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The bladder cancer immune
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context of response to immune
checkpoint inhibition
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Treatment with neoadjuvant cisplatin-based chemotherapy followed by radical

cystectomy is the default treatment for muscle-invasive bladder cancer (BC).

However, with the encouraging results of immune checkpoint inhibitiors (ICI)

directed against PD-1/PD-L1 and CTLA-4 in recent years, the treatment

landscape of BC is rapidly changing. In addition, it is becoming clear that the

effect of ICI is highly dependent on the interaction between tumor cells and the

tumor immune micro-environment (TIME). Different immune cells are involved

in an anti-tumor response in BC. Cytotoxic CD8+ T-cells are the main effector

cells, aided by other immune cells including other T-cells, B-cells and pro-

inflammatory macrophages. As part of the ongoing anti-tumor immune

response, lymphocytes aggregate in clusters called tertiary lymphoid structures

(TLS). Tumor mutational burden (TMB) and infiltration of immune cells into the

tumor are both important factors for establishing an anti-tumor immune

response. In contrast, transforming growth factor beta (TGF-b) signaling in

cancer-associated fibroblasts (CAFs) prevents infiltration of lymphocytes and

potentially has an immunosuppressive effect. In conclusion, the effect of ICI

seems to be reliant on a combination of tumor-intrinsic and TIME-related

parameters. More research is needed to fully understand the underlying

biological mechanisms to further improve patient care.

KEYWORDS

bladder cancer, immune checkpoint inhibition, immune micro-environment, tertiary
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Introduction

Urothelial carcinoma of the bladder, more commonly described as bladder cancer

(BC), is the 10th most common cancer worldwide (1, 2). In approximately 25% of BC cases,

patients present with muscle-invasive disease, characterized by invasion of tumor cells into

the muscularis propria layer of the urothelium. Standard treatment for muscle-invasive

bladder cancer (MIBC) consists of radical cystectomy (RC) including removal of the
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locoregional lymph nodes (3–5). However, overall survival (OS)

and recurrence-free survival (RFS) after surgery alone are still poor

(6, 7).

Pre-treating patients with neoadjuvant cisplatin-based

chemotherapy (NAC) leads to a pathological complete response

(pCR) rate of 20-40% after RC (8). OS is improved by 5-8%

compared to patients treated with a direct cystectomy with most

benefit for patients that have a pCR after NAC (9).

Treatment with NAC has been the default treatment for MIBC

for many years. However, this might change given the encouraging

clinical efficacy of immune checkpoint inhibitors (ICI). It is

becoming apparent that treatment with ICI is not a one size fits

all treatment, but its efficacy is instead highly dependent on

characteristics of the tumor and the tumor immune micro-

environment (TIME). Here, we will review the research on ICI in

MIBC and its reciprocal effects on the TIME.
Immune checkpoint inhibitors

The physiological role of immune checkpoints is to maintain

self-tolerance and regulate the extent and duration of inflammatory

processes. However, these pathways are used by tumors in an

attempt to escape from an inevitable immune response (10, 11).

The mechanism of action of ICI is complex and dependent on pre-

existing factors in the TIME such as the abundance and activation

state of CD8+ T-cells, the presence of other immune cells and local

cytokine signaling. In addition, treatment with ICI directly

influences and changes the TIME, resulting in a delicate interplay.

The best-known immune checkpoints are cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and programmed cell death protein

1 (PD-1) together with its ligands programmed death-ligand 1 and

2 (PD-L1 and PD-L2). However, more immune checkpoints are

currently being investigated, including TIGIT, TIM3 and

LAG3 (12).

CTLA-4 is expressed by T-cells, where it competes with CD28

for binding with CD80 or CD86, expressed primarily by antigen-

presenting cells. Binding with CD28 elicits a signaling cascade

eventually leading to T-cell activation (11, 13). Instead, binding of

CTLA-4 to CD80 or CD86 results in an inhibitory response. By

blocking the CTLA-4 receptor with monoclonal antibodies such as

ipilimumab and tremelimumab, this inhibitory response can be

negated, allowing for binding of CD80 or CD86 with CD28 to co-

stimulate T-cell activation (11, 14). Ipilimumab and tremelimumab

have been used in numerous clinical trials as monotherapy and in

combination with other ICI. Both ipilimumab and tremelimumab

have been approved by the U.S. Food and Drug Administration

(FDA) and the European Medicines Agency (EMA) for clinical use,

however neither drug have been approved as a standard treatment

option for urothelial cancer specifically.

PD-1 is expressed by T-cells during initial antigen-mediated

activation (15). By engaging its ligands PD-L1 and PD-L2, it

functions to counter the activating signals after antigen

stimulation, contributing to self-tolerance under physiological

conditions (16–18). The PD-1 pathway is commonly exploited by

tumor cells in order to evade the immune system. By inhibiting this
Frontiers in Immunology 02
pathway with monoclonal antibodies, an effective immune-

mediated anti-tumor response can be mounted (19, 20). Multiple

monoclonal inhibitory antibodies have been developed that target

either PD-1 (nivolumab, pembrolizumab, cemiplimab

and dostarlimab) or PD-L1 (durvalumab, avelumab and

atezolizumab). These antibodies have been tested elaborately in

multiple cancer types, including urothelial cancer, and are all

approved by the FDA and EMA for clinical use.
Immune checkpoint inhibition
in the clinic

Standard first-line therapy for metastatic urothelial cancer

(mUC) is cisplatin-based combination chemotherapy (21, 22).

Carboplatin can be considered as an alternative for patients

ineligible for cisplatin (21, 22). Following the success in other

cancer types, such as melanoma, renal cell carcinoma and non-

small cell lung cancer (NSCLC), ICI were tested in multiple trials in

platinum-refractory mUC (Table 1) (23, 24). An improved OS was

observed for pembrolizumab compared to chemotherapy in

platinum-refractory mUC in the KEYNOTE-045 trial (23). These

results led to the approval of pembrolizumab for the treatment of

platinum-refractory mUC. The IMvigor211 trial explored

atezolizumab as second-line therapy in mUC and showed

improved OS for the intention-to-treat (ITT) population. However,

this trial did not meet its primary endpoint of improved OS in

patients with tumors with high PD-L1 expression (24).

Encouraged by these first results of ICI, a number of phase 3

trials were initiated to investigate the effect of first-line treatment

with anti-PD-1/PD-L1 compared to standard platinum-based

chemotherapy (Table 1). These included the KEYNOTE-361

(pembrolizumab), DANUBE (durvalumab) and the IMvigor130

(atezolizumab) trials. Unfortunately, no meaningful improvement

in clinical benefit for anti-PD-1/PD-L1 monotherapy versus

standard first-line platinum-based chemotherapy treatment was

observed (25, 26, 42). Both the KEYNOTE-361 and IMvigor130

trials also tested the effect of combined chemotherapy and ICI in

this setting. Comparable to treatment with ICI monotherapy, the

combination treatment did not confer any benefit over standard

treatment with chemotherapy in the ITT analysis (25, 27). The

results of another phase 3 trial (CheckMate-901) are still pending.

In this trial the investigators assessed the effect of standard

cisplatin-based chemotherapy together with nivolumab. A 2023

press release reported a statistically significant improvement in

progression-free survival (PFS) and OS for cisplatin/gemcitabine

plus nivolumab, in comparison with cisplatin/gemcitabine alone.

Interestingly, a subgroup analysis of the IMvigor130 study

suggested that the combination of cisplatin-based chemotherapy

with atezolizumab had better synergy than the carboplatin-based

combination (27), potentially explaining this phenomenon. The full

results of the CheckMate-901 trial are pending and are required to

better understand the discrepancies between these results and the

results from the other first-line trials with ICI.

The DANUBE (durvalumab plus tremelimumab) and

CheckMate-901 (ipilimumab plus nivolumab) trials also evaluated
frontiersin.org
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TABLE 1 Overview of clinical trials assessing immune checkpoint inhibitors in bladder cancer.

Trial reference
(ClinicalTrials.gov ID)

Trial title
Therapeutic
antibody
used

Primary findings Reference

KEYNOTE-045 (NCT02256436)

A Study of Pembrolizumab (MK-
3475) Versus Paclitaxel,

Docetaxel, or Vinflunine for
Participants With Advanced

Urothelial Cancer (MK-3475-045/
KEYNOTE-045)

Pembrolizumab

Pembrolizumab was associated with significantly
longer OS (by approximately 3 months) than

chemotherapy as second-line therapy for platinum-
refractory mUC.

(23)

IMvigor211 (NCT02302807)

A Study of Atezolizumab
Compared With Chemotherapy
in Participants With Locally
Advanced or Metastatic
Urothelial Bladder Cancer

[IMvigor211]

Atezolizumab

Atezolizumab was not associated with significantly
longer OS than chemotherapy in patients with

platinum-refractory mUC overexpressing PD-L1 (IC2/
3).

(24)

KEYNOTE-361
(NCT02853305)

Study of Pembrolizumab With or
Without Platinum-based

Combination Chemotherapy
Versus Chemotherapy Alone in
Urothelial Carcinoma (MK-3475-

361/KEYNOTE-361)

Pembrolizumab

The addition of pembrolizumab to first-line platinum-
based chemotherapy did not significantly improve
efficacy and should not be widely adopted for
treatment of advanced urothelial carcinoma.

(25)

DANUBE (NCT02516241)

Study of MEDI4736
(Durvalumab) With or Without
Tremelimumab Versus Standard

of Care Chemotherapy in
Urothelial Cancer

Durvalumab with
or without

tremelimumab

This study did not meet either of its coprimary
endpoints of OS compared between the durvalumab
monotherapy versus chemotherapy groups in the
population of patients with high PD-L1 expression
and between the durvalumab plus tremelimumab

versus chemotherapy groups in the ITT population.

(26)

IMvigor130 (NCT02807636)

Study of Atezolizumab as
Monotherapy and in

Combination With Platinum-
Based Chemotherapy in

Participants With Untreated
Locally Advanced or Metastatic

Urothelial Carcinoma
(IMvigor130)

Atezolizumab

Addition of atezolizumab to platinum-based
chemotherapy as first-line treatment prolonged PFS in
patients with mUC. The final OS analysis showed a
non-statistically significant OS benefit (HR 0.85,
p=0.023). OS for atezolizumab monotherapy vs

chemotherapy was negative for the ITT population.
An exploratory analysis showed a benefit for

atezolizumab monotherapy in the PD-L1–high (IC2/3)
group.

(27)
ASCO-GU

2023

CheckMate-901
(NCT03036098)

Study of Nivolumab in
Combination With Ipilimumab or
Standard of Care Chemotherapy
Compared to the Standard of
Care Chemotherapy Alone in
Treatment of Participants With

Untreated Inoperable or
Metastatic Urothelial Cancer

(CheckMate901)

Nivolumab with
or without
ipilimumab

(2022): Nivolumab plus ipilimumab did not meet the
primary endpoint of improved overall survival (OS) in
patients with tumors with high PD-L1 expression;

(2023): nivolumab in combination with cisplatin-based
chemotherapy followed by nivolumab monotherapy
demonstrated statistically significant benefits in OS

and PFS.

2022/2023
BMS press
release

CheckMate-274 (NCT02632409)

An Investigational Immuno-
therapy Study of Nivolumab,

Compared to Placebo, in Patients
With Bladder or Upper Urinary
Tract Cancer, Following Surgery

to Remove the Cancer
(CheckMate 274)

Nivolumab

Disease-free survival was longer with adjuvant
nivolumab than with placebo in the ITT population
and among patients with a PD-L1 expression level of
1% or more in patients with high-risk muscle-invasive
urothelial carcinoma who were treated with radical

surgery.

(28)

IMvigor010 (NCT02450331)

A Study of Atezolizumab Versus
Observation as Adjuvant Therapy
in Participants With High-Risk
Muscle-Invasive Urothelial

Carcinoma (UC) After Surgical
Resection (IMvigor010)

Atezolizumab
The trial did not meet its primary endpoint of

improved disease-free survival in patients receiving
adjuvant atezolizumab over observation.

(29)

JAVELIN Bladder 100
(NCT02603432)

A Study Of Avelumab In Patients
With Locally Advanced Or
Metastatic Urothelial Cancer
(JAVELIN Bladder 100)

Avelumab
Maintenance avelumab plus best supportive care
significantly prolonged OS, as compared with best

supportive care alone, among patients with urothelial
(30)

(Continued)
F
rontiers in Immunology
 03
 frontiersin.org

https://doi.org/10.3389/fimmu.2023.1235884
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


van Dorp and van der Heijden 10.3389/fimmu.2023.1235884
TABLE 1 Continued

Trial reference
(ClinicalTrials.gov ID)

Trial title
Therapeutic
antibody
used

Primary findings Reference

cancer who had disease that had not progressed with
first-line chemotherapy.

PURE-01 (NCT02736266)
Neoadjuvant Pembrolizumab for

Muscle-invasive Urothelial
Bladder Carcinoma

Pembrolizumab
Neoadjuvant pembrolizumab resulted in 42% of
patients with pT0 and was safely administered in

patients with MIBC.
(31)

ABACUS (NCT02662309)
Preoperative MPDL3280A in
Transitional Cell Carcinoma of

the Bladder (ABACUS)
Atezolizumab

The pCR rate was 31% (95% confidence interval: 21–
41%), achieving the primary efficacy endpoint.

(32)

Preoperative durvalumab and
tremelimumab (NCT02812420)

Durvalumab and Tremelimumab
in Treating Patients With Muscle-
Invasive, High-Risk Urothelial
Cancer That Cannot Be Treated
With Cisplatin-Based Therapy

Before Surgery

Durvalumab with
tremelimumab

The primary endpoint was safety and we observed 6
of 28 patients (21%) with grade ≥3 immune-related

adverse events. We also observed pathological
complete response of 37.5% of patients who

completed surgery (n = 24).

(33)

NABUCCO (NCT03387761)
Neo-Adjuvant Bladder Urothelial

Carcinoma COmbination-
immunotherapy (NABUCCO)

Nivolumab with
ipilimumab

All patients were evaluable for the study endpoints
and underwent resection, 23 (96%) within 12 weeks
(primary endpoint; feasibility). Grade 3-4 immune-
related adverse events occurred in 55% of patients.
Eleven patients (46%) had a pCR, meeting the

secondary efficacy endpoint.

(34)

NABUCCO 2
(NCT03387761)

Neo-Adjuvant Bladder Urothelial
Carcinoma COmbination-

immunotherapy (NABUCCO)

Nivolumab with
ipilimumab

A pCR was observed in six (43%) patients in cohort
2A (ipi 3 mg/kg) and in one (7%) patient in cohort 2B
(ipi 1 mg/kg). Absence of plasma ctDNA correlated

with pCR.

(35)

CheckMate-032 (NCT01928394)

A Study of Nivolumab by Itself or
Nivolumab Combined With
Ipilimumab in Patients With
Advanced or Metastatic Solid

Tumors

Nivolumab with
or without
ipilimumab

Objective response rate was 25.6%, 26.9%, and 38.0%
in the NIVO3, NIVO3+IPI1, and NIVO1+IPI3 arms,
respectively. Grade 3 or 4 treatment-related adverse
events occurred in 21 (26.9%), 32 (30.8%), and 36
(39.1%) patients treated with NIVO3, NIVO3+IPI1,

and NIVO1+IPI3, respectively.

(36)

EV-101 (NCT02091999)

A Study of Escalating Doses of
ASG-22CE Given as

Monotherapy in Subjects With
Metastatic Urothelial Cancer and
Other Malignant Solid Tumors

That Express Nectin-4

Enfortumab
Vedotin

Single-agent EV was generally well tolerated and
provided clinically meaningful and durable responses

in patients with mUC.
(37)

EV-301 (NCT03474107)

A Study to Evaluate Enfortumab
Vedotin Versus (vs)

Chemotherapy in Subjects With
Previously Treated Locally
Advanced or Metastatic

Urothelial Cancer (EV-301)

Enfortumab
Vedotin

Enfortumab vedotin significantly prolonged survival as
compared with standard chemotherapy in patients
with locally advanced or mUC who had previously

received platinum-based treatment and a PD-1 or PD-
L1 inhibitor.

(38)

EV-103 (NCT03288545)

A Study of Enfortumab Vedotin
Alone or With Other Therapies
for Treatment of Urothelial

Cancer (EV-103)

Enfortumab
Vedotin and

pembrolizumab

Enfortumab vedotin plus pembrolizumab showed a
manageable safety profile and promising confirmed
objective response rate in cisplatin-ineligible pts with
locally advanced or mUC; activity was consistently
observed across a range of pre-specified subgroups

including those with poor prognosis.

(39, 40)

EV-302 (NCT04223856)

Enfortumab Vedotin and
Pembrolizumab vs.

Chemotherapy Alone in
Untreated Locally Advanced or

Metastatic Urothelial Cancer (EV-
302)

Enfortumab
Vedotin and

pembrolizumab
Pending (41)
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the combination of PD-1/PD-L1 inhibition with CTLA-4 inhibition

in mUC (26, 42). The DANUBE trial did not reach its primary

endpoint(s). However, a numerical difference can be observed in

favor of combined treatment with durvalumab plus tremelimumab

compared to durvalumab monotherapy, especially in the PD-L1+

population (26). The formal results of the CheckMate-901 trial are

still pending, however, the trial failed to meet one of its (co)primary

endpoints of improved OS for ipilimumab plus nivolumab in

patients with tumors with high PD-L1 expression, according to a

2022 press release by Bristol Myers Squibb.

In defining the optimal treatment setting, some recent trials

suggest there is a place for ICI in the adjuvant setting in MIBC

(Table 1). Two phase 3 trials have explored the efficacy and clinical

benefit of adjuvant nivolumab (CheckMate-274) and atezolizumab

(IMvigor010) in patients with residual muscle-invasive disease after

RC (28, 29). Only the trial with nivolumab met its primary endpoint

of improved RFS in the ITT population, as well as in the PD-L1high

population (28). However, as PD-1/PD-L1 inhibition is approved as

second-line treatment for mUC, it is possible that the group that did

not receive adjuvant nivolumab will eventually benefit from

checkpoint blockade in a later disease stage, as the disease would

still be naïve to exposure to checkpoint inhibition. Therefore, OS

data are needed to fully assess clinical benefit.

Interestingly, clinical benefit in the CheckMate-274 trial was

most prominent in patients that were previously treated with NAC.

A potentially similar phenomenon has also been observed in the

phase 3 JAVELIN Bladder 100 trial, where patients were treated

with avelumab as maintenance therapy after platinum-based

treatment in the metastatic setting (30). Patients treated with

avelumab had an improved OS compared to the group receiving

best supportive care (30). In addition to trials investigating the

feasibility in the adjuvant or metastatic setting or as maintenance

therapy, a number of phase 1/2 trials investigated ICI in the

neoadjuvant setting, primarily to offer an alternative for patients

who refused cisplatin or were ineligible (Table 1). Preoperative

pembrolizumab was investigated in the PURE-01 trial (31, 43).

Patients with cT2-4N0 BC were treated with three cycles of

pembrolizumab, followed by RC. A pCR rate of 38.5% was

observed (31, 43). In the ABACUS trial, preoperative

atezolizumab was investigated in cT2-4aN0 BC patients (32). This

trial yielded a response rate of 31% (32).

Following up on the success of these trials, two neoadjuvant

trials were initiated using a combination of CTLA-4 inhibition and

PD-1/PD-L1 inhibition (33, 34). In the NABUCCO trial, 24 patients

with locally advanced BC were treated with a combination of

ipilimumab plus nivolumab followed by radical surgery (34).

Here, a pCR was observed in 46% of patients. In addition, 58% of

patients had no remaining residual muscle-invasive disease after

surgery (ypT0/Tis/Ta/TaN0) (34).

The group of Gao and colleagues conducted a trial with two

cycles of tremelimumab plus durvalumab in locally advanced BC. A

pCR was observed in 38% of patients that underwent surgery, which

is comparable to platinum-based chemotherapy regimens in locally

advanced disease (8, 33).

In addition to the results observed in the NABUCCO trial,

encouraging results with preoperative ipilimumab plus nivolumab
Frontiers in Immunology 05
have been observed in multiple other tumor types (44–48). These

studies suggested a lower dose of ipilimumab may be sufficient in

the non-metastatic setting. To find the optimal dose of ipilimumab

and nivolumab in locally advanced BC, patients in cohort 2 of the

NABUCCO trial were randomized to receive either two cycles of 3

mg/kg ipilimumab plus 1 mg/kg of nivolumab or two cycles of 1

mg/kg ipilimumab plus 3 mg/kg of nivolumab in both arms

followed by one cycle of 3 mg/kg nivolumab and RC (35). A pCR

was observed in 43% of patients treated with ipilimumab 3 mg/kg in

combination with nivolumab, similar to the results from cohort 1 of

the NABUCCO trial. In contrast, a pCR was observed in only 7% of

patients treated with ipilimumab 1 mg/kg in combination with

nivolumab (35).

Similarly, in the CheckMate-032 trial, patients with advanced

BC were treated with either nivolumab monotherapy, or in

combination with ipilimumab with different dose combinations

(36, 49). While this trial was not properly powered to detect a

difference in OS, a higher objective response rate was observed for

patients treated with plus ipilimumab 3 mg/kg plus nivolumab 1

mg/kg (38.0%) compared to patients treated with ipilimumab 1 mg/

kg plus nivolumab 3 mg/kg (26.9%) or nivolumab monotherapy

(25.6%) (49).

Taken together, the data in BC suggests that a high dose of

CTLA-4 blockade in combination with PD-1/PD-L1 blockade

yields better clinical responses compared to a low dose of CTLA-

4 blockade. For the locally advanced setting, this could be an

alternative treatment especially for cisplatin-ineligible patients.
The tumor immune micro-
environment in bladder cancer

Across different tumor types, there are certain aspects that

impact the general immunogenicity of tumors and the general

efficacy of ICI. Tumor mutational burden (TMB) is a metric to

indicate the average number of mutations in the DNA of tumor cells

compared to healthy cells. Only a small fraction of these mutations

are ‘driver’ mutations, while the majority are ‘passenger’ mutations

with no direct function in tumor development or progression (50,

51). Potentially, these ‘passenger mutations’ generate aberrant

proteins which can be detected by the immune system as

neoantigens, triggering an immune response directed against the

tumor (52, 53). TMB is a surrogate measure of neoantigen load,

which allows it to serve as a predictive biomarker for general

immunogenicity and tendency of tumors to respond to ICI (54–

56). TMB varies per individual tumor. However, different tumor

types have a different average TMB. Melanoma and other skin

cancers typically have the highest TMB. Although not as high as

melanoma, average TMB in BC is relatively high, similar to NSCLC

(57, 58).

TMB has been investigated in a number of BC trials mentioned

earlier. In the preoperative setting, it was positively associated with

response in the PURE-01 trial (pembrolizumab), and numerically

higher in responders compared to non-responders in the ABACUS

trial (atezolizumab), NABUCCO trial (ipilimumab plus nivolumab)

and in the preoperative trial with tremelimumab and durvalumab
frontiersin.org
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(31–34). In addition, changes in the TMB after treatment were

assessed in the PURE-01 trial (pembrolizumab) in fourteen patients

for which paired tissue samples were available (≥ypT2).

Interestingly, TMB was significantly lower compared with the

baseline TMB after treatment with pembrolizumab (31).

In addition to an increased TMB, some specific genomic alterations

also impact tumor behavior, prognosis and response to ICI. Recently, it

was shown that loss of the Y-chromosome is associated with poor

prognosis inmale BC patients and was related to intratumoral CD8+ T-

cell dysfunction and exhaustion. Interestingly, patients with loss of the

Y-chromosome exhibited an increased response to PD-1 inhibition in

both mice and BC patients (59).

Multiple immune cell subsets are implied to play a role in the

TIME. Cytotoxic CD8+ T-cells have been established as one of the

major players in the TIME in BC as well as in most other tumor

types. Within the CD8+ T-cells, different subsets have been

observed with varying degrees of tumor-reactivity. CD8+ T-cells

expressing the combination of CD103 (integrin aE) and CD39 (an

ectonucleotidase) are enriched for tumor-reactive cells in multiple

different tumor types. These cells also efficiently kill autologous

tumor cells in a major histocompatibility complex (MHC) class I-

dependent manner (60). Specifically in BC, it has been shown that

patients with tumors with high infiltration of CD8+CD103+ tissue-

resident memory T-cells are more likely to benefit from ICI and

adjuvant chemotherapy (61).

Based on the abundance of CD8+ T-cells and other immune

cells and their spatial organization in relation to the tumor, distinct

immune phenotypes can be defined (62, 63).

Immune - Inflamed t umor s a r e con s i d e r ed t o be

immunologically ‘hot’ tumors and are characterized by an

abundancy of immune cells invading the tumor and the

surrounding stroma. Apart from CD8+ T-cells, these include

other T-cells, B-cells and pro-inflammatory macrophages. In

addition, these tumors are characterized by a type I Interferon

gamma (IFN-g) signature (63).
Tumors that are populated with immune cells but with

relatively few cytotoxic T-cells inside the core of the tumor are

commonly referred to as tumors with an immune-excluded

phenotype (62, 63). It is currently not completely understood if

these cytotoxic cells are insufficiently stimulated to infiltrate the

tumor, or whether tumor infiltration is physically being prevented

by interfering fibroblasts or stromal cells or due to other pro-

tumorigenic cells (64). It has been suggested that tumor-associated

macrophages along the tumor margins prevent cytotoxic

lymphocytes from tumor core infiltration (65).

Tumors with very few immune cells are referred to as

immunologically ‘cold’ tumors or having an immune-desert

phenotype. These tumors are characterized by a low number of

lymphocytes and a high macrophage-to-lymphocyte ratio (66).

Multiple studies have shown that greater infiltration of CD8+ T-

cells is related to a more favorable clinical outcome and a better

response to ICI in multiple disease stages in BC (32, 67–71).

In the ABACUS trial mentioned above, a relatively high

proportion of immune-inflamed (73%) tumors was found based

on the abundance and spatial organization of CD8+ T-cells.

However, the immune-inflamed phenotype did not correlate with
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response (32). A CD8/GZMB co-staining was performed to further

enrich for tumors with high anti-tumor reactivity. Indeed, the

percentage of tumors with an immune-inflamed phenotype that

contained CD8+GZMB+ cells was higher in responders versus

patients that relapsed (87% and 30%, respectively) (32). In

addition, a significant increase in infiltrating CD8+ T-cells was

observed based on immunohistochemistry when comparing post-

treatment tissue to pre-treatment tissue (32).

In the PURE-01 trial mentioned above, the effect of ICI on the

TIME was assessed by comparing pre- and post- treatment samples

from patients with residual disease after treatment with

preoperative pembrolizumab (72). These findings were compared

to patients that were treated with a direct RC, or with NAC followed

by RC. It was found that patients with residual tumor after

treatment with pembrolizumab and cystectomy showed a high

rate of stroma-rich calls with a decreased tumor purity and

increased stromal content (72). In addition, these tumors also

expressed luminal markers, distinguishing them from the

untreated and tumors that did not respond to NAC. This would

suggest that luminal tumors may have an intrinsic resistance to

treatment with ICI or that treatment with ICI may select for, or

induce, a luminal phenotype (72, 73)

In another study, immune phenotypes were classified based on

CD8+ T-cell density in the tumor and stroma compartments in an

untreated BC cohort (74). Immune-inflamed (42%) was the most

common immune phenotype, whereas 32% and 26% of tumors

were classified as immune-excluded and immune-desert

phenotypes, respectively. Although tumors qualified as immune-

desert showed a numerically high rate of recurrence (88%), no

statistically significant correlation was found (74).

In contrast, in the NABUCCO trial (preoperative ipilimumab

plus nivolumab) no correlation was observed between baseline

CD8+ T-cell density and response to ipilimumab plus nivolumab.

In addition, no significant difference was observed in IFN-g
signaling at baseline in responding tumors compared to non-

responding tumors. This data suggests that the addition of anti-

CTLA-4 to PD-1 blockade can induce a pCR in tumors irrespective

of baseline immunity (34). In addition, the density of CD8+PD1+ T-

cells in tumors from patients treated with ipilimumab and

nivolumab was higher than that of patients treated with a direct

cystectomy, regardless of response to ICI (74).

Current efforts to understand anti-tumor immunity are

primarily focused on CD8+ T-cells. However, there is also a role

for CD4+ T-cells in the interaction between the tumor and TIME.

Regulatory CD4+ T-cells in the BC TIME are known for their role in

inhibiting or dampening an ongoing immune response by

producing anti-inflammatory cytokines like IL-10 and

transforming growth factor beta (TGF-b), direct inhibition of

dendritic cells and more (75, 76). Regulatory CD4+ T-cells in the

BC TIME have been associated with adverse outcomes, similar to

other tumor types (77). The exact underlying biological mechanism

for this association remains unclear. However, one study found

overexpression of sphingosine 1 phosphate receptor 1 (S1P1) in BC,

promoting production of TGF-b and IL-10 in vitro and in vivo (78).

In addition to an immunosuppressive role, it was recently found

that CD4+ T-cells also play an important role in anti-tumor
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immunity in BC (79). Based on data from single-cell RNA

sequencing, multiple cytotoxic CD4+ T-cell states were identified

based on the expression of granzyme B, granzyme K, perforin as

well as other granule-associated proteins. These distinct

populations were validated by flow cytometry and multiplex

immunofluorescence tissue staining. In addition, it was found

that cytotoxic CD4+ subsets in bladder tumors were clonally

expanded, potentially resulting from recognition of bladder tumor

antigens. Their functional importance was confirmed by their

ability to kill autologous tumors ex vivo in a MHC class II-

dependent manner. Overall, these findings highlight the

importance of CD4+ T-cell heterogeneity and the relative balance

between activation of cytotoxic CD4+ effector cells and inhibitory

regulatory cells for killing autologous tumors (79).

Apart from lymphocytes, there is a prominent role for

macrophages in the TIME. Macrophages are not a single cell

population with a defined phenotype and biological activity but

rather a diverse collection of cell types with a wide range of

functional roles (80). Macrophages have been traditionally

categorized as either M1 or M2 macrophages, characterized by

different markers. M1 macrophages are considered anti-tumorigenic

and express high levels of tumor necrosis factor alpha (TNFa),
inducible nitric oxide synthase (iNOS) or MHC class II molecules. In

contrast, M2macrophages are considered pro-tumorigenic and express

CD163, CD206 and high levels of arginase 1 (ARG1) and IL-10 (81).

However, it is becoming clear that a broad spectrum of macrophage

phenotypes exists, and using markers to delineate their functional role

within the tumor is not straightforward (82). The majority of the work

on macrophages has been done in other tumor types, but a few studies

also investigated whether there is an association between macrophage

abundance and polarization status (M1-like or M2-like) and prognosis

and outcome in BC.

One study found that a high intratumoral density of M2

macrophages (based on expression of CD163) was associated with

poor outcome in patients with BC (83). Another study by Sun and

colleagues investigated macrophage polarization in relation to

response to ICI treatment in the IMvigor210 trial (atezolizumab).

It was found that patients with tumors with predominantly M1

macrophages were indeed more sensitive to PD-L1 blockade (84).

Wang and collaborators found that a pro-tumorigenic

inflammatory signature was correlated with poor outcome in the

IMvigor210 (atezolizumab) and the CheckMate-275 (nivolumab)

trials (85). One preclinical study used a conditional knockout BC

mouse model which showed a heterogeneous response to treatment

with PD-1 inhibition. Responding tumors showed a higher number

of intratumoral macrophages (86).

While the exact mechanism still needs to be unraveled, the

number of macrophages and their polarization status seems to be

associated with the efficacy of ICI and thus may be relevant to

predict which patients respond to treatment.

Similar to other tumor types, multiple other cell types likely also

play a role in the TIME in BC. These include, but are not limited to:

pericytes, dendritic cells, natural killer cells and eosinophils. While

important, limited work has been done in BC specifically.

Tertiary lymphoid structures (TLS) are organized clusters of

lymphocytes in chronically inflamed tissue (87). They resemble
Frontiers in Immunology 07
secondary lymphoid organs like lymph nodes and have similar

functions such as mounting germinal center reactions and priming

of antigen-specific T-cells (88, 89). The density of TLS in the TIME

is associated with infiltration of adaptive immune cells and

improved clinical outcome in multiple tumor types including in

BC (90–92). However, it is currently unclear what the exact role is of

TLS in the anti-tumor immune response and whether they are a

prerequisite or rather a consequence of an anti-tumor immune

response (91). It was proposed that TLS mature through different

developmental stages with increasing proportions of activated

lymphocytes throughout the maturation process (93). However,

another study assessing different BC cohorts found that the

proportions of activated B-cells, T-cells and progenitor-like CD8+

T-cells were similar when comparing maturation stages, and

seemed to be more dependent on the number of TLS in the

TIME (91).

Another study in BCmade a distinction between superficial and

deep TLS, based on their location relative to the bladder lumen.

Superficial TLS were hypothesized to primarily play a role in the

immune response against irritative chemicals and microbial

pathogens present in the urine. Deep TLS presumably play a

more prominent role in anti-tumor immunity. It was found that

the density of CD4+ T-cells was higher in superficial TLS and the

proportion of follicle-like, mature structures was higher in deep

TLS (74).

Two trials that assessed combination ICI as a preoperative

strategy in locally advanced BC investigated TLS at baseline as a

predictive biomarker. One study testing preoperative

tremelimumab plus durvalumab reported a higher density of

pretreatment TLS in responders compared to non-responders

(33). In addition, it was observed that a higher density of

pretreatment TLS was associated with a longer OS and RFS.

In contrast, no difference in pretreatment TLS density was

reported in responders compared to non-responders in patients

with locally advanced BC treated with preoperative ipilimumab plus

nivolumab in the NABUCCO trial (34). However, the density of

TLS after treatment increased in responders, whereas the TLS

density decreased in non-responders. In addition, it was found

that regulatory T-cells in TLS decreased after treatment with

ipilimumab plus nivolumab, showing that this treatment also

influences the composition of TLS (34). In another recent study

in BC, an association was found between TLS density and TMB as

well as increased T-cell activation. Combining TLS density with

TMB into a joint ‘TLSTMB’ score generated a novel prognostic

biomarker that, in contrast to either TLS density of TMB alone, was

independent from tumor stage and vascular invasion (91). The

exact role of TLS remains to be elucidated. However, it is clear from

multiple studies that TLS play a pivotal role in the anti-tumor

immune response in BC.

TGF-b is a cytokine that is involved in multiple different

pathways and interactions and is associated with poor clinical

outcome in different tumor types (94–96). It is thought to have a

pro-tumorigenic role in advanced cancers by promoting fibroblast

activation, immunosuppression, angiogenesis, epithelial-to-

mesenchymal transition, and metastasis (97). In a study by

Mariathasan and colleagues, it was found that expression of TGF-
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b ligand 1 (TGFB1) and TGF-b receptor 2 (TGFBR2) were

associated with non-response and reduced OS in patients with

mUC who were treated with atezolizumab in the IMvigor210 trial

(71). In addition, the authors speculated that TGF-b signaling in

cancer-associated fibroblasts (CAFs) contributed to an immune-

excluded TIME. To measure TGF-b signaling specifically in

fibroblasts, a pan-fibroblast TGF-b response signature (F-TBRS)

was created. Expression of this signature was particularly high in

tumors with an inflamed or excluded phenotype, and low in tumors

with an immune desert phenotype. In line with these findings, the

F-TBRS was significantly associated with non-response in excluded

tumors specifically (Figure 1) (71). In addition, it was confirmed in

an EMT6 mouse mammary carcinoma model that combining PD-

L1 blockade and a TGF-b inhibitor led to infiltration of

lymphocytes into the tumor and an improved survival, whereas

this was not observed upon monotherapy with either inhibitor (71).

In the ABACUS trial, patients were treated with atezolizumab in

the preoperative setting. Among the patients that relapsed, the

patients with an immune-excluded bladder tumor had a

numerically higher expression of the TGF-b response signature,

which was not the case for patients that responded. However, no

definitive conclusion can be drawn from this study due to lack of

statistical power (32). In the NABUCCO trial (ipilimumab plus

nivolumab), a significantly higher expression of the TGF-b response
signature was observed in non-responders versus responders at

baseline (34).

A number of TGF-b inhibitors have been developed for clinical

use and are currently being investigated in early clinical trials (98).

To our knowledge, there are currently two trials investigating TGF-

b inhibitors in patients with mUC. In one trial, patients are treated

with the oral TGF-b inhibitor vactosertib in combination with
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durvalumab (NCT04064190), for which results are pending. The

other trial tested bintrafusp a (M7824), a bifunctional fusion

protein composed of the extracellular domain of a TGF-b
receptor fused to PD-L1 antibody (NCT04501094). This trial has

been terminated due to low accrual.

Modulating the tumor immune
micro-environment to improve
therapy response

In recent years, encouraging responses to ICI have been

observed in BC patients. However, there is still a substantial

subset of patients that does not respond to this treatment. This

ICI resistance might be explained by various mechanisms, including

tumor-intrinsic factors or factors related to the immune micro-

environment (55, 56, 71). Combining ICI monotherapy with other

drugs such as additional ICI or conventional chemotherapy, may

alter the TIME to be more susceptible to respond to treatment.

Traditionally, chemotherapy has been regarded as immuno-

suppressive, depleting immune cell subsets and leading to an

increased rate of infections (99). However, it has been shown in

numerous preclinical and clinical studies that treatment with

chemotherapy can also have immunostimulatory effects (100,

101). One of the direct effects of chemotherapy is the induction

of immunogenic cell death, a form of cell death that is being

preceded by a cellular stress-response. Via complex intracellular

pathways, phagocytosis of tumor cells (or portions thereof) by

dendritic cells is facilitated (102). Processing of this cellular debris

by dendritic cells eventually leads to presentation of neoantigens, as

described earlier (52, 53).
FIGURE 1

Model of immune phenotypes in the bladder tumor immune micro-environment. Left: immune-desert phenotype with limited amounts of immune
cells. Middle: immune-excluded phenotype with stromal cells, cancer associated fibroblasts and TGF-b signaling preventing infiltration of CD8+ T-
cells and other immune cells. Macrophages predominantly display an immunosuppressive (M2) phenotype. Right: immune-inflamed phenotype with
extensive infiltration of CD8+ T-cells and other immune cells. Macrophages are primarily of the M1 phenotype. Bottom: Increased effect of PD-1/
PD-L1 inhibition have been observed in tumors with an immune-inflamed phenotype. Addition of CTLA-4 inhibition might be required to mount an
effective immune response in tumors without pre-existing immunity.
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In addition to the induction of immunogenic cell death,

chemotherapy treatment also affects regulatory T-cells, tumor-

associated macrophages and myeloid derived suppressor cells

(103, 104). This phenomenon could be further exploited when

used in conjunction with ICI. Indeed, a synergistic effect of

concurrent chemotherapy and ICI has been observed in multiple

tumor types, including in NSCLC and in triple-negative breast

cancer (TNBC) (105–107).

In BC, one preclinical study assessed the effect of PD-L1

inhibition with or without platinum-based chemotherapy

compared to platinum-based chemotherapy alone (108). The

combination strategy was more effective in the MB49

subcutaneous model compared to either platinum-based

chemotherapy or PD-L1 inhibition alone. Interestingly, PD-L1

inhibition monotherapy was more effective than the combination

strategy in the MBT-2 subcutaneous model, suggesting that

combined treatment results are model-dependent (108). Despite

the positive results in other cancer types, no clinical benefit was

observed when patients with mUC were treated with PD-1/PD-L1

inhibition or PD-1/PD-L1 inhibition in combination with standard

platinum-based chemotherapy over chemotherapy alone in both

the KEYNOTE-361 (pembrolizumab) and in the IMvigor130

(atezolizumab) trials (25, 27). However, a 2023 press release of

the CheckMate-901 study reported a statistically significant

improvement in PFS and OS for cisplatin/gemcitabine plus

nivolumab, in comparison with cisplatin/gemcitabine alone. The

full results are pending and are required to better understand the

discrepancies between these trial results. Potentially, this might

result in the first approved treatment strategy with concurrent

chemotherapy and ICI in BC.

Theoretically, a sequential approach could be appealing,

priming the TIME and allowing recovery of immune cell

populations to subsequently further improve the anti-tumor

response with ICI treatment (109). This sequential approach was

studied in patients with TNBC, where patients were treated with

different types of induction chemotherapy, followed by nivolumab

(110). In metastatic BC, the JAVELIN Bladder 100 trial (avelumab)

showed the efficacy of maintenance checkpoint inhibition after

initial treatment with platinum-based chemotherapy (30). The

improved results for adjuvant nivolumab in the subset of patients

in the CheckMate-274 trial who received NAC similarly supports

sequential treatment (28).

Given the accessibility of bladder tumors, the TIME could be

modulated by local therapies to improve susceptibility to ICI

treatment, without having to expose patients to systemic therapy.

For example, intravesical instilments with Bacillus Calmette–

Guerin (BCG) or chemotherapeutic agents such as epirubicin or

mitomycin can be employed. BCG represents the first type of

immunomodulatory treatment approved by the FDA (111).

Despite its proven efficacy in reducing the chance of disease

recurrence, its underlying biological mechanism is not fully

understood. Generally, BCG is internalized primarily by cancer

cells leading to cytokine production and the activation of CD4+ and

CD8+ T-cells, leading to the killing of cancer cells (112, 113).

Interestingly, one study showed that the efficacy of treatment with

BCG is at least partly explained by PD-L1 expression, as the
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percentage of patients with PD-L1+ tumors at baseline was higher

in patients that did not respond to treatment with BCG compared

to patients that did respond (114). Indeed, systemic treatment with

pembrolizumab in patients with BCG-unresponsive non-muscle

invasive BC was tolerable and showed promising anti-tumor

activity in a single-arm phase 2 trial, leading to the approval of

pembrolizumab for BCG-unresponsive, high-risk non-muscle

invasive BC (115).

Intravesical instilments with ICI could potentially evoke a local

immune response with less systemic exposure. Two exploratory trials

investigated whether intravesical instilments with pembrolizumab were

feasible. In one trial, patients with BCG-unresponsive non-muscle

invasive BC were treated with intravesical pembrolizumab. A

significant increase in CD4+ T-cells and CD8+ T-cells was found in

the urine after a single dose of pembrolizumab as well as an increase in

infiltrating CD8+ T-cells in the tumor (116). Interestingly, even though

treatment was only administered locally in the bladder, systemic

immune-related adverse events were observed in some patients

(116). In the PemBla trial, six patients were treated with increasing

doses of intravesical installments of pembrolizumab after transurethral

resection of the bladder, which was well tolerated. These two

exploratory trials confirm prior pre-clinical observations in a mouse

BC model (MBT-2), where intravesical PD-1 inhibition was used to

treat localized BC, and showed a similar effect compared to systemic

treatment with PD-1 inhibition and changes in the TIME including

increased infiltration of CD8+ T-cells (117).

Enfortumab vedotin (EV) - an antibody-drug conjugate - is

directed against nectin-4, a protein which is highly expressed in

urothelial cancer cells and is linked to monomethyl auristatin E, an

agent that disrupts microtubule formation (37, 118). Encouraging

results have been observed when EV was used as monotherapy in

pretreated mUC (Table 1) (38). In addition, it has also been observed

that treatment with EV leads to hallmarks of immunogenic cell death

leading to T-cell activation (118, 119). Combined with pembrolizumab,

EV has shown promising results and this combination is currently

under investigation in a phase 3 study (39–41).
Conclusion

We have come to understand that cancer cells rely heavily on

their interaction with the surrounding TIME, especially in the context

of ICI. It is becoming clear which cell types, pathways and processes

are involved in anti-tumor immunity. Taken together, a combination

of tumor-intrinsic and microenvironment-related parameters

determine the success of therapies targeting immune checkpoints:

i) A high TMB and a high rate of neoantigens resulting in aberrant

proteins which can be recognized by immune cells to then mount an

effective antitumor immune response ii) Pre-existing anti-tumor

immunity with infiltrating cytotoxic T-cells, IFN-g signaling and

the formation of TLS; iii) Low expression of TGF-b in CAFs to

prevent an immune-excluded immune phenotype (Figure 1) (71,

120). However, despite meeting all of these criteria, some tumors still

do not respond well to ICI. This indicates that there are still some

missing pieces in the puzzle of adequate immunological

cancer treatment.
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While there are many commonalities across different tumor

types, there are also some features related to the TIME that have

been found specifically in BC. These include the importance of

TGF-b signaling and role of CD4+ T-cells and might explain some

of the unique clinical findings observed in BC studies. For example,

the improved clinical outcome when a high dose of CTLA-4

inhibition is used together with PD1/PD-L1 inhibition and the

apparent lack of synergy when treating with a combination of ICI

and systemic chemotherapy.

Recent findings highlight the rapidly changing treatment landscape

of BC.We now understand that cancer cell characteristics are just part of

the puzzle for effective cancer treatment. Targeted therapeutic strategies

like ICI and antibody-drug conjugates such as EV are highly dependent

on the interaction between cancer cells and the TIME. Ultimately, more

research is needed to better understand the TIME.
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