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Introduction: Lung squamous cell carcinoma (LUSC) is a unique subform of

nonsmall cell lung cancer (NSCLC). The lack of specific driver genes as

therapeutic targets leads to worse prognoses in patients with LUSC, even with

chemotherapy, radiotherapy, or immune checkpoint inhibitors. Furthermore,

research on the LUSC-specific prognosis genes is lacking. This study aimed to

develop a comprehensive LUSC-specific differentially expressed genes (DEGs)

signature for prognosis correlated with tumor progression, immune infiltration,

and stem index.

Methods: RNA sequencing data for LUSC and lung adenocarcinoma (LUAD)

were extracted from The Cancer Genome Atlas (TCGA) data portal, and DEGs

analyses were conducted in TCGA-LUSC and TCGA-LUAD cohorts to identify

specific DEGs associated with LUSC. Functional analysis and protein–protein

interaction network were performed to annotate the roles of LUSC-specific

DEGs and select the top 100 LUSC-specific DEGs. Univariate Cox regression and

least absolute shrinkage and selection operator regression analyses were

performed to select prognosis-related DEGs.

Results: Overall, 1,604 LUSC-specific DEGs were obtained, and a validated

seven-gene signature was constructed comprising FGG, C3, FGA, JUN, CST3,

CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were correlated with

poor LUSC prognosis, whereas CPSF4 and HIST1H2BH were potential positive

prognosis markers in patients with LUSC. Receiver operating characteristic

analysis further confirmed that the genetic profile could accurately estimate

the overall survival of LUSC patients. Analysis of immune infiltration

demonstrated that the high risk (HR) LUSC patients exhibited accelerated

tumor infiltration, relative to low risk (LR) LUSC patients. Molecular expressions

of immune checkpoint genes differed significantly between the HR and LR

cohorts. A ceRNA network containing 19 lncRNAs, 50 miRNAs, and 7

prognostic DEGs was constructed to demonstrate the prognostic value of

novel biomarkers of LUSC-specific DEGs based on tumor progression,

stemindex, and immune infiltration. In vitro experimental models confirmed
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that LUSC-specific DEG FGG expression was significantly higher in tumor cells

and correlated with immune tumor progression, immune infiltration, and stem

index. In vitro experimental models confirmed that LUSC-specific DEG FGG

expression was significantly higher in tumor cells and correlated with immune

tumor progression, immune infiltration, and stem index.

Conclusion: Our study demonstrated the potential clinical implication of the 7-

DEGs signature for prognosis prediction of LUSC patients based on tumor

progression, immune infiltration, and stem index. And the FGG could be an

independent prognostic biomarker of LUSC promoting cell proliferation,

migration, invasion, THP-1 cell infiltration, and stem cell maintenance.
KEYWORDS

LUSC, prognosis, biomarker, tumor microenvironment, cancer stem cell
GRAPHICAL ABSTRACT
1 Introduction

Lung cancer is heterogeneous and fatal, with non-small cell lung

cancer (NSCLC) as its main pathological subtype. Lung squamous

cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the

primary subtypes of NSCLC (1); however, they differ in many

aspects, including the origin of cells, genetic variation, epigenetics,
n; NSCLC, Non-small

, Lung squamous cell

brinogen gamma; GO,

s and Genomes; PPI,

Genome Atlas; OS,

02
and the outcome of antineoplaston drugs (2). Despite tremendous

advances in diagnosis and treatment, including molecular targeted

therapeutics and immunotherapy, the clinical outcomes of LUSC

remain unsatisfactory (3). Patients with LUSC are often diagnosed

in an advanced stage when existing therapy cannot be administered

in a timely manner (4). LUSC patients are also not as sensitive as

LUAD patients to chemotherapy, radiotherapy, and tumor

immunotherapy. In addition, the prognosis of LUSC is poor, with

an estimated 5-year survival rate of <15% (5). Therefore,

distinguishing LUSC from LUAD is important to identify

effective prognostic biomarkers.

Although studies based on the whole genome (6, 7), epigenetics

(8), cancer stem cells (CSCs) (9, 10), and tumor microenvironment
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(TME) (11) have analyzed differentially expressed genes (DEGs) in

LUSC and LUAD, research on the LUSC-specific prognosis genes is

lacking. A previous study (4), involving 178 LUSC cases, conducted

using the Cancer Genome Atlas (TCGA) Research Network

reported complex genomic alterations in LUSC, including

significant copy number alterations, which peaked for SOX2,

PDGFRA/KIT, EGFR, FGFR1, CCND1, and CDKN2A. In LUSC,

CDKN2A/RB1, NFE2L2/KEAP1, squamous differentiation genes,

and PI3K/Akt were significantly altered. TP53 is the most

commonly mutated gene with a mutation frequency of > 80% in

LUSC. The overexpression and amplification of genes, SOX2 and

TP63, are spectrum factors of LUSC (12). Despite progress in

research on biomarkers for LUSC, oncology targets are rare.

Recent studies on genetic biomarkers for LUSC have focused on a

single gene based on the cognitions of CSCs and the TME in cancer

progression, as well as drug resistance and response to immune

checkpoint blockade. Traditional methods use differential

expression detection to identify potential biomarkers but may

miss out on useful genes. As the occurrence and development of

malignant tumors is a long-term complex process involving

genomic changes, the interaction between tumor cells and their

immune microenvironment, and the participation of tumor stem

cells, the behavior cognition of malignant tumors warrants

extensive research.

Therefore, in this study, we aimed to compare DEGs of LUSC

with LUAD using biological information analytical methods based

on prognostic risk factors, including tumor invasion, metastasis,

survival, immune infiltration, and tumor stem cell-related genes.

DEGs in LUSC were employed to generate a risk model to evaluate

the prognostic value of characteristic genes for possible prognostic

indicators or therapeutic targets for LUSC. We further explored the

associations between the specific prognostic markers FGG and

tumor progression, immune invasion, and the tumor cell stem

index to identify potential LUSC-specific survival prognostic

biomarkers and therapeutic targets.
2 Methods

2.1 Data processing

We first retrieved LUSC (n=502) and LUAD (n=533) RNA

sequencing datasets, and the clinical information of corresponding

LUSC patients and 59 healthy volunteers from the TCGA database

(https://portal.gdc.cancer.gov/).
2.2 Differentially expressed genes

The “limma” package was selected for DEGs analysis in TCGA-

LUSC and TCGA-LUAD cohorts. For processing, a |log2 (fold

change)| > 0.5 and adjusted P-value < 0.05 were considered the cut-

off criteria for screening the DEGs between the tumor and normal

samples. The “heatmap” package of the R program was used to
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generate a heatmap of the top 100 DEGs. Additionally, we

employed a Venn diagram to indicate the specific DEGs in LUSC.
2.3 Functional enrichment analyses

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses of LUSC-

specific DEGs were conducted with the “clusterProfiler” package of

the R software; P < 0.05 was the statistical significance threshold.

The bubble plot, circle graph, and heat map were plotted using R to

visualize the top enrichment GO terms and KEGG networks. To

explore the pathways and GO functions of unique differential genes

in LUSC, the R “clusterProfiler” package was used for enrichment

analysis based on KEGG and GO to search for common functions

among DEGs, as well as related pathways of several genes. Statistical

methods were used to calculate the cumulative hypergeometric

distribution to analyze, within a group of genes, whether

overpresentation occurs on a functional node, as follows:

P(X > q) = 1 −o
q

x=1

(nx)(
N−n
M−x)

(NM)

where ‘N’ is the total gene number within the annotation

system, ‘n’ is the gene number annotated by the node or pathway

itself to be examined, ‘M’ is the size of the DEGs set, and ‘x’ is the

number of intersections between gene sets and nodes or pathways.
2.4 Protein–protein interaction axis for
LUSC DEGs

The association between LUSC-specific DEGs was predicted

using STRING (https://string-db.org). The PPI axis was visualized

with the Cytoscape software at a confidence of 0.9. In the PPI

network, the individual DEG’s adjacent node numbers were

computed, and the top 20 DEGs were displayed using a bar plot

according to the number of adjacent nodes. Weighted gene co-

expression network analysis (WGCNA) was conducted to screen

out relevant modules and hub genes, which were used to develop

the prognostic signature. TCGA and GTEx data based gene

expression profiling interactive analysis (GEPIA) was used to

predict gene interactive and customizable functions.
2.5 Construction and validation of
a gene signature constructed from
LUSC-specific DEGs

Based on the number of connections, the top 100 LUSC-specific

DEGs were selected for subsequent analyses. We extracted the

expression data of the 100 LUSC-specific genes from TCGA-

LUSC patients and combined them with the clinical information

of corresponding patients. The corresponding patients with TCGA-

LUSC were randomly divided into a training cohort (TC, n = 336)

and a validation cohort (VC, n = 145) in a 7:3 ratio. To identify
frontiersin.org

https://portal.gdc.cancer.gov/
https://string-db.org
https://doi.org/10.3389/fimmu.2023.1236444
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2023.1236444
prognostic genes in LUSC, we conducted a univariate Cox

regression analysis on 100 LUSC-specific DEGs. Those with a

P < 0.05 were considered correlated with the LUSC prognosis.

Subsequently, we used the least absolute shrinkage and selection

operator (LASSO) and Cox regression analyses to obtain the genetic

profile with the most significant prognosis from the LUSC-specific

DEGs within the TCGA-LUSC patient population via the “glmnet”

package in R. Individual patient risk score (RS) was computed based

on the levels of the prognostic signature genes and the associated

coefficients obtained from the LASSO-Cox regression model. LUSC

patients were categorized into high risk (HR) and low risk (LR)

cohorts based on the median RS. The overall survival (OS) of the

different risk cohorts was analyzed using Kaplan–Meier analysis

with the log-rank test using the “Kaplan–Meier survival” package in

R. Moreover, the time dependent receiver operating characteristic

(ROC) curve was generated via the “survival ROC” package in R to

demonstrate the effectiveness of the genetic profile. To analyze the

relationship between predictive and response variables, we

employed the uni- and multivariate Cox regression analyses.
2.6 Single sample gene set
enrichment analysis

The relative tumor infiltration levels of 29 immune-linked gene

sets (16 immune cell types and 13 immune-linked pathways)

between HR and LR groups were quantified by ssGSEA. The

analysis was conducted using the “gsva” R package. Comparisons

between the HR and LR cohorts were carried out via the

Wilcoxon test.
2.7 Tumor stem cell index analysis

The mRNA expression based stemness index (mRNAsi) and

epigenetically regulated mRNAsi (EREG-mRNAsi) in LUSC

samples were computed using the OCLR algorithm for research

on gastric cancer (13) and NSCLC (14). Subsequently, the

differences in mRNAsi and EREG-mRNAsi between the HR and

LR cohorts were compared using the Wilcoxon test. The two

independent stemness indices range from 0 to 1, with a value

closer to 1 suggesting stronger characteristics of CSCs.
2.8 Generation of the ceRNA axis

Differentially expressed lncRNAs (DE-lncRNAs) between

tumor and healthy samples were recognized as follows: |log2 (fold

change)| > 1 and P-value < 0.05. The target miRNAs of lncRNAs

were estimated via the miRcode database (http://www.mircode.org/

), and the target miRNAs of prognostic DEGs were estimated via the

miRanda database (http://www.microrna.org/microrna/home.do).

The common miRNAs predicted by the miRcode and miRanda

databases, as well as the corresponding lncRNA and prognostic

DEGs, were input into Cytoscape software to construct a

ceRNA network.
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2.9 Cell culture

LTEP-s, BEAS-2B, and NCI-H520 cells were purchased from

the American Type Culture Collection (ATCC) and cultured in

DMEM (HyClone, USA). NCI-H520 cells were cultured in RPMI-

1640 medium (Biological Industries, USA). All cells were

supplemented with 10% fetal bovine serum (FBS; Biological

Industries, USA) and 1% penicillin/streptomycin (Sigma, USA)

and cultured under standard culture conditions (37 °C, 5% CO2)

in culture medium recommended by the ATCC.
2.10 RNA extraction and real-time
polymerase chain reaction assay

Total RNA was extracted using TRIzol Reagent (Invitrogen,

Carlsbad, CA) according to the manufacturer’s instructions. cDNA

was synthesized using random primers and the PrimeScript RT

Reagent Kit (Takara, China). Real-time polymerase chain reaction

(qPCR) was performed using SYBR Premix Ex Tag (Takara, China).

The PCR conditions were as follows: 95 °C for 15 s followed by

40 cycles of 95 °C for 5 s and 60 °C for 30 s. b-actin was used as the

internal control. The primer sequences for real-time PCR are listed

in Table 1.
2.11 Cell transfection

Small-interfering RNA (siRNA) oligonucleotides for FGG were

designed and synthesized by Jima Bio (Suzhou, China). The primer

sequences for the siRNAs are listed in Table 2. Transient transfection

was performed using Lipofectamine 2000 Reagent (Invitrogen, USA)

according to the manufacturer’s instructions. After transfection for
TABLE 1 Primer sequences for real-time PCR used in the study.

Primer name Primer sequences (5`–3`)

FGG Forward Primer TTATTGTCCAACTACCTGTGGC

Reverse Primer GACTTCAAAGTAGCAGCGTCTAT

FGA Forward Primer AGACATCAATCTGCCTGCAAA

Reverse Primer AGTGGTCAACGAATGAGAATCC

JUN Forward Primer TCCAAGTGCCGAAAAAGGAAG

Reverse Primer CGAGTTCTGAGCTTTCAAGGT

CPSF4 Forward Primer CATCGGGGTCATGCAGAGTC

Reverse Primer CTCGCCACACTTGTAACAGGT

HIST1H2BH-1F Forward Primer TCACCTCCAGGGAGATCCAG

Reverse Primer TTTGGGTTTGAACATGCGTCC

C3 Forward Primer GGGGAGTCCCATGTACTCTATC

Reverse Primer GGAAGTCGTGGACAGTAACAG

CST3 Forward Primer GTCGGCGAGTACAACAAAGC

Reverse Primer CACCCCAGCTACGATCTGC
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48 h, cells were used for functional assays, including migration,

invasion, RNA extraction, and Western blotting.
2.12 Cell proliferation assay

Cells were seeded in 96-well plates at 1 × 103 cells per well and

cultured in a final volume of 100 mL of culture medium

supplemented with 10% FBS. The cell proliferation was

determined using CCK-8. After incubation for 24, 48, 72, and

96 h, 20 uL of CCK-8 reagent was added for 3 h, and the

absorption at a wavelength of 490 nm was determined.
2.13 Cell cycle assay

The cell suspension was diluted to 5×106 cells/mL, the

supernatant was removed, and 70% 500 mL of cold ethanol was

added and placed in a refrigerator at 4°C for 2 h. The cell pellet was

mixed with 100 mL RNaseA (Solarbio, China) and placed in a 37°C

water bath for 30 min; PI staining buffer was added in the dark for

30 min at 4°C. Red fluorescence at 488 nm was detected using

flow cytometer.
2.14 Cell apoptosis assay

The cell culture medium was collected into a centrifuge tube.

The cells were digested with Edta-free pancreatic enzymes and

added into the cell culture medium, centrifuged, and precipitated.

The cells were then re-suspended with 1 mL PBS precooled at 4 °C

and the precipitated cells were centrifuged again. The cells were re-

suspended with 1x binding buffer and the concentration was

adjusted to 5 × 106/mL; 100 mL cell suspension was added to a 5

mL flow tube, mixed with 5 mL Annexin V/FITC (Solarbio, China),

and incubated at room temperature for 5 min in the dark. A total of

5 mL propyl iodide solution (PI) and 400 mL PBS were added for

immediate flow detection.
2.15 Wound healing assay

Cells were placed in 12-well plates. When cells grew to 90–95%

confluence, cell monolayers were wounded by scratching with
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plastic micropipette tips and washed twice with PBS. The cells

were rinsed with PBS and cultured in DMEM or RPMI 1640

supplemented with 1% FBS. Images of the different stages of

wound healing were obtained via microscopy at 0, 24, and 48 h.

Relative cell motility was quantified using Image-Pro Plus.
2.16 Transwell migration and
invasion assay

Cell migration and invasion assays were performed in 24-well

plates with 8-mm-pore size chamber inserts (Corning, USA). For the

migration assays, 5 × 104 cells in 200 mL of serum-free culture

medium were seeded into each well of the upper chamber with

the noncoated membrane, and 800 mL of medium supplemented

with 10% FBS was added to the lower chamber. For invasion assays,

1 × 105 cells in 200 mL of serum-free culture medium were seeded

into each well of the upper chamber with the Matrigel-coated

membrane, while 800 mL of medium supplemented with 10% FBS

was added to the lower chamber. Cells that migrated through the

membrane were fixed with 100% methanol, stained with 0.1%

crystal violet for 30 min, imaged, and counted under a light

microscope (Olympus, Japan).
2.17 Western blot assay

Cells grown in 6-well plates were lysed on ice using RIPA buffer.

The lysis mixtures were centrifuged, and the supernatants were

collected. Total protein was separated using SDS-polyacrylamide gel

electrophoresis and transferred onto PVDF membranes (Millipore,

USA). After blocking the membranes with non-fat milk, the

membranes were incubated overnight with the following primary

antibodies: anti-N-cadherin (1:1,000), anti-E-cadherin (1:1,000),

anti-GAPDH (1:1,000) (Abcam, UK). The membranes were then

incubated with horseradish peroxidase-conjugated secondary

antibodies (1:2,000). The analysis was performed using an

enhanced chemiluminescence system (Bio-Rad, USA). Binding

was analyzed using Image J 6.0.
2.18 THP-1 cell infiltration

THP-1 cells were seeded at 1×106 per well in 6-well plates and

treated with PMA (100 nmol; Sigma-Aldrich, USA) for 48 h. M1

macrophages were polarized by incubation with INF-g (20 ng/mL;

R&D System, USA) and LPS (100 ng/mL; Sigma, USA) for 48 h.

After transfection with si-NC or si-FGG in the absence or

presence of coculture, a cell migration assay was conducted using

24-well Transwell plates (8.0 mm; Corning, NY, USA). The

macrophages or cancer cells (5×104, LTEPs-si-NC, LTEPs-si-

FGG) were planted into the upper chambers, while 600 µL RPMI

1640 containing 10% FBS were placed into the lower chambers.

Thereafter, the Transwell plates were incubated at 37 °C, 5% CO2

for 48 h, fixed in 4% formaldehyde for 30 min, and stained with

0.01% crystal violet. Non-migrating cells were carefully removed
TABLE 2 Primer sequences for siRNA used in the study.

Primer name Primer sequences (5`–3`)

FGG-homo-935 sense CCUACUGGCACAACAGAAUTT

antisense AUUCUGUUGUGCCAGUAGGTT

FGG-homo-768 sense GCGGGCUUUACUUUAUUAATT

antisense UUAAUAAAGUAAAGCCCGCTT

FGG-homo-1361 sense GGUUAUGAUAAUGGCAUUATT

antisense UAAUGCCAUUAUCAUAACCTT
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with a cotton swab, while cells that migrated to the lower chambers

were counted under a microscope.
2.19 Statistical analysis

All data analyses were conducted using the R language (version

3.5.1). The levels of immune checkpoint genes between the HR and

LR cohorts were compared using the Wilcoxon test. Uni- and

multivariate analyses were employed to screen for stand-alone

prognostic markers for LUSC survival. P < 0.05 was set as the

significance threshold.
3 Results

3.1 Identification of specific DEGs for LUSC

We analyzed DEGs between tumor and normal samples in

TCGA-LUSC and TCGA-LUAD cohorts. Overall, 2,878 DEGs

(1,466 upregulated and 1,412 downregulated) were identified in

LUSC, relative to normal samples (Figure 1A). In addition, 1,629

DEGs were identified in LUAD, among which, 714 were highly

expressed and 915 were scarcely expressed (Figure 1B). The top 100

DEGs in LUSC (Figure 1C) and LUAD (Figure 1D) are shown in the

heat maps. We further applied an online Venn diagram to identify

LUSC-specific DEGs (Figure 1E). Consequently, 1,604 specific DEGs

for LUSC were obtained, as shown in a heat map (Figure 1F).
3.2 FEA and PPI analysis of the novel
biomarkers in LUSC

To elucidate the physiological activities of these LUSC-specific

DEGs, GO and KEGG enrichment analyses were carried out. GO

terms revealed that these LUSC-specific DEGs were markedly

enriched in immune-linked biological systems such as T cell-

mediated immunity, immune response-related neutrophil

activation, neutrophil degranulation, neutrophil-based immunity,

and neutrophil activation (Figure 2A). KEGG analysis revealed that

the LUSC-specific DEGs were associated with melanogenesis,

small-cell lung cancer, the PI3K-Akt axis, viral myocarditis,

human papillomavirus infection, ECM-receptor association, the

Rap1 signaling pathway, Staphylococcus aureus infection, and

glutathione metabolism (Figure 2B). PPI interaction networks

containing 1,604 nodes and 14,209 edges further revealed the

interactions between these LUSC-specific DEGs (Figure 2C). The

top 20 DEGs are displayed in a bar plot based on the quantity of

adjacent nodes (Figure 2D). The top 100 genes of connectedness

were obtained using a collateral analysis. The genes with the top 100

connectedness were single factors. Then, Cox and LASSO

regression analyses were employed for risk model construction.

WGCNA was used to analyze the hub genes’ biological behavior,
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and the correlation between alteration in hub gene expression and

clinical characteristics was confirmed via external data from the

GEPIA Database (http://gepia.cancer-pku.cn/). The results of

WGCNA and GEPIA for hub genes suggested that all hub genes

were significantly elevated in tumor tissues. Following the

adjustment of confounding factors, we developed a prognostic

profile using three genes with remarkable predictive ability.
3.3 Prognostic signature of
LUSC-specific DEGs

Based on the counts of connections, the top 100 LUSC-specific

DEGs in the PPI network were selected for further analysis. To

identify the prognostic genes in LUSC, we further employed a

univariate analysis of the 100 LUSC-specific DEGs. Eight were

associated with the prognosis of patients with LUSC (P < 0.05);

univariate Cox regression analysis results are shown in

Supplementary Table 1. FGG, C3, FGA, ORM1, JUN, and CST3

served as risk hazards (HR > 1), whereas CPSF4 and HIST1H2BH

served as a protective function (HR < 1) in LUSC (Figure 3A). LASSO

analysis was employed to improve the robustness of the eight LUSC-

specific DEGs. Eight genes carrying a P-value < 0.05 in the univariate

Cox analysis were used to construct a LASSO regression. To reduce

the feature dimension, we used the R software’s “glmnet” package, set

the parameter family as Cox, realized LASSO logistic regression,

selected strong correlation features, and obtained the two graphs

depicted in Figure 3; one is the graph of gene coefficient, and the other

is the error graph of cross-validation. As shown in Figure 3B, the

seven characteristic genes with a lambda.min of 0.0134 were FGG,

C3, FGA, JUN, CST3, CPSF4, and HIST1H2BH. The seven genes and

their corresponding coefficients were selected as the most prognostic

gene signatures in LUSC. We further calculated the RS for individual

patients with LUSC using the expression of the seven prognostic

genes and associated coefficients retrieved from the LASSO-Cox

analysis; LASSO analysis was then employed for characteristic

genes and coefficients screening, as shown in Supplementary

Table 2. Subsequently, the median of the RSs was utilized as a

standard to separate the LUSC patients into HR and LR cohorts in

both the TC and VC. The risk curve and distribution of OS status are

shown in Figure 3C. Moreover, the expression patterns of the seven

prognostic genes in the HR and LR cohorts verified the prognostic

value of the seven markers. Figure 3C consists of three parts: upper

(a), middle (b), and lower (b), all of which demonstrate that the HR

cohort exhibited an elevated survival RS. Notably, the Kaplan–Meier

analysis indicated that LR LUSC patients exhibited a markedly higher

survival probability, compared to the HR cohort (Figure 3D;

P < 0.05). The results of ROC analysis further tested the TC, which

showed that this genetic profile could effectively estimate the OS of

LUSC (Figure 3E).

The VC was also tested, and the risk curve and distribution of

OS status are shown in Supplementary Figure 1. The survival and

ROC curves of VC are shown in Figures 3F, G.
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3.4 The seven-gene signature of LUSC
represents an independent stand-alone
prognostic value

To elucidate whether the prognostic gene profile was

independent of clinicopathological features such as age,

pathological stage, and TNM stage, univariate and multivariate

analyses were conducted. Univariate analysis revealed that age, as

well as pathologic, pathologic T, and pathologic M stages, were

strongly correlated with LUSC patients’ OS (Figure 4A).
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Multivariate analysis based on the above clinicopathological

characteristics further revealed that the RS was directly correlated

with OS (Figure 4B; P < 0.001). The predictive efficiency of these

clinicopathological characteristics was evaluated using ROC

analysis, and the RS was employed as a predictor stand-alone

indicator of LUSC outcome (Figure 4C). We observed marked

differences between T1 and T2 of the T stage, and N0 and N1 of the

N stage (Supplementary Figures 2, 3); however, there was no

significant difference in other periods (Supplementary Figures 4–

6). To explore the independent prognosis of risk models and
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FIGURE 1

(A) Volcano Plots of 2,878 LUSC-DEGs. (B) Volcano Plots of 1,629 LUAD-DEGs. Multiples of the abscissa difference (Tumor/Normal) taken the
logarithm of 2 and the ordinate representation of -log10(adj.P.Val). Each dot represents a gene. Red dots indicate gene upregulation (Tumor vs.
Normal samples), blue dots indicate downregulation (Tumor vs. Normal samples), and gray dots indicate no significant differences in expression. (C)
The heat map of the top 100 DEGs in LUSC. (D) The top 100 DEGs LUAD. The abscissa direction represents the DEGs, while the vertical direction
represents the samples. Colors indicate normalized differential expression; high and low expressions are shown in red and blue, respectively. (E) The
Venn diagram of 1,604 LUSC-specific DEGs calculated by subtraction of LUSC-DEGs and the cross-section of LUSC and LUAD DEGs. (F) The heat
map of LUSC-specific DEGs. The abscissa direction indicates the DEGs, while the vertical direction indicates the samples. Colors indicate normalized
differential expression; red represents elevated levels, and blue represents reduced levels.
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clinicopathological factors, the Cox-independent prognostic

analysis of age, the T, M, and N staging, and the RS showed that

Pathologic_M and RiskScore were stand-alone prognostic

indicators for LUAD (P < 0.05). We next analyzed RSs and

various clinical features, including age, sex, tumor stage, T (size

or extent of the tumor itself), M (distant metastasis), and N (tumor

peripheral lymph node invasion and metastasis). A differential

expression heat map of the genes was drawn (Figure 4D).

Univariate and multivariate results were consistent, indicating

that the conclusions were stable and easy to interpret.
3.5 Characteristics of immune
infiltration in LUSC

Previous research has revealed a relationship between immune

cell invasion and clinical prognosis in cancers, which may be utilized

as drug targets to enhance the prognosis of patients (15, 16).

Therefore, we quantified the tumor infiltration levels of 29

immune-related gene sets in the HR and LR cohorts. Immune

checkpoint inhibitors were reported to be effective potent

therapeutic methods against various cancers (17–19); hence, we

assessed the levels of key immune checkpoint molecules in LUSC.
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The HR cohort was markedly correlated with elevated tumor

infiltration levels in LUSC (Figures 5A, B; all P-values < 0.05);

however, the tumor infiltration levels of NK cells showed no

significant differences between the HR and LR cohorts.

Importantly, the checkpoint scores between the HR and LR cohorts

were significantly different. ssGSEA was performed on the samples

from the HR and LR cohorts; we observed marked differences in the

levels of certain immune cell infiltrates between the HR and LR

cohorts. The infiltrating cells included aDCs, B cells, CD8+ T cells,

DCs, iDCs, macrophages, mast cells, neutrophils, pDCs, T helper

cells, Tfh, Th1 cells, Th2 cells, TIL, and Tregs. There were also

significant differences in the levels of some immune-linked pathways

between the HR and LR cohorts, such as APC_co_inhibition,

APC_co_stimulation, CCR, Check-point, Cytolytic_activity, HLA,

Inflammation-promoting, MHC_class_I, Parainflammation,

T_cell_co-inhibition, T_cell_co-stimulation, Type_I_IFN_Reponse,

and Type_II_IFN_Reponse. Immune checkpoints refer to those

that inhibit cytotoxic T lymphocyte activation, or cytotoxicity, as

well as T lymphocyte (killer T cell) interaction. These findings suggest

that the prognostic model is related to the function of antigen-

presenting cells (APCs), cytotoxic T cells, immune checkpoints, and

major histocompatibility complex (MHC). Thus, the risk model

could also be an indicator of tumor immune response in LUSC.
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FIGURE 2

(A) GO enrichment analysis of the LUSC-specific DEGs. (B) The KEGG analysis of LUSC-specific DEGs. The ordinate and abscissa are the GO
pathway sorted by the P-value and gene proportion. The shades of color denote the P-value, while the dot sizes represent the number of
participating genes. (C) A PPI network containing 1,604 nodes and 14,209 edges further revealed the interactions of these LUSC-specific DEGs,
where lines represent the interactions between them, red nodes refer to elevated gene expression, and blue nodes refer to diminished gene
expression. (D) The bar plot of the top 20 DEGs in LUSC-specific DEGs.
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Immune checkpoint molecules for immune function are crucial

for TME and immunotherapy (20). To examine the potential

association between molecular levels and immune checkpoints,

we analyzed the expression of several key immune checkpoint

sites, including TNFRSF18, TNFRSF14, CD160, CD48, CD244,

TNFSF18, TNFSF4, CD28, ICOS, PD-1 (PDCD1), CD47, BTLA,

TIGIT, CD80, CD86, TIM-3 (HAVCR2), PD-L1 (CD274), CD27,

LAG3, CD276, LGALS9, CD226, CD70, TNFSF14, CEACAM1,

PVR, and CD40. As shown in Figure 5C, apart from TNFSF18,

TNFSF4, CD274, LAG3, and CD276, the levels of most immune

checkpoint genes were markedly different between the HR and LR

cohorts (Figure 5; all P-values < 0.05).
3.6 Cancer stem cell characteristics
of the risk model

Cancer stem cells serve essential functions in tumor survival,

metastasis, proliferation, and recurrence, owing to their self-renewal
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ability and production of heterogeneous tumor cells (21). MRNAsi

reflects the gene expression characteristics of stem cells. We used

mRNAsi as the stemness index to investigate the similarities

between cancer and stem cells. The index ranged from 0 to 1; the

value of mRNAsi close to 1 indicated enhanced stem cell features of

the tumor cells. Thus, the mRNAsi and EREG-mRNAsi of LUSC

samples were further computed using the OCLR algorithm and

then compared between the HR and LR cohorts. Figures 6A, B)

shows significant differences in the mRNAsi and EREG-mRNAsi

between the two cohorts (P < 0.05).
3.7 Establishment of a ceRNA
network for LUSC

LncRNAs and circRNAs are generally perceived as competing

endogenous RNAs (ceRNAs) that bind to miRNAs. ceRNA analysis

refers to the analysis of the entire ceRNA regulatory network;

usually circRNA-miRNA-mRNA analysis or lncRNA-miRNA-
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FIGURE 3

(A) The forest map of the eight risk genes (FGG, C3, FGA, CRM1, JUN, CST3, CPSF4, and HIST1H2BH) using univariate analysis. (B), (a) LASSO analysis,
where the screened characteristic gene ordinate is the gene coefficient; (b) the abscissa is the log(Lambda), and the ordinate denotes cross-
validation error. In the analysis, we identified the position with the minimum error of cross-validation. In (B), the dotted line on the left represents the
position with the minimum error of cross-validation. Based on the position (lambda.min), we determined the associated horizontal coordinate log
(Lambda) and the number of characteristic genes (shown above); we also found the optimal log(Lambda) value and the associated gene and its
coefficient in the left figure (A). (C) The risk curve and the distributions of OS status of the seven-gene TC (P < 0.05). The risk score (RS) of the TC in
high- (HR) and low-risk (LR) cohorts (a), the OS status (b), and the heat map (c) are shown. The figure above (a) is consistent with the abscissa of the
middle figure (b), indicating that RSs rose from left to right. The ordinate represents the RS and survival time, while the dotted line represents the
median RS and the corresponding number of patients. Below (c) is the gene expression heat maps in the HR and LR cohorts. (D) The OS curve
based on the HR and LR cohorts. (E) ROC curve of the seven-gene set in TCGA-LUSC training cohort (TC) 1-3-5-years OS. (F) TCGA-LUSC
validation of survival curves for concentrated HR and LR cohorts. (G) ROC curves for 1-3-5-years OS in TCGA-LUSC validation cohort (VC).
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mRNA analysis is perceived as the core of the ceRNA regulatory

network. With competitive binding of ceRNAs, such as lncRNA or

circRNA with miRNA, the transcription level of the genes regulated

by miRNAs will increase. To further elucidate the potential

regulatory mechanism of these seven prognostic DEGs in LUSC

prognosis, we generated a ceRNA network using the DE-lncRNAs

and prognostic DEGs. The target miRNAs of DE-lncRNAs were

predicted using the miRcode database, and the target miRNAs of

prognostic DEGs were predicted using the miRanda database. A

ceRNA network containing 19 lncRNAs, 50 miRNAs, and 7

prognostic DEGs demonstrated the molecular mechanism of

LUSC-specific DEGs in LUSC prognosis (Figure 7).
3.8 FGG and Clinical Parameters in
patients with LUSC

The prognostic values of FGG, C3, FGA, JUN, CST3, CPSF4, and

HIST1H2BH7 genes in LUSC in the TCGA database suggest that

they may play a role as key risk factors in tumors (Supplementary

Figure 7). The expressions of seven prognostic genes in human LUSC

cell lines NCI-H520 and LTEP-s were detected using q-PCR; FGG

was significantly highly expressed in both LUSC cell lines

(Supplementary Figure 8). We also examined the expression of

FGG in surgically collected, paired, LUSC samples, and adjacent

normal tissues from 6 patients. Remarkably, all LUSC specimens had

markedly increased FGG protein levels compared with matched

adjacent normal tissues (Figure 8). Our clinical observations reveal

that FGG is significantly hyper-expressive in LUSC patient samples,

further demonstrating the clinical value of FGG in LUSC.
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3.9 FGG correlates with tumor
progression, immune infiltration,
and stem index in LUSC

Immunofluorescence showed that FGG was expressed in the

nucleus of LUSC (Figures 9A, B). To demonstrate the biological

function of FGG in LUSC cells, NCI-H520 (Figures 9C, E) and

LTEP-s cell lines (Figures 9D, G) with FGG knockdown were

successfully constructed.

Our results suggest that FGG can affect the tumor process of LUSC

cells, as shown by the proliferation (Figures 9F, H), cloning (Figures 9I,

J), invasion (Figures 9K, L), and migration (Figures 9M, N) of NCI-

H520 and LTEP-s being significantly inhibited following FGG

knockdown. In addition, the result of western blot showed that the

expression of E-cadherin was increased while that of N-cadherin and

VIMENTIN were decreased following FGG knockdown, which also

corresponded to the inhibition of migration and invasion (Figures 9O,

P). Subsequently, we evaluated the scores of 22 kinds of tumor immune

cell infiltration in LUSC patients according to the expression of FGG

and found that FGG was significantly correlated with 10 kinds of

immune cell infiltration, including M1 macrophages (Figures 10A, B).

In vitro Transwell experiments showed that the ability of NCI-H520

(Figure 10C) and LTEP-s cell lines (Figure 10D) with low FGG to

recruit M1 mononuclear macrophages was significantly down-

regulated. After FGG knockdown, KLF4, Nanog, CD44, and SOX2

in NCI-H520 cells were significantly decreased, while CD133 showed

no significant changes (Figures 10E, F). After FGG knockdown, KLF4,

Nanog, CD44, and SOX2 in NCI-H520 cells were significantly

decreased, while CD133 showed no significant changes (Figure 10E).

After FGG downregulation, the expressions of CD44 and CD133 in
B
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FIGURE 4

(A) Univariate analysis. (B) Multivariate analysis. (C) ROC curves of multiple indicators. (D) Heat maps of different clinicopathological features of
TCGA-LUSC.
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LTEP-s cells were significantly decreased, while no significant changes

in KLF4, Nanog, and SOX2 were observed (Figure 10F). These results

indicate that FGG affected the tumor progression, immune infiltration,

and stem index of LUSC cells.
4 Discussion

LUSC is a subtype of NSCLC and accounts for nearly 40% of all

lung cancers. Early detection and the prognostic assessment of

LUSC remain challenging, hence the poor 5-year survival rate of

patients (22). Recent studies have improved the prognosis
Frontiers in Immunology 11
prediction for LUSC patients, focusing on biomarkers. For

example, Shi et al. investigated DNA methylation profiling and

proposed potential diagnostic biomarkers for LUSC (23). Chen

et al. investigated the roles of IRGs in the deterioration of lung

cancer and indicated the distinction between LUAD and LUSC

from the perspective of the immune response (24). Liao et al.

identified biomarkers with cancer stem cell characteristics in LUSC

(14). To date, the prognostic gene signatures for prognostic

prediction of LUSC are scarce and warrant further investigations.

Several studies have proposed prognostic markers for survival

prediction in patients with LUSC. Zhang et al. suggested that

IRGPI could be used as a prognostic marker (25), while Li et al.
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FIGURE 5

(A) Box plot of immune infiltrating cells in the high- (HR) and low-risk (LR) cohorts. The HR cohort was strongly associated with elevated tumor
infiltration levels in LUSC (P < 0.05). (B) Box plot of tumor infiltrated pathway. (C) Box plot of immunoassay sites in the HR and LR cohorts. The levels
of the remaining immune checkpoint genes were markedly different between the HR and LR cohorts (P-values < 0.05); ns, not significant. (*P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001).
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constructed an mRNA signature to predict the outcomes of patients

with LUSC (26). Liu et al. have identified an miRNA signature with

potential clinical implications in the outcome prediction of LUSC

(27). Indeed, several lncRNAs, such as VPS9D1-AS1 and MALAT-

1, are correlated with the survival of LUSC patients (28, 29). Huang

et al. reported a nine-long non-coding RNA signature for prognosis

prediction of patients with LUSC (7). However, no prognostic

indicators of LUSC have been established based on tumor

progression, immune infiltration, and stem index analysis.

Recent studies have found that LUSC differs from LUAD in

terms of genomic, epigenetic, CSC stemness, and TME

characteristics. According to previous research, CSCs may lead to
Frontiers in Immunology 12
cancer recurrence and drug resistance (30, 31). The TME is a

mutually adaptive environment in which tumor cells escape

immunological surveillance. Tumor progression involves crosstalk

between CSCs and the TME (32, 33), such as the induction of CSCs

in EMT (34) and the interaction of angiogenesis and components of

the TME (35). Herein, we adopted a comprehensive perspective of

cancer biology based on tumor progression, TME, and CSC index

for a better understanding of LUSC as an independent NSCLC from

different dimensions. We recognized the importance of the

particularly expressed genes in LUSC based on the TCGA

database and DEGs in HR and LR cohorts; from this, we

recognized the functions of independent genes as potential
FIGURE 7

ceRNA network. Rectangles, ellipses, and triangles represent the miRNAs, lncRNAs, and mRNAs of the risk model genes, respectively.
BA

FIGURE 6

(A) Boxplots of mRNAsi in the high- (HR) and low-risk (LR) LUSC patients. (B) Boxplots of EREG-mRNAsi in the HR and LR LUSC patients. (*P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001).
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predictors of tumor invasion, metastasis, tumor stem cell

characteristics, and immune cell infiltration. Seven prognostic

genes were varied in LUSC and were associated with the TNM

stage and prognosis; these genes were FGG, C3, FGA, JUN, CST3,

CPSF4, and HIST1H2BH. FGG, C3, FGA, JUN, and CST3 were

associated with poor outcomes in LUSC patients, whereas CPSF4

and HIST1H2BH served as positive prognostic markers in

LUSC patients.

In terms of clinicopathological features, the seven-gene

biomarkers showed differences in tumor metastasis and invasion,

and the significant differences between T1 and T2 of the T stage and

N0 and N1 of the N stage suggested that the modification occurred

during the early stage of tumor disease; however, the factors of

dabbling were limited, such as the lack of the status of smoking

status, driver factors, ORR of the various chemotherapy, and

immune checkpoint blockade subgroups. Kaplan–Meier analysis

showed that LUSC patients in the LR group exhibited significantly

higher OS than those in the HR group, while ROC curve analysis

results showed that this gene profile could effectively predict the OS

of LUSC. Subsequently, our independent prognostic value analysis

showed that protective genes were highly expressed in the low-risk

group, while the risk genes were highly expressed in the high-risk

group, indicating stable results. Moreover, the ROC curve showed

that RS could be used as an independent prognostic factor
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effectively predicting LUSC outcomes. We also analyzed the

relationships between HR and LR cohorts, immunoinfiltrating

cells, and immune pathways, and showed that HR patients

exhibited significantly elevated levels of tumor cell immune

infiltration and that the molecular expression of immune

checkpoint genes significantly differed between HR and LR patients.

Next, we analyzed the stem cell characteristics of the model and

showed that mRNA was associated with prognosis and relevance;

significant differences were noted in mRNAsi and EREG-mRNAsi

between HR and LR patients, providing new insights into the

clinical features, immune response, and TME of tumors based on

the dry index. Finally, we constructed a ceRNA network containing

19 lncRNAs, 50 miRNAs, and 7 prognostic DEGs, demonstrating

the prognostic value of novel biomarkers for Lusc-specific DEGs.

The prediction of the risk prognostic model constructed can

potentially provide more reliable theoretical support for clinical

application. However, bioinformatics is only a short practical

perspective to this goal; therefore, we conducted specific

molecular studies on prognostic genes. Based on the risk model

constructed above, combined with RT-qPCR assay and survival

analysis of the TCGA database, we screened LUSC-specific

prognostic genes and found that FGG was closely correlated with

LUSC results in univariate Cox analysis (P=0.000427708), and

mRNA levels of FGG were stably expressed in NCI-H520 and
FIGURE 8

Representative images from immunohistochemical staining of FGG in lung cancers (n = 6) and normal tissues (n = 6). Scale bars: 100 mm and 50 mm.
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LTEP-s cells and significantly up-regulated compared with normal

airway epithelial cells. Therefore, their roles in tumor progression,

immunoinfiltration, and dry characteristics were further analyzed.

FGG is the g-chain of fibrinogen, a large, complex glycoprotein

with a total molecular mass of approximately 340 kDa, comprising

three pairs of polypeptide chains: Aa (encoded by the FGA gene), Bb
(FGB), and g (36). FGG has a conserved globular domain, gC, at the
COOH terminus, which is a major integrin binding site for
Frontiers in Immunology 14
fibrinogen. Yokoyama et al. found that the C-terminal region of

FGG, as the primary integrin binding site of fibrinogen, participated

in the process of thrombosis, angiogenesis, and inflammation (37,

38). Nobuaki Akakura et al. found that isolated gC and its mutant

gC399tr induce endothelial cell apoptosis, and recombinant soluble

gC399tr inhibited tumor growth, intratumoral vascular

development, and metastasis in vivo (39). Previous studies have

shown that fibrinogenemia, as a prognostic factor (40–42), is often
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FIGURE 9

Expression locations of FGG detected using immunofluorescence in (A) NCI-H520 and (B) LTEP-s. FGG knockdown was determined using western
blotting in (C) NCI-H520 and (D) LTEP-s cells. FGG knockdown was determined using Q-PCR in (E) NCI-H520 and (G) LTEP-s cells. CCK-8 assay
was used to detect the proliferation of (F) NCI-H520 and (H) LTEP-s cells Viability line graph (I) NCI-H520 and (J) LTEP-s cell colony formation
result. The result of the invasion of (K) NCI-H520 and (L) LTEP-s cells. The results of Wound Healing and migration of (M) NCI-H520 cells and (N)
LTEP-s cells. Western blotting assay showing EMT markers N-cadherin, Vimentin, and E-cadherin expression following FGG knockdown in (O) NCI-
H520 and (P) LTEP-s cells. The significant differences were analyzed using GraphPad Prism t-test, n=3 (*P<0.05, **P<0.01, ***P<0.001,
****P<0.0001).
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observed in patients with malignant tumors and is closely related to

tumor invasion, metastasis (43–45), angiogenesis (46), and tumor

growth processes (47); further, its degradation products with

carcinogenesis have been reported in tumors (41). However,

Nagata et al. found that frameshift mutations in FGG led to

hypofibrinemia, indicating that FGG was involved in the

regulation of fibrinogen secretion (48). In addition, FGG inhibits

platelet adhesion to fibrinogen by interacting with hepatitis B

splicing protein (49). Dysregulation of FGG has also been reported

in many malignant tumor types, such as liver cancer (50), stomach

cancer (40), and prostate cancer (51), underscoring its potential
Frontiers in Immunology 15
relevance as a tumor marker. FGG is an important adverse

prognostic factor for gastric cancer (35). Another study showed

that serum FGG levels predicted the progression of prostate cancer

(51). Additionally, FGG is thought to distinguish cancer from

normal sera as a potential tumor marker in pancreatic cancer (52).

Additional data show the possibility of urine FGG levels as a

potential diagnostic marker for NSCLC (53). These findings

suggest that FGG could hold diagnostic, prognostic, and

therapeutic implications in cancer.

Our bioinformatics modeling demonstrated that FGG as a risk

prognosticator is of significant research value in LUSC, and the
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FIGURE 10

(A) Pearson’s correlation coefficient of FGG with 22 immune cell infiltration scores in LUSC was calculated using the corr.test function of the R
package psych (version 2.1.6), and 10 significantly correlated immune infiltration scores, including macrophages, were identified, (B) for further
individual correlations plotted for FGG with M0, M1, and M2 macrophages, respectively (p=0.04, r=0.09, p=1.1e-03, r=0.15, p=0.07, r=0.09).
Tranwell shows the infiltration of THP-1of (C) NCI-H520 cells and (D) LTEP-s cells. Western blotting assay showing the expression of stemness
marker genes SOX2, Nanog, CD133, CD44, KLF4 following FGG knockdown in (E) NCI-H520 and (F) LTEP-s cells. "ns" No Significant.
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results of subsequent in vitro experiments are consistent with

reports of abnormal expression of FGG mRNA in various

cancers. Knockdown of FGG caused functional changes in LUSC

tumor progression at the tumor cell level, significantly inhibited the

proliferation and clonogenesis ability of NCI-H520 and LTEP-s

cells, and blocked the cell cycle in the S phase (Supplementary

Figure 9). It also inhibited the invasion and migration ability of

tumor cells, by reducing the EMT process and promoting the early

apoptosis of tumor cells. In terms of dry characteristics, FGG down-

regulation decreased the expressions of KLF4, Nanog, CD44, and

SOX2 in NCI-H520 cells, and the expressions of CD44, Nanog, and

CD133 in LTEP-s cells. In terms of immune cell infiltration, the

expression of FGG in LUSC tissues was significantly correlated with

M0 and M1 type macrophages, while knockdown of FGG in LUSC

cells significantly affected the degree of immune infiltration of M1

type macrophages (Supplementary Figure 10) formed by

polarization of THP-1 cells, suggesting that FGG plays a specific

role in the immune infiltration of LUSC.

In summary, our study successfully constructed a LUSC-specific

DEGs based risk and prognosis model and verified the reliability of

the risk model from the data model. According to the prognostic

risk factors, including tumor invasion, metastasis, survival, immune

infiltration, and tumor stem cell-related genes, DEGs in LUSC were

used to determine associations between functional genes and tumor

progression, immune invasion, and dry index. However, this

prognostic model has some limitations, such as the relatively

simple database and limited factors analyzed (such as lack of

smoking status, drivers, ORRs of various chemotherapy

treatments, and subsets of immune checkpoint blocking).

Subsequently, in vitro studies of the LUSC-specific prognostic

marker FGG will provide deeper insights into LUSC. As a risk

factor in this prognostic model, FGG significantly inhibited the

progression of LUSC tumor cells after knockdown and reduced the

expression of dry marker genes and the infiltration level of M1 type

macrophages, suggesting that FGG is a potential biomarker for

independent poor prognosis of LUSC to identify LUSC patients

with poor clinical outcomes and that it may play specific roles in dry

maintenance and immune infiltration. However, the specific

mechanism underlying the changes in tumor progression

warrants further study.
5 Conclusion
This study established a seven-gene profile (FGG, C3, FGA,

JUN, CST3, CPSF4, and HIST1H2BH) prognostic stratification

system demonstrated in LUSC based on Tumor Progression,

Immune Infiltration, and Stem Index. In vitro experiments

confirmed that DEGs FGG could be independent prognostic

biomarkers of LUSC promoting cell proliferation, migration,

invasion, THP-1 cell infiltration, and stem cell maintenance.
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