

TGF-b neutralized SMAD4-mediated inhibition without affecting

SMAD4 binding to the Rorc site and promoted Th17 cell

differentiation by reversing SKI/SMAD4 (37) (Figure 1). There is

evidence that miRNAs can also regulate the proliferation and

differentiation of Th17 cells. MiR-155 (Figure 1), which is

expressed at high levels in both human and mouse Th17 cells,

can increase the aromatic hydrocarbon receptor signaling pathway

to promote the expression of IL-22 cytokine in Th17 cells (38). In

addition, miR-326 is a positive regulator of Th17 differentiation,

which acts by inhibiting ETS1 (Th cell differentiation inhibitor)

(39). MiR-221 and miR-222 have been found to regulate Th17

immunity in the intestine by downregulating IL-23R and c-MAF

and inhibiting IL-23-induced Th17 responses (40). Moreover, miR-

221- and miR-222-deficient mice showed weaker protection against

mucosal damage. These results suggest that miRNAs are also an

important component of the Th17 cellular response. However, it

has been suggested that the effects of miRNAs on Th17 function and

differentiation cannot be distinguished (41, 42).

In addition, Th17 cells produce IL-21 and IL-23, which feedback to

themselves and mediate the expansion and stability of Th17 cells (43).

After differentiation, Th17 cells express chemokine C-C receptor

(CCR)-6, which preferentially migrates to the mucosa and barrier

sites (44). The IL-17 family includes IL-17A, IL-17B, IL-17C, IL-17D,

IL-17E (also known as IL-25), and IL-17F (45). IL-17A and IL-17F

show highly similarities and both play significant roles in the adaptive

immune response, particularly against bacteria and fungi (46). They can

stimulate the expression of pro-inflammatory cytokines and

chemokines and the production of matrix metalloproteinases (MMP),

thereby inducing an inflammatory response by recruiting immune cells

to the site of infection. Whether Th17 or IL-17 is to be made the center

of targeted therapy is still debated. When encountering external

bacterial or fungal stimulation, Th17 cells secrete IL-17, which

interacts with IL-22 to promote epithelial cells to secrete antibacterial

peptides against pathogens (47). When the mucosal barrier is damaged,

IL-17 promotes epithelial cells to secrete CCL-20, recruiting neutrophils

to migrate to lesions, and plays a role in immune surveillance (48).

Although initial research has been performed on the relationship

between oral mucosal inflammation and Th17-type immunity, the

specific mechanisms through which Th17 cells exert their immune

effects remain unclear. Based on this, this study reviews the contribution

of Th17 immunity in oral mucosal inflammatory diseases that have

been discovered in recent years. We summarize the current research

progress and identify the “two-sidedness” of these cells in oral mucosal

immunity, a key factor in studying oral immune homeostasis.
2 Role of Th17 cells in
mucosal immunity

2.1 Th17 cells in intestinal immunity

The intestinal and oral flora have similar complex immune

mechanisms to maintain dynamic host-microbe balance,
Frontiers in Immunology 03
particularly Th17 immunity (49, 50). The intestine has the largest

mucosal area and is rich in microorganisms (51). Th17 cells can be

induced by bacteria and fungi, thus controlling important feedback

pathways that inhibit bacterial and fungal over-proliferation. Th17

cells play an important role in barrier immune protection of the

intestine (52). Among the T lymphocytes in the intestine, Th17 cells

play an important role in secreting cytokines, such as IL-17A, IL-

17F, and IL-22, promoting the production of mucin and AMP and

activating immunoglobulin receptors to maintain the barrier

function of the intestine (53). A significant Th17 immune

response was observed in the intestine of germ-free mice,

suggesting that the Th17 immune response is associated with the

invasion of external pathogens (54). Furthermore, deficiency in

CD4+ Th17 cells was observed in RORgt-deficient mice. They are

sensitive to dextran sodium sulfate-induced colonic injury,

suggesting that Th17 deficiency hinders the maintenance of

intestinal immune homeostasis (55). These Th17 cells are present

in the normal intestinal physiological environment and can be

stable; hence, they are called “non-pathogenic Th17” in the

intestine. However, they can be converted into “pathogenic

Th17”. Conversion of “non-pathogenic Th17” to “pathogenic

Th17” in the intestine demonstrates the plasticity of Th17 cells, a

process that is dependent on IL-23. The deficiency of IL-23 reduces

GM-CSF production by Th17 cells (56). B lymphocyte-inducible

maturation protein 1 (BLIMP1) also drive Th17 “pathogenicity”

because it enhances the expression of RORgt, STAT3, and histone

acetyltransferase p300. IL-23 induces the production of BLIMP1

(57, 58). Without IL-23, Th17 cells are normal in number but fail to

produce a pro-inflammatory Th17 cell response in the periphery

(59). Thus, the availability of IL-23 in the intestinal environment

may affect the balance between the beneficial and pathogenic

responses of Th17 cells.
2.2 Th17 cells in pulmonic
mucosal immunity

CD4+ T cells play an important role in lung diseases (24). For

example, CD4+ T-cell deficiency in patients with AIDS increases

the likelihood of lung infection. And Th17-type immune responses

should be mentioned in inflammatory lung disorders. Cellular

receptors mediate Th17-type immune responses, such as IL-17A,

IL-17F, IL-21, GM-CSF, and IL-22, and are expressed in lung

tissues, which underlines the possibility that Th17 cells mediate

protective responses and pathological inflammation in the lung

mucosa (60). In recent years, Th17 cells have been found to be

involved in numerous acute and chronic inflammatory conditions

in the lung (61, 62). In asthma, a class of refractory chronic

inflammatory conditions, the conversion of Treg cells to Th17

cells is observed in mice. The external cell signaling regulatory

kinase, IL-6, and STAT3 pathways jointly drive IL-17 expression

(63). Another study found that mice lacking IL-17A receptors

reduced Th1 immune-dependent infections, such as tuberculosis,

but were unable to fight pulmonary Klebsiella pneumoniae infection

because these mice had a reduced ability to recruit granulocytes to

clear the infection (64, 65). The production of IL-17 was also
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required. At the same time, the regulatory role of miRNAs in Th17

cells in lung inflammation cannot be ignored. It has been found that

miRNA-22 can control the activation of antigen-presenting cells

and Th17 immune response by stimulating histone deacetylase

HDAC4 (66). These results suggest that Th17 cells are important

for protective responses in the lung mucosa, especially against

pathogens. However, Th17 response is not always beneficial in

the pulmonary mucosa. Chronic obstructive pulmonary disease is

associated with abnormal microbial colonization, a process that

exacerbates the Th17 response and inflammatory damage (67, 68).
3 Th17 cells in oral mucosal immunity

3.1 The barrier-protective role of oral
Th17 cells

The oral mucosa is divided into an epithelial layer, lamina

propria, submucosa, and basement membrane (69). The epithelial

layer is in direct contact with the external environment and is the

first line of defense (Figure 2). According to its location, it can be

divided into keratinized and non-keratinized stratified squamous

epithelium (70, 71). Additionally, many lymphocytes and plasma

cells are present in the epithelial layer (72). However, these are

transient cells that disappear with a reduction in inflammation. The

lamina propria is a dense connective tissue that can support and

nourish the epithelial layer (73). The submucosa contains blood

vessels, nerves, and adipose tissue, providing nutrition and support

to the lamina propria (74). The basement membrane is a collagen
Frontiers in Immunology 04
fiber complex that acts as a “bridge” between the connective tissues

and epithelium. The intact mucosal epithelium is a natural

physiological barrier that prevents pathogens from entering deep

tissues (Figure 2). The immune barrier is related to host response.

The oral epithelium consists of various lymphocytes (19). These

lymphocytes are mainly present in the lamina propria.

The gastrointestinal tract and skin often elicit specific immune

responses at the barrier owing to continuous contact with the

external environment (75). As an important part of this barrier,

the immune mechanism of the oral mucosa has received increasing

attention in recent years. In addition, oral cavity is the first site of

contact with external stimulation during eating or breathing. The

uniqueness of the oral mucosa is that damage can be repaired

quickly (20). Another unique feature is that the oral cavity is

constantly stimulated by machinery such as mastication. These

characteristics differ from those of the other barriers in the body.

Although the study of microorganisms has focused more on gut

microbes, the oral cavity possesses a very diverse flora (76). Bacteria

are the “mainstay” of oral immunity, but fungi also have an

important role. Symbiotic flora is an important driver of barrier

immunity. The differentiation of Th17 cells in the oral mucosa

caused by microorganisms does not cause a disorder of the mucosal

immune system but is very important for the protection of oral

immunity (77). The protective mechanism of Th17 cells is different

from that in other parts of the mucosa. The development of Th17

cells in the intestinal mucosa depends on the participation of IL-1,

which is not required in the oral mucosa. In healthy oral mucosa,

mechanical stimulation, such as chewing, can cause the

accumulation of IL-6 in the epithelium, leading to the
FIGURE 2

The epithelial layer is in direct contact with the external environment and is the first line of defense. The intact mucosal epithelium is a natural
physiological barrier that prevents pathogens from entering deep tissues. The oral epithelium consists of various lymphocytes.
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differentiation of Th17 cells and the production of IL-17 (20). When

immune homeostasis is disrupted, oral bacteria, IL-6, and IL-23 in

the oral mucosa jointly mediate the differentiation of Th17

cells (78).
3.2 Oral mucosal macular diseases and
Th17 cells

OLP is a common chronic inflammatory disease of oral

mucosa (79). Its prevalence rate is approximately 0.1–4%, which

is second only to recurrent aphthous ulcers (RAU). The World

Health Organization defines OLP as a precancerous lesion.

However, the etiology of OLP is unclear (80). Numerous

lymphocytes with dense zonal infiltration can be observed in the

epithelial lamina propria of patients with OLP. Therefore, OLP

may be associated with immune factors. The IFN-g levels of OLP
patients are upregulated, while the IL-4 levels are downregulated,

and cellular immunity is enhanced, which makes them susceptible

to OLP (81). With a further understanding of oral mucosal barrier

immunity, the role of Th17 cells in OLP is being recognized. Th17

responses in OLP mainly focuses on the tissues of clinical patients.

Saliva of patients with OLP was extracted for ELISA and flow

cytometry analysis (82). It was found that IL-17 content in OLP

patients was significantly higher than that in normal individuals,

indicating that Th17 cells may play a role in the oral mucosal

immunity of patients with OLP.

An increase in IL-17 and IL-23 levels was observed in the

pathological tissues of patients with OLP (83). CD4+T cells in the

peripheral blood of patients with OLP were extracted and

stimulated with IL-23. The proportion of CD4+IL17+ cells

increased, which was attributed to the increased proportion of

Th17 cells. It was speculated that the IL-23/IL-17 axis and Th17

cells are related to the local immunity of OLP. In another study, it

was found that the proportion of Th17 cells in erosive OLP tissue

increased, whereas the proportion of Th2 cells in reticular OLP

tissue increased significantly (84). RORgt, which has been

recognized as an important transcription factor in Th17 cell

differentiation, has also been detected in reticular and erosive

OLP. However, there was no significant difference in RORgt
expression between the two types of OLP (85). In a study by

Javvadi (86), Regulatory T cells (Tregs) and Th17 cells were

simultaneously studied in patients with OLP. They found that

Th17 cells decreased and Tregs increased in OLP tissues, which

was different from previous literature. However, in the author’s

opinion, as immunosuppressive cells, the increase in Tregs

indicated that the body exerts a high level of immune regulation

in OLP lesions, which proved the particularity of local immunity in

OLP patients to some extent. However, owing to the lack of

recognized animal models, research on Th17 cells in OLP lacks

effective animal experiments. The detection of clinical samples has

shown that Th17 cells play an important role in the pathogenesis of

OLP, and more investments in animal models are needed.

However, Th17 cells lack research on other oral mucosal

macular diseases, such as oral leukoplakia, oral erythroplakia, and

oral submucous fibrosis.
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3.3 Gingivitis/periodontitis and Th17 cells

Periodontitis is one of the most common infectious diseases and is

associated with various systemic diseases (Figure 3) (87, 88). Gingivitis

is the earliest and the most common manifestation of periodontitis.

During gingivitis, bacteria cause tissue infection, interact with

abnormal host immune responses and the microenvironment, and

eventually cause periodontitis (89). T cell immunity plays a vital role in

both the normal and inflammatory oral mucosa (5). Researchers have

found that Th17 cells play a very important role in the occurrence and

development of gingivitis and periodontitis.

Many bacterial groups are present in the mouth (90). A healthy

mucosa can play an immunomodulatory role and form a dynamic

balance with microorganisms. Once there is external stimulation,

the balance is disrupted, and gingival inflammation appears.

However, it is still debated whether Th17 cells and IL-17 play a

promoting or inhibiting role in the occurrence and development of

periodontitis (91, 92). IL-17 plays an immune surveillance role and

has an anti-infection effect. When gingiva is stimulated by

microorganisms, IL-17 recruits neutrophils to fight pathogen

invasion (93). However, this is also a potential mechanism for

inflammation-induced tissue destruction.

IL-17+ and Foxp3+ cells can transform into each other in vitro

and are present in gingival tissue. When gingivitis occurs, IL-17

+/Foxp3- T cells are significantly increased, indicating that the

process of mutual transformation exists in the body, and the

downregulation of Treg proportion might be a probable reason

for the decline in immunosuppression and inflammation (94). This

possibility was verified in a study of gingivitis during pregnancy

(95). Low levels of Tregs and high levels of Th17 were detected in

the gingival tissue and cervical lymph nodes of pregnant mice

during the progression of periodontitis. These studies highlight the

important role of Th17/Treg balance in gingivitis and periodontitis.

In addition to its role in mucosal immunity, Th17 cells can

cause bone destruction during periodontitis. IL-17 can be directly or

briefly involved in periodontal bone loss mediated by the Rank/

Rankl pathway (96) (Figure 3). Some studies have found that

excessive accumulation of IL-17 aggravates bone loss in

periodontitis (97). Local anti-IL-17A neutralizing antibody

treatment reduced the disease course. IL-17A neutralizing

antibodies can reduce the pathogenicity of oral flora in diabetic

mice (98). When the oral microorganisms of the donor treated with

IL-17 antibody were implanted into sterile mice, neutrophil

recruitment was reduced, and IL-6 and RANKL of gingival tissues

reduced; thus, bone absorption was reduced. However, in an animal

model, inhibition of IL-17 led to periodontitis (99). As an important

cytokine that plays an important role in immune surveillance, the

lack of IL-17 does not seem to prevent periodontitis. An experiment

conducted on a population found that the impaired development of

Th17 cells did not cause a significant periodontitis phenotype (20,

94). However, oral endocrine IL-17 levels in patients with

periodontitis increased. These results indicated that the role of

Th17 cells and IL-17 in gingivitis/periodontitis cannot be evaluated

simply by “promoting” or “inhibiting,” but could be studied as a

link to mucosal immunity. The potential role of Th17 cells as a

target for the treatment of gingivitis cannot be ruled out.
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In addition, the interaction between Th17 cells and the

microbiome cannot be overlooked (100). Excessive IL-17

inflammatory response and dysbiosis coexist in the chronic

periodontitis setting. The LAD-1 periodontitis model

demonstrated that an increased IL-17 response can cause an

abnormal colonization of oral pathogenic flora (101).

Furthermore, some studies have found that IL-17 or IL-23

inhibition could reverse dysbiosis to some extent, suggesting the

contribution of excessive IL-17 inflammation to periodontitis (102–

104). Periodontal pathogenic bacteria increased with increasing oral

inflammation, and the above results demonstrate that IL-17

inflammatory mechanisms might be a key component of the

dysregulated microbial-host balance in gingivitis/periodontitis.

However, current studies are limited to animal models. The

effects of IL-17 on dysbiosis are yet to be elucidated.
3.4 Oral candidiasis and Th17 cells

Fungal infection is a global clinical problem, and its incidence is

continuously increasing (105). Among the symbiotic flora of human

beings, the most common is Candida albicans, which can colonize

the gastrointestinal tract, skin, urogenital system, and mouth (106,

107). Although some newborns experience thrush, the symbiotic

state does not cause host damage (108). Once this balance is

disrupted, it causes different degrees of host damage. The most

common manifestation of fungal infections is inflammation of the

mucous membrane and skin (109). If the fungus reaches important

internal organs, it will be life-threatening. Although some healthy

people carry C. albicans, mucosal immune disorders or fungal

virulence enhancement can cause disease (110). Host factors play

an important role in candidiasis pathogenesis. In adults, the
Frontiers in Immunology 06
incidence of oral candidiasis is higher in patients undergoing

surgery, radiotherapy, or Sjogren’s syndrome than that in normal

people (111).

The incidence of oral candidiasis in HIV patients is significantly

higher than that in uninfected people (112). Therefore, it was

suspected that the host factor for oral candidiasis might be the

lack of CD4+T cells. In addition, the prevalence of C. albicans in

patients with genetic or acquired immunodeficiency syndrome is

increasing, indicating that CD4+T cells are essential to resist C.

albicans infection (113, 114). Researchers have focused on Th17

cells at the start (115). The sensitivity of mice lacking IL-12p35 to

oral candida was lower than that of mice lacking IL-23p19, IL-

17RA, or IL-17RC, which indicated that C. albicans mainly

mediated the Th17 pathway rather than Th1 (116). Some patients

with immunodeficiency syndrome lack Th17 immunity, such as

STAT3 loss-of-function (LOF) mutations (117), STAT1 gain-of-

function mutations (118), bi-allelic RORC mutations (119), or

CARD9 LOF mutations (120), showing a strongly increased risk

of developing chronic metabolic syndrome. In vitro studies in

human cells have shown that C. albicans mycelia induce the

production of IL-23, a cytokine that drives the expansion and

function of Th17 cells (121).

The effect of Th17 cells on C. albicans depends mainly on IL-17

(Figure 4). Studies have shown that mice lacking IL-17 receptor or

its key downstream ACT1 are very sensitive to oropharyngeal

candidiasis (122). In addition, patients with genetic mutations in

the IL-17 receptor signaling pathway or high IgE syndrome (123)

are prone to chronic mucocutaneous candidiasis, indicating that IL-

17 has a certain immune effect on C. albicans. When the pathogen

comes in contact with the epithelium, IL-17 relies on neutrophils,

macrophages, and dendritic cells to kill fungi through oxidative

(reactive oxygen species) and non-oxidative (hydrolases and
FIGURE 3

Periodontitis is one of the most common infectious diseases and is associated with various systemic diseases, including diabetes, metabolic syndrome,
obesity, eating disorders, liver disease, cardiovascular disease, Alzheimer disease, rheumatoid arthritis, adverse pregnancy outcomes, and cancer. IL-17 can
be directly or briefly involved in periodontal bone loss mediated by the Rank/Rankl pathway. And excessive accumulation of IL-17 aggravates bone loss
in periodontitis.
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antimicrobial peptides) pathways (32). Therefore, the production of

IL-17 leads to a series of immune responses against C. albicans. IL-

17 stimulates neutrophil-recruiting CXC chemokines(CXCL1,

CXCL2 and CXCL5) and G-CSF, and helps the mucosa to fight

the fungus (124, 125). Mice lacking the CXCR2 are more susceptible

to candida albicans infection (126). Mice lacking neutrophils also

exhibit candida susceptibility, and neutrophils can also exert anti-

candida effects in vitro (127). IL-17 is also a potent inducer of b-
defensins (BDs), and mice without BD3 has downregulated

antifungal immunity (128). Treg also plays a significant role

(129). On the one hand, it suppresses excessive inflammation

induced by Th17. On the one hand, Treg enhances Th17 activity

by depleting IL-2.
3.5 Oral mucosal ulcer diseases

RAU is the most common oral mucosal ulcer disease (130, 131).

The immunological etiology of RAU is mainly cellular immunity.

Patients show decreased cellular immune function and an

imbalance in T-cell subsets. However, antinuclear antibodies,

which are common in autoimmune diseases, have not yet been

detected in humans. Thus, the immune response is only one of the

possibilities for RAU treatment. Early studies found a dominant

role of Th1 cell in the pathogenesis of RAU, especially the

dysregulation of T cell ratio due to the conversion of Th2 cell to

Th1 cell (132, 133). Due to the development of second-generation

high-throughput sequencing and the discovery of Th17 cell, IL-17 is

found in some clinical samples such as gingival sulcus fluid and
Frontiers in Immunology 07
peripheral serum (134, 135). These results suggest a possible role of

Th17 cell in the pathogenesis of RAU and has great potential

for research.
4 Th17 cell is a therapeutic target for
skin-mucosal immune diseases

Studies have identified Th17 cells and IL-17 as potential

therapeutic targets for skin mucosal immune diseases (136).

However, recognized effective targeted Th17 therapy has been

directed toward psoriasis. IL-17 accumulation reduces lipoprotein

transport, thereby causing serious complications, such as vascular

sclerosis complicated by atherosclerosis. Anti-IL-17 therapy can

significantly reduce this risk (137, 138). In addition, IL-17-block

therapy has resulted in breakthroughs in the study of multiple

sclerosis (139). However, targeted therapy may not have a

significant effect on rheumatoid arthritis (140). Targeted therapy

of Th17 cells does not play a beneficial role. Another study

suggested to focus on the switch key of Th17 cells: IL-23, the

results of which remain to be further considered (141).

Lichen planus can invade the mouth as well as the skin and

mucosa of other parts (142). A clinical study showed that the use

of Anti-IL-17A monoclonal antibodies or inhibition of the Th17/

Tc17 axis could alleviate lesions in patients (143), which indicated

that IL-17 is a potential entry point for OLP treatment. Uveitis is

a serious complication in patients with Behçet’s disease and is

associated with autoimmune disorders. Studies have shown that

the activation of the IL-23/IL-17 pathway is related to the
FIGURE 4

IL-17 relies on neutrophils, macrophages, and dendritic cells to kill fungi. IL-17 stimulates neutrophil-recruiting CXC chemokines (CXCL1, CXCL2 and
CXCL5) and G-CSF, and helps the mucosa to fight the fungus. Furthermore, IL-17 is also a potent inducer of b-defensins.
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activation and proliferation of pathogenic Th17 cells (144, 145).

Drugs targeting the IL-23/IL-17 pathway have been shown to

alleviate autoimmune uveitis (146). In addition, studies have

found that the increase in Th17 reaction mediated by IL-21

and the inhibition of Tregs are closely related to the severity of

Behçet’s disease (147, 148). It is unclear whether RAU is

associated with Th17 cells. As a related disease, these studies

provide a reference for the clinical treatment of RAU. Pemphigus

is another serious autoimmune disease of the chronic mucosal

skin autoimmune disease (149). The most common of them is

pemphigus vulgaris, which is characterized by bullae in the oral

mucosa. There are limited studies on Th17 cells in oral mucosal

lesions of pemphigus, but elevated levels of IL-23 and IL-17 have

been observed in the serum and skin lesions of patients with

pemphigus (150, 151). Further studies on skin samples from

patients with pemphigus revealed that the immune response was

mainly mediated by IL-17A-related factors. In addition, another

independent CD4+T cell subgroup, Tfh, can induce B cells to

produce anti-Dsg-specific antibodies (152). These findings

provide a new direction for the treatment of oral mucosal

lesions associated with pemphigus. Many drugs, inhibitors or

neutralizing antibodies targeting Th17 were used to treat skin-

mucosal inflammatory diseases, and some of the completed and

ongoing clinical trials are listed in Table 1, including, for

example, IL-17, IL-6, and IL-23.
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5 Concluding remarks

The mucosa is the “protective layer” of the body’s immune

system, is constantly exposed to external stimuli, and has a high and

rapid immune response. To recognize stimuli and protect the body

promptly, the normal mucosa maintains a relatively stable state and

dynamic immunity balance. T-cell immunity plays an important

role in the intestinal mucosa, lung mucosa, and oral mucosa. Th17

cells are a newly discovered subpopulation of CD4+ T cells, and its

discovery explains part of the disease pathology that could not be

elucidated by the classical Th1 and Th2 signaling pathways but also

adds complexity to the study of mucosal immunity.

Oral mucosal diseases are usually caused by multiple factors,

especially gingivitis, OLP, and RAU, which are highly prevalent in

the population. The exact cause of most oral mucosal diseases

cannot be determined, making clinical diagnosis and treatment

difficult. With the advancements in immunology and further

exploration of oral immunity using emerging tools, the evidence

of oral mucosal barrier immune dysfunction and related diseases

has changed, with Th17 cells predominating. There are many

clinical treatments, including pharmacotherapy, intraoral laser

therapy, and local closure therapy, to relieve the pain and

discomfort caused by erosive mucosal lesions. However, the

underlying mechanisms have not been fully elucidated. In this

study, we reviewed the important roles of oral mucosal barrier
TABLE 1 Th17-targeted drugs in clinical trials.

Targeting Drug Method of delivery Disease Model Phase NCT code Ref.

IL-17

MSB0010841 s.c. Psoriasis I NCT02156466 (153)

Anti-IL-17A Humanized Monoclonal Antibody s.c. Psoriasis II NCT05604898 (154)

608 Q2W s.c. Psoriasis III NCT05536726 (154)

JS005 s.c. Psoriasis Ib/II NCT05344248 (155)

BCD-085 s.c. Psoriasis II NCT02762994 (156)

LY2439821 s.c. Psoriasis II NCT01107457 (157)

AZD0284 p.o. Psoriasis I NCT03310320 (158)

CJM112 s.c. Psoriasis I NCT01828086 (159)

SHR-1314 s.c. Psoriasis II NCT04121143 (160)

Ixekizumab s.c. Lichen Planus I NCT05030415 (161)

IL-6

Adalimumab s.c. Psoriasis Not Applicable NCT01320293 (162)

Tocilizumab p.o. Behçet’s disease II NCT03554161 (163)

TA-650 i.v. Behçet’s disease III NCT01532570 (164)

IL-23

LY2525623 i.v. Psoriasis II NCT01018810 (165)

Risankizumab s.c. Psoriasis IV NCT04630652 (166)

Mirikizumab s.c. Psoriasis III NCT03535194 (167)

CNTO 1959 s.c. Palmoplantar Pustulosis II NCT01845987 (168)

LY3074828 s.c. Psoriasis III NCT03556202 (169)

CNTO 1275 s.c. Psoriasis III NCT00267969 (170)

Ustekinumab s.c. Behçet’s disease II NCT02648581 (171)
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immunity and Th17 cells in various oral mucosal diseases.

In addition, we briefly summarized the progress in our

understanding of systemic skin mucosal inflammatory diseases

characterized by oral mucosa, which provides a reference for the

treatment of these diseases. However, current research on Th17 cells

is not completely clear. For example, although Th17 cells are

classified as “pathogenic” and “non-pathogenic”, there seems to

be no clear boundary for distinction. In addition, there are no

studies on the type of Th17 cell that causes oral mucosal disease.

Although many studies have shown that neutralizing Th17 or IL-17

antibodies can alleviate various autoimmune inflammatory diseases,

IL-17 plays an important role in the treatment of the oral mucosa.

However, an important role of IL-17 is immune surveillance,

especially in the oral mucosa. The simple use of IL-17 antagonists

is not a “panacea”. Does this affect the Th17/IL-17-mediated

protective response, such as recruitment of neutrophils to fight

infection? However, Th17 is a potential immunotherapeutic target

in oral mucosal inflammation and deserves further investigation.
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