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University of Science and Technology, Wuhan, China
The incidence of human herpesvirus (HHVs) is gradually increasing and has

affected a wide range of population. HHVs can result in serious consequences

such as tumors, neonatal malformations, sexually transmitted diseases, as well as

pose an immense threat to the human health. The cGAS-STING pathway is one

of the innate immune pattern-recognition receptors discovered recently. This

article discusses the role of the cGAS-STING pathway in human diseases,

especially in human herpesvirus infections, as well as highlights how these

viruses act on this pathway to evade the host immunity. Moreover, the author

provides a comprehensive overview of modulators of the cGAS-STING pathway.

By focusing on the small molecule compounds based on the cGAS-STING

pathway, novel targets and concepts have been proposed for the development

of antiviral drugs and vaccines, while also providing a reference for the

investigation of disease models related to the cGAS-STING pathway. HHV is a

double-stranded DNA virus that can trigger the activation of intracellular DNA

sensor cGAS, after which the host cells initiate a cascade of reactions that

culminate in the secretion of type I interferon to restrict the viral replication.

Meanwhile, the viral protein can interact with various molecules in the cGAS-

STING pathway. Viruses can evade immune surveillance and maintain their

replication by inhibiting the enzyme activity of cGAS and reducing the

phosphorylation levels of STING, TBK1 and IRF3 and suppressing the interferon

gene activation. Activators and inhibitors of the cGAS-STING pathway have

yielded numerous promising research findings in vitro and in vivo pertaining to

cGAS/STING-related disease models. However, there remains a dearth of small

molecule modulators that have been successfully translated into clinical

applications, which serves as a hurdle to be overcome in the future.
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1 Introduction

From ancient times to the present, the interaction between virus

and host has never stopped. In the face of a viral invasion, the

human immune system has evolved so that it can defend the human

body against several diseases; nevertheless, in response to the strong

immune defense system, viruses have also ingeniously evolved

several strategies to evade immune surveillance and antiviral

immune responses. There are nine types of human herpesvirus

(HHV), these viruses can cause different diseases, including genital

herpes, neonatal encephalitis, varicella, herpes zoster, roseola

infantum, Kaposi’s sarcoma, infectious mononucleosis, and

Hodgkin’s lymphoma. HHV can affect individuals of all age

groups, from newborns to the elderly. Furthermore, it can cause

serious consequences such as cancer or birth defects. HHV has

already led to serious health problems worldwide.

At present, the primary antiviral drugs are nucleoside analogs

that mainly comprise acyclovir and glucocorticoids. However, in

clinical settings, no effective vaccines are available for many types of

HHV (1). Therefore, there is an urgent need to discover new

antiviral targets and develop new antiviral strategies.

The body’s first line of defense against pathogen invasion is the

natural immune system. There is no doubt that it plays a crucial role

in antiviral immunity. Many pattern recognition receptors (PRRs)

are important components of this barrier; they recognize pathogen-

associated molecular patterns and activate a sequence of signaling

pathways in the body to generate a natural immune response.

Cyclic GMP – AMP synthase (cGAS) is a newly discovered

intracellular nucleic acid receptor (2). It can detect the host’s

double-stranded DNA produced as a result of body damage or

foreign double-stranded DNA. Recent studies have reported that

cGAS can detect genetic material produced by bacteria, thereby

initiating a chain of immune responses.

Stimulator of interferon genes (STING) is a molecule that

connected to cGAS downstream. Many studies have reported the

role of the cGAS-STING pathway in various systemic diseases.

The cGAS-STING pathway plays a role in the immune responses

to various conditions, including respiratory system diseases,

circulatory system diseases, digestive system diseases,

nervous system diseases, viral infection, autoimmune diseases,

tumorigenesis, and aging.

In the beginning, most researchers either focused on the

interaction between one kind of virus or one disease and the

cGAS-STING pathway or on the regulatory effects of a molecule

on the cGAS-STING pathway. Besides, the cGAS-STING pathway

is rarely involved in the immune escape of viruses.

In present study, we emphasize the role of the cGAS-STING

pathway in various systemic diseases by briefly summarizing its role

in diseases occurrence, and emphatically discussing the research

progress on the cGAS-STING pathway in anti-human herpesvirus

infections. Furthermore, we present some regulatory molecules for

cGAS and STING. Our study provides new ideas for identifying

more effective and comprehensive antiviral targets and developing

new antiviral drugs and vaccines. It also provides a research basis

for discovering effective therapeutic drugs for diseases associated

with the cGAS-STING pathway in clinical settings.
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2 cGAS-STING pathway

cGAS is a cytoplasmic DNA sensor that is present in an

autoinhibited state when it is not bound to DNA (3). When

exogenous or endogenous DNA is detected, cGAS binds to it in a

DNA sequence-independent manner (4). Activated cGAS

undergoes a conformational change to form a dimer, which is

warranted for cGAS activation (5). Active cGAS dimers can

promote the synthesis of ATP and GTP loops, secondary the

second messenger known as cyclic GMP-AMP (cGAMP) (6). In

turn, cGAMP binds to STING on the endoplasmic reticulum (ER)

to form dimers, tetramers, and higher-order oligomers. Activated

STING is transferred from the ER to the Golgi apparatus. During

this process, STING recruits TANK-binding kinase 1 (TBK1).

Phosphorylated TBK1, in turn, activates interferon regulatory

factor 3 (IRF3). Dimerized IRF3 can trigger the production of

type-I interferon (IFN) (7). In addition, STING activates IKK

kinase, which phosphorylates the IkB family of inhibitors of

nuclear factor-kappa B (NF-kB). The phosphorylated IkB protein

is degraded via the ubiquitin-proteasome pathway; at this point,

NF-kB enters the nucleus and functions together with IFN

regulatory factors such as IRF3 to induce the expression of IFNs

and inflammatory cytokines such as tumor necrosis factor (TNF),

interleukin (IL)-1b, and IL-6 (3) (Figure 1).
3 Function of the cGAS-STING
pathway in diseases

In recent years, researches on the cGAS-STING pathway have

focused on the role of this pathway in various aspects such as tumor

immunity, viral infection, inflammation, and aging.

The activation of the cGAS-STING pathway in cancer cells

triggers the autocrine and paracrine secretion of type I IFN. The

infiltration rate of immune cells and the expression profile of

immune-related genes are increased (8), augmenting the

activation and infiltration of CD8+ T cells (9, 10). Moreover, the

antigenicity of cancer cells is increased, increasing the possibility of

being recognized and killed by cytotoxic T cells; this results in

tumor growth inhibition in vivo (11, 12). In addition, mutant P53

can inhibit the cGAS-STING pathway, leading to tumors escaping

the immune system (13).

Besides, the double-stranded DNA from exogenous pathogens

and mitochondrial DNA produced by damaged organisms can

activate the cGAS-STING signaling pathway to induce a variety

of inflammatory responses (14), leading to tissue fibrosis.

In atherosclerosis, diabetic cardiomyopathy, and myocardial

infarction models, the cGAS-STING pathway is activated and

downstream molecules are expressed. However, STING inhibitors

can block fibrosis and apoptosis in cardiomyocytes, protecting

myocardial function and delaying heart failure progression (14–17).

Activation of the cGAS-STING signaling pathway is also

involved in the development of inflammatory injury and fibrosis

in the liver, lungs, intestine, and central nervous system. On the

other hand, inhibition of the cGAS-STING pathway decreases the
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occurrence of inflammation, and organ damage and improves these

pathologies (18–26).

Increasing evidence suggests that the cGAS-STING signaling

pathway plays a key pathogenic role in autoimmune diseases such

as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),

Aicardi-Goutières syndrome (AGS), and STING-associated

vasculopathy with onset in infancy (SAVI). It was found that the

expression of the IFN-inducible gene IFIT3 and downstream IFNb
were increased in patients with SLE compared with healthy

controls; furthermore, it was positively correlated with the activity

of the cGAS-STING pathway (27). In addition, IFN-stimulated

genes (ISGs) are abnormally elevated in patients with AGS (28).

In a mouse model of inflammatory arthritis, cGAS deficiency

blocked the IFN response and decreased inflammatory cell

infiltration and joint swelling (29). Deletion of cGAS or STING

can saved DNase II-/- mice from fatal inflammatory diseases caused

by DNA clearance defects (30) (Table 1).

The cGAS-STING signaling pathway inhibits a variety of viral

infections. During viral infections, viral replication induces the

responses of inflammatory factors and ISGs, and the cGAS-

STING pathway is activated, subsequently inhibiting the

progression of viral infection. However, deletion or silencing of

cGAS or STING genes results in reduced production of type I IFN

and enhanced viral infection, thus suggested that the host cGAS-
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STING signaling pathway plays an important role in limiting viral

replication (31–34).

The recruitment, activation, and signaling of each molecule of

the cGAS-STING pathway are inextricably linked to the role of this

pathway. A study has observed that cGAS is not only present in the

cytoplasm but also in the nucleus and that nuclear cGAS plays a role

in innate immunity against viral infections by regulating histone

arginine modification (35). The deubiquitination of STING

promotes its stability as well as the expression of type I IFN and

pro-inflammatory factors after DNA viral infections (36).

Furthermore, ubiquitin-regulated X structural domain protein

promotes the ubiquitination, dimerization, and transport of

STING and positively regulates STING signaling and subsequent

TBK1 recruitment and phosphorylation to promote antiviral

immune responses (37). The recruitment of TBK1 to STING is

important for both IRF3 and NF-kB activation; furthermore, the

resulting type I IFN -mediated independent immune defense

against viral infections is essential (38).

The interaction between virus and host is exceptional because

viral infection leads to the activation of the host cell’s natural

immunity against the virus, which has evolved multiple strategies

to escape the host’s antiviral immunity and establish latent

infection. Various viral proteins can function as inhibitors of

intracellular DNA receptors and antagonize the antiviral
FIGURE 1

The cGAS-STING signaling pathway. When exogenous pathogen DNA invades, or when the organism experiences cellular damage resulting in
leakage of self DNA, the intracytoplasmic DNA receptor cGAS is activated. Activated cGAS undergoes a conformational change and forms a dimer,
which promotes the binding of ATP and GTP to generate cGAMP. cGAMP in turn binds to STING on the ER, which subsequently recruits TBK1.
Phosphorylated TBK1 in turn activates IRF3. STING also activates IKK kinase, which phosphorylates the IkB family. The degradation of phosphorylated
IkB proteins allows NF-kB to enter the nucleus and work with interferon regulatory factors such as IRF3 to induce the expression of interferons and
inflammatory cytokines such as TNF, IL-1b and IL-6. Created by Figdraw. Export ID: RYIOTb98b8.
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responses of the body. Furthermore, they can interact with various

molecules of the cGAS-STING pathway, achieving immune escape

by inhibiting the enzymatic activity of cGAS; reducing the

phosphorylation levels of STING, TBK1, and IRF3; and inhibiting

the activation of the IFN gene so as to maintain viral replication.

Immune escape of the virus not only occurs during initial infection

but also persists during the latent and recurrence periods of the

virus, with the interaction between the strengthening of the body’s
Frontiers in Immunology 04
immune system and virus evolution constantly occurring

(Figure 2).
4 Herpesvirus

Herpesviruses are a class of double-stranded DNA viruses that

comprising a four-layered structure: an envelope, a tegument, a
TABLE 1 Regulators of the cGAS-STING pathway.

Diseases Function Ref.

Tumor IFN-I secretion, Immune cell infiltration, Enhanced tumor antigen presentation (8, 9, 11, 12)

Diabetic cardiomyopathy Phosphorylation of downstream targets NF-kB and IRF3 increased in mice model (14)

Arteriosclerotic plaques STING expressed in plaques near cellular debris and hemorrhagic lesions (17)

Myocardial Infarction Induces apoptosis and fibrosis (15)

Acute Liver Injury Causes liver damage and liver fibrosis (25)

Schistosomiasis japonica cGAS deficiency decreased egg granulomas and liver fibrosis (24)

Industrial pulmonary
fibrosis

Promotes lung inflammation and fibrosis (23)

Colitis Increased STING expression is a feature of intestinal inflammation in mice with colitis and patients with inflammatory
bowel disease

(22)

Neurodegenerative
diseases

Induces neuroinflammation (19–21, 26)

SLE IFN-b、IFIT3 high expression is positively correlated with the activity of the cGAS-STING signaling pathway (27)

Irritative arthritis cGAS deficiency reduced inflammatory cell infiltration and joint swelling (29)

Aicardi-Goutières
syndrome

cGAS/STING is a key nucleic acid-sensing pathway relevant to AGS (28)
FIGURE 2

Immune escape of HHVs. Human herpesviruses can evade immune surveillance and maintain their replication by inhibiting the enzyme activity of
cGAS, reducing the phosphorylation level of STING, TBK1, IRF3, and suppressing interferon gene activation. Created by Figdraw. Export ID:
STPWPba3de.
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capsid, and a DNA core. They are one of the largest known viruses

to date, with a diameter of approximately 200 nm. This virus class is

divided into three subtypes: alpha, beta, and gamma, with highly

prevalence worldwide. At present, nine types of herpesviruses can

infect humans: herpes simplex virus-1 (HSV-1), herpes simplex

virus-2(HSV-2),varicella-zoster virus(VZV), Epstein-Barr virus

(EBV), human cytomegalovirus (HCMV), HHV-6A, HHV-6B,

HHHV-7, and Kaposi ’s sarcoma-associated herpesvirus

(KSHV).Herpesvirus particles comprise a double-stranded DNA

core and an icosahedral capsid surrounded by an unstructured

proteinaceous matrix called the envelope. In turn, the envelope

is surrounded by a lipid bilayer studded with branched

glycoproteins (39).

HSV-1 primarily leads to cold sores, and neonatal herpes

simplex encephalitis via vertical transmission from the mother to

the child. On the other hand, HSV-2 primarily leads to genital

herpes that manifests as clusters or scattered small blisters around

the external genitalia or anus, which rupture after 2-4 days to form

erosions or ulcers and are painful. After the initial genital herpes

subsides, the remaining virus will be dormant for a long time; when

the body’s resistance is decreased or provoking factors are

encountered, the condition can relapse, with the recurrence

symptoms being generally milder than the symptom of the

initial infection.

Humans are the only natural host of VZV, and the skin is the

main target organ of this virus. Varicella is more common among

infants and preschool children and manifests as fever and patches of

erythematous maculopapular rashes, herpes, and crusts on the skin

and mucous membranes. The disease is self-limited and does not

leave any scars; furthermore, lifelong immunity is achieved after

illness. Herpes zoster is a common disease in adults, the elderly, or

individuals with immunodeficiency and immunosuppression. It is

caused by the activation of latent viruses. In the early stage, there is

an abnormal feeling on the local skin such as itching or pain,

followed by red rashes and herpes along the nerve distribution of

the trunk.

EBV, also called HHV-4, is the causative agent of infectious

mononucleosis and is strongly associated with the development of

Burkitt lymphoma, nasopharyngeal cancer, and childhood lymphoma.

The clinical manifestations include pharyngitis, fever, and

enlarged lymph nodes. HCMV, also called HHV-5, mostly exists

in the form of latent infection. The general population is susceptible

to HCMV, and can be repeatedly infected. Most HCMV infections

are asymptomatic; however, HCMV can cause visceral diseases

in some patients as well as infectious mononucleosis. Furthermore,

HCMV causes neonatal infection via vertical transmission from the

mother to the child, and congenital HCMV infections can be

teratogenic in newborns. HHV-6 is more likely to infect patients

with immunodeficiency. The clinical features of HHV-6 infection in

adults are acute fever, upper respiratory tract symptoms,

mononucleosis and rash. The rash is mostly in the form of

macules, can be fused into pieces, and even develop into diffuse

erythema; when the infection subsides, desquamation is observed.

On the other hand, HHV-6 infection in neonates is generally

asymptomatic Only in severe cases, it may result in an infantile rash.

In addition, HHV-7 infection is common in children. It can cause
Frontiers in Immunology 05
exanthema subitum, febrile seizures, or neurological complications.

KSHV also called HHV-8 is closely related to the occurrence of

Kaposi’s sarcoma in patients with AIDS.

Classic Kaposi’s sarcoma is characterized by purple, reddish-

blue, or dark brown maculopapular rashes, plaques, and nodules,

with ulcer formation in some cases. It is particularly common at the

extremities and may be accompanied by lymphedema. HHV can be

latent in the ganglia for a long time after the initial infection and can

relapse when human immunity is weakened. To date, no effective

vaccines against HHV have been developed (Table 2).
5 cGAS-STING pathway and
HHV infections

5.1 cGAS-STING pathway and
HSV infections

HSV-1 infection triggers the cGAS-STING and Toll-like receptor

3 pathways. Both these pathways are essential to attenuate viral

replication (40). Some researchers have hypothesized that in HSV-1

infection, STING binds to NLR family pyrin domain containing 3 via

two pathways to promote inflammasome activation and that the

cGAS-STING-NLRP3 signaling pathway is crucial for the host to

resist HSV-1 infection (41). When the cGAS-STING pathway is

inhibited because of various reason or when type I IFN signaling is

impaired, the innate antiviral immune response is also inhibited; as a

result, HSV replication is enhanced, and the host is more resistant to

this virus (42–44). Compared with adults, neonates with HSV

infection, neonatal cord blood mononuclear cells and peripheral

blood mononuclear cells displayed significantly decreased cGAS

expression at the mRNA and protein levels. Furthermore, the

production of cGAMP, a secondary messenger, and activation of

the transcription factor IRF3 were markedly decreased, possibly

leading to the high susceptibility of neonates to DNA viral

infections (45).

HSV-1 can induce cytokine responses and apoptosis (46).

Studies on clinical cases of herpes simplex encephalitis, mouse
TABLE 2 Human herpesvirus and associated diseases.

HHV Associated Diseases

HSV-1 Herpes of the mouth, lips and throat
Neonatal herpes encephalitis

HSV-2 Genital Herpes

VZV Chickenpox, Herpes zoster

EBV Infectious mononucleosis, Burkitt lymphoma, nasopharyngeal cancer,
and childhood lymphoma

HCMV Infectious mononucleosis, Neonatal malformation

HHV-
6

Mononucleosis, exanthema subitum

HHV-
7

Exanthema subitum

KSHV Kaposi’s sarcoma, AIDS
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models, and primary cell cultures have reported that when

microglia are infected with HSV-1, a low viral load can induce

type I IFN response, whereas a high viral load can induce cGAS-

STING pathway-dependent apoptosis (47). Moreover, in a mouse

model of genital herpes, specific activation of the STING pathway in

the vagina causes activation of the IFN system, limiting

inflammatory responses to control HSV-2 infection in vivo (48).

HSV is a DNA virus that has developed multiple strategies to

evade host immune responses. Some HSV proteins can act on cGAS

to achieve immune escape. For example, the HSV-1 surface protein

UL37 can deamidate cGAS in human and mice. Deamidation

impairs the ability of cGAS to catalyze cGAMP synthesis. HSV-1

with a deamidase deficiency in UL37 induces a potent antiviral

response (49). Moreover, VP22, an HSV-1 body tegument protein,

can interact with cGAS to inhibit its enzymatic activity and help

continuously evade the innate antiviral response of the host (50). In

addition, VP22 can effectively disrupt pre-formed cGAS DNA

cohesion in cells, and ORF9, a tegument protein of VZV, acts

similarly to inhibit cGAS-STING phase separation (51).

VP1-2, a deubiquitinating enzyme (DUB) of HSV-1 can act on

STING, TBK1, IRF3 and other pathway molecules. DUB can

decrease the phosphorylation levels of TBK1 and IRF3 by

inhibiting the ubiquitination of STING, thereby realizing the

immune escape of HSV in the brain. Human or mouse microglia

infected with HSV1with a DUB-active mutant of VP1-2 protein can

increase the expression of IFNs and decrease viral replication in the

brain (52). Moreover, ICP27, an immediate-early protein of HSV-2,

can directly bind to IRF3 and inhibit its phosphorylation and

nuclear translocation (53).

The surface proteins of HSV-1 are effective IFN antagonists. For

example, HSV-1 US3 functions against the antiviral immunity of

the host by targeting the activation of b-catenin in the cGAS-

STING-pathway (54). Furthermore, VP22 can downregulate IFN-g
promoter activation and IFN-g production as well as inhibit the

expression of IFN and its downstream antiviral genes (50). Taken

together, VP22 plays a role in inhibiting the cGAS - STING-

mediated antiviral innate immune signaling pathway. In addition,

HSV-2 immediate early protein ICP27 inhibited the activation of

IFN-b promoter and the production of IFN-bat the mRNA and

protein levels (53). HSV-2 glycoprotein E and glycoprotein C act

synergistically to protect the virus from antibody- and complement-

mediated neutralization (55).
5.2 cGAS-STING pathway and
HCMV infections

STING et al. PRRs pathway can recognize CMV and generate type

I IFN-based immune defense to resist infection (56). In CMV-infected

cell and animal models, STING is needed to initiate first-stage type I

IFN production and inhibit CMV replication (57). Studies have

reported that primary human endothelial cells produce a strong

type I IFN response to HCMV invasion; this depends on cGAS,

STING, and IRF3 signaling. Furthermore, HCMV can stimulate

primary human monocyte-derived macrophages and dendritic cells
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and trigger type I IFN production in a cGAS-dependent cGAMP

formation way. In addition, IFN-g-inducible protein 16(IFI16)

recognizes the herpesvirus genome and induces inflammasome

production and IFN-b responses. As a restriction factor of viral lytic

replication, IFI16 inhibits viral DNA replication, particularly HCMV

replication (58, 59). Studies have reported that monocyte-derived cells

without cGAS exhibit an impaired type I IFN response (60, 61).

In addition, CMV can evade the antiviral immunity of the body

at multiple stages. First, upstream of the pathway, HCMV UL31

protein, cGAS inhibitor, can directly interact with cGAS, inhibit the

enzymatic function of cGAS, and decrease cGAMP production.

Furthermore, the overexpression of UL31 can significantly decrease

the antiviral responses, whereas UL31 knockdown can upregulate

the expression of type I IFN and downstream antiviral genes. In

addition, wild-type HCMVs can replicate more efficiently than

UL31-deficient HCMVs (62). PP65, a tegument protein of

HCMV selectively binds to cGAS and prevents its interaction

with STING, inactivating signaling via the cGAS-STING-IRF3

axis and inhibiting IFN-b production (63). Infection with the

PP65-deficient mutant virus can reduce stronger IFN responses

and proinflammatory chemokines (64).

HCMV can interact with STING and its downstreammolecules.

For example, the IE86 protein of HCMV can promote the

proteasome-dependent degradation of STING. Furthermore,

UL122, encoding the IE86 protein, can strongly inhibit STING-

induced IFN-b promoter activation (65). UL82, a tegument protein

of HCMV, can function as a negative regulator of STING-

dependent antiviral responses and inhibit the transport of STING

from the ER to perinuclear microsomes. Furthermore, it can inhibit

the recruitment of TBK1 and IRF3 to the STING complex. Wild-

type HCMV exhibits better replication efficiency than UL82-

deficient mutants (66). Moreover, pUL48, a tegument protein of

HCMV, can encode DUB for the deubiquitination of TRAF6,

TRAF3, IRAK1, IRF7 and STING, thereby inhibiting type I IFN

responses, obtaining tumor precursor function, and promoting

tumor formation (67). HCMV US9 can disrupt STING

oligomerization and STING and tbk1 binding via competitive

interactions. Furthermore, it can inhibit the nuclear translocation

of IRF3 and its cytosolic domain to inhibit IRF3 activation (68).

PUL83, a tegument protein of HCMV, can interact with IFI16

to stimulate the immediate early promoter of the virus and inhibit

IFN signaling, thereby inhibiting the expression of antiviral genes in

infected cells and achieving immune escape (64, 69, 70). Ul23, a

tegument protein of HCMV, can significantly decrease the

expression of ISGs and the activity of the promoter of the

response elements of ISGs during HCMV infection. UL23 is a key

factor in the negative regulation of type I IFN-mediated immune

responses (71). HCMV inhibits the cGAS-STING-TBK1 pathway

and decreases IFN-b mRNA accumulation via its latent associated

protein UL138 (72).

UL94, an epidermal protein of HCMV, inhibits cGAS-STING-

mediated antiviral responses, interacts with IRF3-activated

mediator STING, disrupts STING dimerization and translocation,

and hinders the recruitment of TBK1 to the STING signalosome.

Ectopic expression of UL94 can impair cytoplasmic double-
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stranded DNA and DNA virus-induced type I IFN induction and

enhance viral replication. In contrast, UL94 deficiency can enhance

HCMV-induced transcription of type I IFN and downstream

antiviral effectors and impair viral replication (73).
5.3 cGAS-STING pathway and
KSHV infections

A study have reported that mitochondrial DNA on the surface

of the extracellular vesicles (EVs) of KSHV is it’s a causative factor

(74). KSHV-infected cells induce ISG responses. ISGs and IRF-

activating genes were significantly activated in the EVs of human

endothelial cells treated with KSHV EVs. This suggests that the

cGAS-STING pathway is associated with KSHV EV-mediated

expression of ISGs (74). In addition, some researchers have

suggested the importance of STING in limiting bystander cell

transmission than in inhibiting viral replication when

endotheliocytes are infected with KSHV (75). Study have reported

that new KSHV and HSV-1 infections and latent KSHV and EBV

infections can induce the interaction of the H2B-IFI16-BRCA1

complex with intracellular cGAS and STING, leading to the

phosphorylation of TBK1 and IRF3, nuclear translocation of

IRF3, and production of IFN-g (76).
The cGAS-dependent response induced by KSHV infection can

limit infection, whereas KSHV also exhibits unique mechanisms to

antagonize host cGAS sensing (77). ORF52 is a tegument protein

abundantly present in extracellular viral particles. Studies have

shown that KSHV cGAS inhibitors (KicGAS) encoded by ORF52

inhibit DNA-induced phase separation and cGAS activation,

thereby inhibiting cGAS enzymatic activity. KicGAS optimizes the

production of infectious virus particles in addition to immune

evasion. The loss of ORF52 reduces virion production and causes

infectious defects in the virus, with the concomitant enhancement

of cGAS signaling (77–79). Viral IFN regulatory factor 1(vIRF1),

inhibits STING phosphorylation and activation by preventing the

STING and TBK1interaction, thus inhibiting the DNA-sensing

pathway. Virf1-expressing cells can inhibit IFN-b production

after infection with pathogenic DNA. In summary, gamma

herpesviruses encode inhibitors to block cGAS-STING-mediated

antiviral immunity. The regulation of this pathway is important for

the transmission and lifelong persistence of herpesviruses in the

population (80).

The cGAS-STING pathway is activated during KSHV primary

infection, as well as plays an important role in reactivating KSHV

latency. Latency-associated nuclear antigen (LANA) in KSHV is

mainly localized in the nucleus of latently infected cells and is

essential for maintaining and replicating of latently infected viral

DNA. The cytosolic isoforms of LANA act as antagonists of the

cytosolic DNA sensor cGAS. LANA and its KSHV isoform inhibit

TBK1 and IRF3 phosphorylation and cGAS-STING dependent IFN

production by directly interacting with cGAS during virus latency

reactivation. This eventually antagonizes the restriction of KSHV

replication and counteracts innate immune responses, thus

promoting virus reactivation in cells (81, 82).
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5.4 cGAS-STING pathway and
VZV infections

Type I IFN induction during VZV infection depends on the

cGAS/STING DNA sensing pathway, and VZV recognition by

cGAS limits its replication (83). STING mediated the host defense

of dermal cells against VZV infection. STING inhibition by small

interfering RNA- or short hairpin RNA-mediated gene disruption

increased viral replication, reduced IRF3 phosphorylation, and

induced IFN and proinflammatory cytokines. The pretreatment

with STING agonists reduced VZV glycoprotein E levels and viral

replication. Moreover, increased IFN-l secretion in the STING-

dependent pathway was observed after VZV infection (84). A study

showed that transcripts of STING-encoding genes were selectively

concentrated in exosomes secreted by VZV-infected lymphocytes

(85). Reduced STING expression increased viral replication in

primary fibroblasts, whereas STING overexpression inhibited

VZV plaque formation (86).

Some VZV proteins are powerful antagonists of the IFN

signaling pathway. The VZV immediate early proteinORF61

eliminates the natural immune response by degrading activated

IRF3 and downregulating the IRF3-mediated IFN-b pathway (87).

In addition, the VZV immediate early protein IE62 induces VZV

gene expression upon VZV entry into cells and inhibits IFN-

dependent antiviral defense. IE62 blocks TBK1-mediated IFN-b
secretion and IRF3 phosphorylation (88). The VZV tegument

protein ORF9 inhibits cGAMP production by functioning as a

cGAS antagonist. Virus-expressed ORF9 binds to endogenous

cGAS, resulting in an attenuated response of type I IFN (83).
5.5 cGAS-STING pathway and other HHVs

The levels of STING and programmed cell death ligand 1

(PD-L1) were significantly higher in EBV-associated gastric

cancer than in non-EBV-associated gastric cancer. STING

levels in EBV-associated gastric cancer were positively

correlated with PD-L1 levels (89). C-176, a STING inhibitor,

inhibits the EBV-induced transformation of peripheral blood

mononuclear cells. Furthermore, C-176 treatment inhibited

tumor formation and prolonged survival in a mouse model of

EBV-associated lymphoid tissue proliferative disease (90). In

human airway epithelial cells, HHV type IV EBV induces

tripartite motif-containing protein 29 to suppress innate

immune activation, leading to persistent DNA viral infection

(91). The immediate early protein IE1 of human HHV type 6 is

one of the first viral proteins synthesized upon virus entry and is

a potent inhibitor of IFN-b gene expression. A study showed that

in the presence of IE1, IRF3 did not efficiently bind to the IFN-b
promoter sequence, and the dimerization and nuclear

translocation of IRF3 decreased in the IE1-expressing cells

(92). Study has found that the STING/STAT6 pathway was

upregulated in HHV-6A-infected natural killer (NK) cells. NK

cells infected with HHV-6B and HHV-7 showed significantly

increased chemokine C-C motif ligand (CCL) 3, IFN-a, TNF-a,
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IL-8, and IFN-g levels and slightly increased IL-4 and

CCL4levels. HHV-6A-infected NK cells showed significantly

increased IL-4 and IL-13 levels and slightly increased IL-10,

TNF-a, IFN-a, and IFN-g levels (93) (Table 3).
6 Modulators of the cGAS-
STING pathway

Various disease models, including autoimmune diseases,

inflammation, organ damage and fibrosis, tumor occurrence and

treatment, and viral infection, have been used in studies on

modulators related to the cGAS-STING pathway. With the help

of computer simulations or high-throughput sequencing, various

compounds that act on this pathway have been artificially

synthesize based on the spatial structure of cGAS, STING, or

their ligands.

Modulators of the cGAS-STING pathway were first developed

for tumor therapy, and STING agonists have been used in

combination with other drugs to inhibit tumor growth. For

example, the combination of cGAMP, a STING activator, with

saponin adjuvants can increase the effectiveness of influenza

vaccines in elderly hosts without additional doses or additional
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vaccinations (94). The combination of cGAMP and celecoxib, the

cyclooxygenase 2 inhibitor, induces local and systemic

antitumor immunity, thereby inhibiting tumor growth (95). The

combination of STING agonists and eribulin, which is used to

treat triple-negative breast cancer, increased the levels of the

immunogenic cytokine IFNb (96). The combination of STING

agonists and atezolizumab inhibits breast cancer 4T1 cell growth

in mic by increasing the levels of TNF-a, IFN-b, IL-10, and IFN-g in
surrounding blood and tumor masses (P < 0.01). In a tumor-

bearing mouse model, these two drugs increased CD8+ cytotoxic T

cells and reduced FOXP3+ T regulatory cells (97).

The systemic administration of STING agonists raises some

safety concerns, and intratumoral injections are limited by tumor

accessibility. Some researchers have combined STING agonists with

antibodies targeting tumor cells via a cleavage linker to obtain

antibody-drug conjugates (ADCs). ADCs exert strong anti-tumor

effects and show good tolerance for systemic administration. STING

ADCs promote multiple aspects of innate and adaptive anti-tumor

immune responses, including the activation of dendritic cells, T

cells, NK cells, NK T cells and the promotion of M2 to M1

polarization of tumor-associated macrophages (98). Some

researchers have combined STING agonists with capsid-like

hollow polymer nanoparticles. These nanoparticles are
TABLE 3 Immune escape of HHVs.

Virus Protein Approach Ref.

HSV-1 UL37 Deacetylated cGAS (49)

VP22 Inhibited enzymatic activity of cGAS (50)

Disrupted cGAS-DNA agglomeration (51)

HSV-2 ICP27 Inhibited phosphorylation and nuclear shift of IRF3 (53)

gE2, gC2 Protected the virus from antibody and complement neutralization synergistically (55)

HCMV UL31 Inhibited enzymatic activity of cGAS (62)

pp65 Block the interaction of cGAS and STING (63)

IE86 Promoted the degradation of proteasome-dependent STING (65)

UL82 Inhibited the transport of STING from ER to perinuclear microsomes, Hindered recruitment of TBK1 and IRF3 (66)

UL48 Deubiquitinated STING (67)

US9 Disrupted the oligomerization of STING and combination of STING and TBK1, Blocked the nuclear transposition of IRF3 (68)

UL83 Interacts with IFI16 to inhibit IFN signaling (64, 69, 70)

UL23 Reduced interferon stimulus response elements promoter activity (71)

UL138 Reduced the accumulation of IFN-b mRNA (72)

UL94 Interacted with IRF3-activated mediator STING, disrupted the dimerization and translocation of STING (73)

KHSV ORF52 Inhibits cGAMP produced by cGAS (77–79)

VZV ORF9 Inhibited cGAMP produced by cGAS (83)

ORF52 Disrupted cGAS-DNA agglomeration (51)

ORF61 Degraded activated IRF3 (87)

IE62 Blocked the phosphorylation of IRF3 (88)

HHV-6 IE1 Inhibited dimerization and nuclear translocation of IRF3 (92)
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morphologically similar to natural virions and can facilitate co-

presentation of antigens and STING agonists to increase immune

responses (99).

Similarly, to overcome limitations associated with drug delivery

in the body, researchers have designed nanoparticles for

intratumoral injection. These nanoparticles are endowed with

deoxyribonuclease resistance, which increases cellular uptake and

promotes the escape of IFN-stimulated DNA endosomal into the

cytoplasm, eventually mediating the production of pro-

inflammatory cytokines by strongly activating the STING

pathway of cGAS (100). The binding of STING agonists to these

nanoparticles reduced reduce tumor burden by > 50% - 80% and

significantly increased median survival in melanoma (YUMM1.7)

and malignant breast adenoma (E0771) models (101). In the B16-

f10 mouse melanoma lung metastasis model, lipid nanoparticle

therapy containing a STING agonist improved anti-PD-1 resistance

in the mice (102). Mn2+ is a cGAS-STING agonist that can

significantly enhance anti-tumor immunity. Researchers

introduced MnOx into the surface of Mn2+-loaded Pb

nanoparticles to construct Mn2+ -rich photonic nanodrugs

(MnPB-MnOx). All components of MnPB-MnOx were

biocompatible and biodegradable, making cGAS-STING more

available for activation. The local treatment of mice carrying 4T1

breast cancer cells in situ showed that MnPB-MnOx elicited a

systemic response to suppress distal tumors (103).

STING agonists play an important role as antivirals. A synthetic

analog of 3’,3’-c-di(2’F,2’dAMP), 2’,3’-cyclic GMP-AMP, and its

precursor pivaloyloxymethyl exert strong anti-hepatitis B virus

(HBV) effects in primary human hepatocytes regardless of HBV

genotype (104). Zhang X et al. reported that the human STING (h-

STING) agonist 6-bromo-N-(naphthalen-1-yl) benzo[d][1,3]

dioxole-5-carboxamide can induce a broad-spectrum initial

antiviral immunity. The treatment of primary human

fibroblasts with this agonist-induced an antiviral state that

inhibited several flavivirus infections (105). Naturally, STING

can be activated by circular dinucleotides (CDNs) such

as cGAMP. A synthetic CDN, ADU-S100, has been reported

to be effective in activating STING and is being evaluated for

the treatment of cancer in clinical trials. ADU-S100 is mostly

in jec ted intratumora l ly in animal exper iments . The

intraperitoneal injection of STING agonists can inhibit abnormal

angiogenesis of tumors and can increase pericyte coverage. ADU-

S100can normalize tumor vascularity and induce the formation of

tertiary lymphoid structure in a tumor microenvironment (106),

thereby promoting activated CD8+ T-cell infiltrate peritoneal

tumor nodules (107).

The STING agonist 5,6-dimethylfuranone-4-acetic acid

(DMXAA) was originally developed by the Auckland Cancer

Society Research Centre as an anti-cancer drug and later

discovered to be a mouse STING(m-STING) molecular-specific

agonist. In vivo studies have shown that DMXAA can reduce the

size of tumor blood vessels and increase the levels of tumor antigens

(108). By performing single-cell RNA sequencing, researchers

demonstrated that DMXAA could generate a chemokine

environment to promote the recruitment of chimeric antigen

receptor (CAR) T cells, thereby promoting the transport and
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persistence of CAR T cells (109). The antiviral action of DMXAA

is crucial; DMXAA induces the STING signaling activation of

macrophages in chronic HBV mice and inhibits the transcription

of covalently closed circular DNA of HBV and its replication by

epigenetic modification of hepatocytes (110). In addition, DMXAA

administration to HSV-1-infected mice can reduce the viral

load of their peripheral and central nervous systems, thereby

increasing mouse survival (111). The cGAS-STING pathway

promotes the development of inflammatory diseases, and

DMXAA aggravates the severity of these diseases. A study

showed that chronic exposure to DMXAA led to hepatic

steatosis and inflammation in wild-type mice, but not in STING-

deficient mice (112). In an acute pancreatitis model, DMXAA

administration produced more severe symptoms in test mice than

in control mice. Activated STING could sense acinar cell death by

detecting DNA in acinar cells, and thus activated signaling

pathways that promote inflammation (113). In cecal ligation

perforation-induced sepsis mice, mice treated with the STING

agonist DMXAA showed more intestinal cell apoptosis and

severe systemic inflammatory responses than STING knockout

mice (114).

Ramanjulu et al. developed a binding strategy to synergize the

action of two symmetry-based amidobenzimidazole (ABZI)

compounds. They developed ABZIs (diABZIs) with more powerful

cell functions, strong binding capacity to STING (115), and more

effectivity than that possessed by CDNs (116). diABZIs can stimulate

h-STING molecules, induce type I IFN production, strengthen

antiviral immunity, and exert inhibitory effects on various viral

infections. Studies have shown that diABZIs exhibit potent antiviral

activities against the human coronaviruses HCoV-229E and HCoV-

OC43 via the IFN pathway and can prevent SARS-CoV-2 infection

(117). Moreover, treatment with a low dose if diABZI (0.1 mM)

effectively reduced the SARS-CoV-2 viral load on the surface of

human small airway epithelial cells. After diABZI treatment,

viral RNA levels measured by quantitative reverse transcription

polymerase chain reaction were approximately 1000-fold (118).

Furthermore, diABZI prevented epithelial damage in the

reconstituted primary human bronchial airway epithelial acute lung

injury (ALI) system (117). In k18-ace2 transgenic mice infected with

SARS-CoV-2, the nasal administration of diABZI-4 before or after

viral interference completely prevented the onset of severe

respiratory diseases (119). The intravenous injection of diABZI into

immunocompetent mice containing syngeneic colon tumors elicited

strong antitumor activity and resulted in complete and durable tumor

regression (115).

STING inhibitors can inhibit the activation of STING in vivo,

thereby reducing organ damage and inflammatory responses.

Injecting the STING inhibitor C-176 in a diabetic

cardiomyopathy mouse model significantly blocked inflammation

and apoptosis in cardiomyocytes (14). C-176 administered mice

effectively mitigated lung inflammation and fibrosis induced by

graphitized multi-walled carbon nanotubes (23). Pretreatment with

C-176 can prevent the nuclear displacement of NF-kB p65 and p-

IRF3, thereby mitigating kidney damage in mice sensitized by

trichloroethylene (120). The pharmacological blockade of STING

with C-176 improves atherosclerotic formation in APOE-/- mice
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(121). Pretreating mice with acute lung injury with C-176 can

reduce the production of inflammatory cytokines, including TNF-

a, IL-6, IL-12, and IL-1b, and inhibit the gene expression of

chemokines and adhesion molecule vascular cell adhesion

protein-1 in lung tissues, thereby reducing lipopolysaccharide-

induced mouse ALI (122). Researchers have developed spherical

polyethy leneimine-coated mesoporous polydopamine

nanoparticles loaded with C-176 (PEI-PDA@C-176 NPs) for RA

treatment. The intra-articular injection of PEI-PDA@C-176 NPs

effectively reduced dsDNA-induced arthritis and collagen-induced

arthritis in a mouse model (123).

H-151, another novel STING inhibitor, targets STING molecules

in humans and mice and protects various organs from damage. In a

mouse model of intestinal ischemia-reperfusion(I/R) injury, H-151

treatment decreased p-IRF3, serum tissue damage marker (lactate

dehydrogenase and aspartate aminotransferase), and cytokine (IL-1b
and IL-6) levels, as well as reduced ischemia-reperfusion-induced

intestinal and lung injuries and inflammation (124). In cisplatin-

induced kidney injury mice, H151 treatment significantly improved

the kidney injury; tubular cell apoptosis and tubular damage markers

were effectively weakened, whereas renal function kidney

morphology and renal inflammation were significantly improved.

Cisplatin-induced mitochondrial damage and mitochondrial gene

expression were reversed, mitochondrial morphology was improved,

and mitochondrial DNA content was restored (125). In animal

experiments, on the 28th day after myocardial infarction modeling

in mice, the H-151 treatment exerted a significant inhibitory effect on

the cGAS-STING-IRF3 pathway and inflammatory responses,

especially the type I IFN response. Moreover, H-151 treatment

reduced the apoptosis of adult cardiomyocytes and fibrosis of

cardiac fibroblasts in vivo, thus protecting myocardial functions

(15). Similarly, some researchers showed that three weeks after

myocardial infarction in mice, theH-151 inhibited STING to

reduce infarct dilation and scarring. Left ventricular systolic

function increased to near-normal levels, and myocardial

hypertrophy was reduced after H-151 treatment (16).

The cGAS inhibitor RU.521 attenuated the clinical signs of colitis

in wild-type mice and decreased cGAMP and STING levels and

TBK1 and IRF3 phosphorylation in colonic tissues (126). In

pulmonary ventilation I/R rat models, cGAS-STING pathway

inhibition attenuated ER stress, thereby reducing lung injuries and

promoting lung functions (127). In a mouse model of sepsis, the

cGAS inhibitor RU.521significantly increased cardiac functions and

greatly reduced inflammatory responses, oxidative stress, and

apoptosis in septic mouse hearts (128). In a mouse model of

cerebral venous sinus thrombosis (CVST), RU.521 treatment

reduced the levels of 2’3’-cGAMP, STING, and downstream

inflammatory cytokines. It also reduced oxidative stress, decreased

the number of microglia and neutrophils, improved neuronal

apoptosis, and reduced neurological deficits caused by CVST (129).

In recent years, a series of compounds targeting the cGAS-

STING pathway have been synthesized by different means.

Some of them are small molecule cyclic urea activators that can

efficiently activate different STING molecules in humans (130),

whereas some compounds are CDNs that can induce IFN secretion

at higher levels (131). Furthermore, some of these compounds are
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thieno [2,3-d]imidazole derivatives that can induce tumor regression in

mice without inducing weight loss as noval STING agonists (132), and

some are oral STING agonists that can induce long-lasting antitumor

immunity when combined with other drugs to overcome

immunotherapy resistance synergistically (133). Moreover, some of

these compounds are new covalent cGAS inhibitors that exert better

inhibitory effects and selectivity than exerted by RU.521 (134), and

some are new small-molecule human cGAS inhibitors with high

binding affinity and cellular activity in vitro (135).

These approaches provide a basis for future studies to develop

more efficient modulators for the cGAS-STING pathway and

establish ideas for the clinical development of new therapeutic

agents (Table 4).
7 Discussion

The summary of studies results in recent years showed that the

cGAS-STING pathway played different roles in different disease

models. We should look at its role dialectically.

In inflammatory and autoimmune diseases, the cGAS-STING

pathway promotes inflammatory molecule secretion and

recruitment, induces cell apoptosis, and aggravates the occurrence

offibrosis. However, in tumor development and antiviral infections,

the cGAS-STING pathway plays a role in preventing disease

development. It can promote CD8+ T-cell infiltration, change the

tumor microenvironment, and inhibit tumor growth (97, 107). For

antivirals, the activation of the cGAS-STING pathway increases the

type-I-IFN-dominated antiviral responses (7).

HHV infection involves diverse susceptible people and disease

spectra. HHV can cause neonatal infections, tumors, sexually

transmitted diseases, and AIDS; thus, it is destructive to human

health. Hence, attention should be paid to HHV infections and

effective drugs should be promptly identified against the

viral infections.

The cGAS-STING pathway exerts antiviral effects by inducing

type I IFN production, providing a basis for treating HHV infection.

However, HHVs also inhibit the cGAS-STING pathway via various

viral proteins to escape immune surveillance. Viral proteins can

interfere with various steps of the pathway, including inhibiting

cGAS enzyme activity, reducing cGAMP secretion, disrupting

cGAS-DNA binding, deubiquitinating STING, blocking STING

intracellular transfer, inhibiting the recruitment of IRF3 and

TBK1, inhibiting IRF3 phosphorylation and nuclear transport

processes, and inhibiting IFN gene transcription. Thus, inhibiting

viral replication may be possible by mutating these viral proteins.

These findings provide insights for developing new antiviral agents.

In this review, we have summarized the role of the cGAS-

STING pathway in different diseases, especially in anti- HHV

infections, to bridge the gap in the interaction mechanism

between some HHVs and the cGAS-STING pathway. We hope

that this review provides a basis for future antiviral research as well

as provides information on new targets and mechanisms to develop

clinical drugs and vaccines.

However, the application of the cGAS STING pathway in

diseases involves many aspects, and the discussion in the present
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TABLE 4 Regulators of the cGAS-STING pathway.

Regulators Target Name Function Ref.

Agonist STING

cGAMP

Combined with saponin adjuvants to improve vaccine effectiveness (94)

Combined with COX-2 inhibitor celecoxib to inhibit tumor growth (95)

Combined with antineoplastic drug eribulin to enhance expression of IFN-b (96)

Combined with atezolizumab to inhibit breast cancer 4T1 cell growth in mice (97)

ADC Promotes antitumor immune response, systemic administration is well tolerated (98)

Nanoparticle wrapped
STING agonist

Promotes tumor antigen presentation (99)

Intratumoral injection enhances cell uptake (100)

Increases median survival in mice with melanoma (YUMM1.7) and breast malignant
adenoma (E0771).

(101)

Improves anti-PD-1 resistance in mice (102)

2’ F, 2’ dAMP,
pivaloyloxymethyl

Anti-HBV (104)

BNBC Induces broad-spectrum initial antiviral immunity (105)

ADU-S100
Promotes vascular normalization and the formation of tertiary lymphoid structures
(TLS) within the tumor microenvironment

(106, 107)

DMXAA

Reduces the size of tumor blood vessels in vivo and upregulates the expression of tumor
antigens

(108)

Promotes the transport and persistence of CAR T cells (109)

Inhibits hepatitis B virus replication (110)

Increased survival of HSV-1 infected mice (111)

Causes hepatic steatosis and inflammation in wild-type mice (112)

Exacerbates inflammation in mice with acute pancreatitis (113)

Exacerbates intestinal apoptosis and systemic inflammation in mice with sepsis (114)

diABZI

Complete and durable regression of colon tumors in mice (115)

Prevents epithelial injury in acute lung injury (117)

Block SARS-CoV-2 infection (117–119)

Inhibitor

STING

C-176

Blocks inflammation and apoptosis of cardiomyocytes in diabetic DCM mice (14)

Reduces lung inflammation and fibrosis in mice (23)

Reduces kidney damage in mice caused by trichloroethylene sensitization (120)

Improve atherosclerotic formation in APOE-/- mice (121)

Mitigation of LPS-induced ALI in mice (122)

PEI-PDA@C-176 NPs Mitigates of joint damage in mouse models of arthritis (123)

H-151

Reduces intestinal and lung injury in ischemia-reperfusion mice (124)

Improves cisplatin-induced kidney damage (125)

Reduce apoptosis of adult cardiomyocytes and fibrosis of cardiac fibroblasts,
protects myocardial function

(15)

Reduces myocardial infarction dilation and scarring, reduces myocardial hypertrophy (16)

cGAS RU.521

Relieves wild-type mouse colitis (126)

Reduces lung injury in lung-ventilation-ischemia-reperfusion rats, promotes lung function (127)

Increases cardiac function in sepsis mice, reduces inflammatory response, oxidative stress
and apoptosis in mouse hearts

(128)

Reduces neurological deficits in CVST mice (129)
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review may not be detailed enough. EBV, HHV-6, HHV-7, and

HHV-8 cause asymptomatic infections in the early clinical stage,

and in some patients, symptoms only appear when the infections

lead to serious complications or comorbidities. Thus, some gaps in

the interaction between these viruses and the cGAS-sting pathway,

which needs to be addressed and explored in future studies.

In recent years, agonists or inhibitors for the cGAS-STING

pathway have also been actively developed. Small-molecule

modulators with high efficacy and absorption rates and low side

effects need to be developed. cGAS-STING pathway modulators

have been studied intensively from the perspective of anti-tumor

therapy. Many researchers have loaded STING agonists with

nanoparticle, either by intratumoral injection or in combination

with other drugs, to overcome limitations such as antitumor drug

resistance and drug transportation in the body.

Besides, antiviral studies have shown that cGAS-STING pathway

modulators exert good effects in vivo and in vitro; however, a few

drugs are supported by clinical trial data (118, 136, 137). Many

modulators have played an essential role theoretically in vitro and in

vivo; however, owing to the specificity of human and mouse STING,

as well as the metabolism and absorption of unknown drugs in the

human body, cGAS-STING pathway modulators that can be used in

clinical practice are yet to be explored. Therefore, future studies

should be directed toward exploring such modulators.
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