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neurodegenerative disorders
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Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
CD8+ lymphocytes are adaptive immunity cells with the particular function to

directly kill the target cell following antigen recognition in the context of MHC

class I. In addition, CD8+ T cells may release pro-inflammatory cytokines, such as

tumor necrosis factor-a (TNF-a) and interferon-g (IFN-g), and a plethora of other

cytokines and chemoattractants modulating immune and inflammatory

responses. A role for CD8+ T cells has been suggested in aging and several

diseases of the central nervous system (CNS), including Alzheimer’s disease,

Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, limbic

encephalitis-induced temporal lobe epilepsy and Susac syndrome. Here we

discuss the phenotypic and functional alterations of CD8+ T cell compartment

during these conditions, highlighting similarities and differences between CNS

disorders. Particularly, we describe the pathological changes in CD8+ T cell

memory phenotypes emphasizing the role of senescence and exhaustion in

promoting neuroinflammation and neurodegeneration. We also discuss the

relevance of trafficking molecules such as selectins, mucins and integrins

controlling the extravasation of CD8+ T cells into the CNS and promoting

disease development. Finally, we discuss how CD8+ T cells may induce CNS

tissue damage leading to neurodegeneration and suggest that targeting

detrimental CD8+ T cells functionsmay have therapeutic effect in CNS disorders.
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Introduction

The central nervous system (CNS) has been previously viewed as an immune-

privileged site inaccessible to peripheral immune cells during normal, steady-state

conditions (1). The role of neuroinflammation in neurodegenerative disorders, such as

Alzheimer’s disease (AD) and Parkinson’s disease (PD), has been disregarded for a long

period of time. However, current research has completely redefined the concept of CNS

immunity, shifting it from the belief that the brain is an isolated organ, impervious to

peripheral immune cells, to the recognition of the key role for immune mechanisms and

neuroimmune interactions during physiological and pathological conditions (2–7).

Whereas the role of innate immunity, especially microglia, in neurodegeneration was the

focus of numerous studies, the involvement of adaptive immune cells, particularly CD8+ T
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lymphocytes, in neurological disorders was less explored (2, 5, 6, 8–

19). The reason for this discrepancy may be due to a heterogeneous

and plastic CD8+ T cell compartment, with T cell subsets that have

not been yet well characterized in both normal and diseased

conditions (7, 20, 21). Indeed, recent studies started to unveil the

phenotypic and functional alterations occurring in the

subpopulations of CD8+ T lymphocytes in various CNS diseases,

but this research area is still in its infancy and many questions

remain unanswered (6, 12, 14, 17–19, 22–25). Although CD8+ T

lymphocytes are present in significant numbers in the brains of

healthy individuals (22), their activity needs to be properly

regulated in order to prevent potential detrimental local effects

(15). Aging is widely recognized as a major risk factor for the

development of neurodegenerative diseases and the aged CNS is

characterized by a gradual loss of naïve and memory CD8+ T cells

and an exponential increase in the number of transcriptionally

altered exhausted and senescent T lymphocytes (20, 23, 26–28).

However, the role of aging-induced CD8+ T cell alterations in brain

disorders is poorly understood and a comprehensive view of the

molecular mechanisms through which CD8+ T lymphocytes

contribute to the development of diseases is lacking.

In this review, we discuss the role of CD8+ T lymphocytes in

various neuroinflammatory pathologies, including common

disorders such as AD, PD, multiple sclerosis (MS), and

amyotrophic lateral sclerosis (ALS), as well as rare brain disorders

such as limbic encephalitis-induced temporal lobe epilepsy (LE-

induced TLE) and Susac syndrome (Sus). We highlight the

heterogeneity of CD8+ T cell populations and their multifaced

roles and discuss common disease pathways but also how CD8+ T

cells may specifically promote aging and the development of

neurodegenerative diseases.
CD8+ T cells origins and
differentiation

CD8+ T lymphocytes are adaptive immune cells that arise from

the bone marrow and mature in the thymus (26). After the release

in the bloodstream, mature naïve CD8+ T cells search for their

cognate ant igen presented in the context of major

histocompatibility complex-I (MHC-I) molecules expressed on

the surface of antigen-presenting cells (APC) (29, 30). Upon

antigen encounter, naïve CD8+ T lymphocytes become effector

cells (31), whose main role is to mediate the apoptosis of the target

cell via direct and indirect immune mechanisms, known as T cell-

mediated cytotoxicity (32, 33). During this process, conventional T

cells first establish contacts with the target cell via FasL-CD95

(FasR) binding, inducing the activation of the caspase cascade and

releasing granzymes and perforins to facilitate apoptosis (33).

Secondly, they produce pro-inflammatory cytokines, such as

tumor necrosis factor-a (TNF-a) and interferon-g (IFN-g), which
stimulate the expression of MHC-I and FasR molecules on the

surface of the target cell, further promoting its death (32, 34–36).

After antigen clearance, most effector CD8+ T lymphocytes

undergo a controlled apoptosis during the “contraction phase” of
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the immune response, with only a small fraction of cells surviving as

memory CD8+ T cells, providing immune protection from

experienced antigens in the circulation and inside the tissues (37).

Importantly, memory CD8+ T lymphocytes are maintained

throughout lifetime, but their numbers may vary over time and

during certain disease conditions (24, 26, 28, 30).
Naïve CD8+ T cells

Naïve CD8+ T lymphocytes are mature circulating cells that can

acquire various effector functions depending on external clues (38).

Their differentiation program is not pre-determined, but is shaped

instead by conditions such as inflammatory states and ageing (39). In

mice, the naïve phenotype is characterized by the expression of surface

markers CD62L (L-selectin) and CD197 (CCR7), while in humans also

includes the expression of CD45RA epitope (32, 39, 40) (Figure 1).

Upon activation, naïve CD8+ T cells lose the expression of homing

receptors, initiating a proliferation and differentiation program

resulting in an army of effector CD8+ T lymphocytes (31, 40, 41)

(Figure 1). In addition to the traditional method of identifying cells

based on their classical surface markers, a new approach has emerged

that focuses on their metabolic traits. Recent research has shown that

naïve and memory T cells rely on oxidative phosphorylation and fatty

acid oxidation, while effector T cells use aerobic glycolysis and amino

acid metabolism to maintain their active state (42, 43).
Effector CD8+ T cells

In contrast to naïve CD8+ T cells, the fate of effector T

lymphocytes is more clearly defined (44, 45). Indeed, these cells

are specifically activated and directed toward pathogen-derived or

tumor-derived peptides, (29, 46, 47). Effector CD8+ T lymphocytes

classically express CD44 and CD69 surface molecules, allowing

them to enter peripheral tissues (32, 48, 49) (Figure 1). Moreover,

they can be identified by the expression of CD95 (FasR) molecule,

which contributes to the direct CD8-mediated cytotoxic process,

and by the Ki-67 proliferation marker, which is important during

clonal expansion (50–52). CD8+ T cells also possess a high

cytotoxic potential by secreting various effector and cytotoxic

molecules, including granzymes, perforins, IFN-g, TNF-a and

interleukin-2 (IL-2), which enable them to effectively combat

infections (32, 33, 53, 54) (Figure 1).

Following antigen clearance, a two-tiered contraction occurs in

the CD8+ T cell population, defined by the expression of the killer

cell lectin-like receptor G member 1 (KLRG1). Short-lived effector

KLRG1+ CD127- CD8+ T cells undergo selective apoptosis,

whereas effector KLRG1+ CD127+ CD8+ T lymphocytes are

preserved and evolve into exKLRG1 long-lived memory T cells,

providing immunological memory (37, 41, 44) (Figure 1).

However, a subset of effector CD8+ T cells, called memory

precursors effector (TMPE) cells, has been found to lack KLRG1

expression, and this was associated with enhanced survival during

the contraction phase and a higher developmental plasticity (37).
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Accordingly, TMPE cells retain the capability to differentiate in all

the subsets of memory cells, playing a critical role in long-term

protective immunity (37).
Memory CD8+ T cells

During the memory phase of the immune response, CD8+ T cells

display immunological memory, which enhances their ability to

rapidly and effectively respond to previously encountered

pathogens, thus safeguarding the body against known threats (55, 56).

The memory compartment of CD8+ T lymphocytes comprises

three different cell subsets: (i) T central memory (TCM), (ii) T effector

memory (TEM), and (iii) tissue-resident memory (TRM) (55, 57). It is

largely known that effector CD8+ T lymphocytes may generate all

these memory populations during the “contraction phase” of the

immune response and CX3CR1 expression has a key role in this
Frontiers in Immunology 03
process. Specifically, CX3CR1+ effector T cells appear to

preferentially differentiate into TEM cells, while CX3CR1-

precursors give rise to TCM cells (37, 58, 59) (Figure 1). The

different origin of TCM and TEM reflects their phenotypical and

functional differences. Similarly to naïve cells, TCM CD8+ T

lymphocytes express CD62L and CD197 homing receptors, which

are responsible for their recirculating behavior (32, 48, 60). However,

TCM cells also express CD44 molecule in mice, and both CD44 and

CD45RO epitopes in humans, indicating their memory-like

phenotype (39, 61) (Figure 1). During the second expansion phase,

TCM CD8+ T cells encounter their cognate antigen and differentiate

into TEM CD8+ T lymphocytes, losing the expression of homing

receptors and migrating into peripheral tissues, where they can

release cytotoxic molecules (39, 62) (Figure 1). When the antigen is

effectively cleared, TEM cells evolve into antigen-specific TCM CD8+ T

lymphocytes, and the ultimate goal of these two populations is to

provide systemic immunity.
FIGURE 1

Differentiation of CD8+ T lymphocytes during acute and chronic inflammation. Inflammatory reactions are associated to several conditions including
infections, tumors, autoimmune disorders and ageing. During acute inflammatory conditions, such as infections, naïve lymphocytes undergo cell activation
becoming effector cells and leading to the “effector phase” of the immune response. Clonally expanded CD8+ T lymphocytes will then invade peripheral
tissues, where they can exert cytotoxic functions. After antigen clearance, during the “contraction phase” of the immune response, KLRG1+ CD127-
CX3CR1- short-lived effector cells undergo a controlled apoptosis, while long-lived KLRG1+ CD127+ CX3CR1- and KLRG1+ CD127+ CX3CR1+ give origin to
central memory (TCM) and T effector memory (TEM) cells, respectively, shaping immunological memory. Once in the tissues, TEM lymphocytes could also
undergo to another differentiation step, leading to the formation of CD69+ CD103- tissue resident memory (TRM) cells, whereas the CD69+ CD103+ TRM
subset arise from KLRG1- effector TRM precursors. In addition, in case of re-infection with the same antigen, during the so-called “secondary immune
response”, TCM lymphocytes are rapidly re-activated, differentiating into TEM cells. This differentiation cascade is altered under chronic immune and
inflammatory reactions in which antigen stimulation is prolonged and effector CD8+ T lymphocytes undergo two distinct differentiation steps: (i) exhaustion,
which is characterized by a hierarchical loss of effector functions and a gradual increase of intrleukin-2 (IL-2) production and granzyme B, perforin, tumor
necrosis factor (TNF), and interferon gamma (IFNg) release (CXCR5+ PD-1+ TEX-pre ➔ TIM-3+ PD-1+ TEX -Int ➔ CD101+ TIM-3+ PD-1+ TEX-Term); and (ii)
senescence, during which CD57+ PD-1+ CD45RA+ TEMRA CD8+ T lymphocytes expressing natural killer (NK) receptors undergo cell cycle arrest, poor
proliferation, and functional abnormalities, sustaining inflammation. Depending on the strength of antigenic stimulation, TEMRA cells release increased levels of
senescent-associated secretory phenotype (SASP)-related proteases, cytokines, and interleukins (CD27+ CD28+ TEMRA ➔ CD27- CD28- TEMRA). Created with
Biorender.com.
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Differently, local protective immune responses are orchestrated by

TRM CD8+ T lymphocytes, which have a distinct profile from other

CD8+ T cell subsets (59, 63). Notably, TRM CD8+ T cells are not

recirculating, but are mainly organized in lymphoid niches close to

anatomical and physiological barriers, acting as sentinels and

protecting against reinfections (64). While further research is needed

to fully understand the microenvironmental signals needed to establish

and maintain the population of TRM CD8+ T cells into different

peripheral tissues, it is clear that IL-15, IL-7, TGF-b, IL-21, TNF-a, and
IL-33 play a crucial role in the formation of this CD8+ T cell subset (21,

65–68). The retention of TRM CD8+ T cells in peripheral tissues is

mediated by CD69 and CD103 molecules, which are classically

expressed on the surface of both human and murine TRM CD8+ T

lymphocytes (22, 37). CD69 inhibits the expression of sphingosine-1-

phosphate receptor 1 (S1PR1) molecule, promoting T cell residency,

while CD103 integrin, an adhesion receptor for E-cadherin, contributes

to CD8+ T cells persistence inside the tissues (69–71). Notably, all TRM
CD8+ T lymphocytes express CD103 integrin in lymphoid tissues, but

its expression may be lost in non-lymphoid tissues (64, 69).

Accordingly, several studies reported the presence of both CD103+

CD69+ and CD103- CD69+ TRM CD8+ T lymphocytes in non-

lymphoid tissues, such as liver, brain, gut, skin, and lungs (17, 22, 63,

65, 72–76). Recently, it has been demonstrated that CD103+ and

CD103- TRM CD8+ T cells originate from two separate differentiation

paths and are characterized by distinct effector functions (22, 37).

ExKLRG1 effector CD8+ T cells give rise to CD103- TRM lymphocytes

which can be distinguished from CD103+ counterpart due to their

cytotoxic potential (37, 65) (Figure 1). In contrast, the precursors of

CD103+ TRM cells, featuring a lower expression of granzymes and

other effector molecules, seem to originate from KLRG1- TMPE CD8+

T lymphocytes (22, 37, 65) (Figure 1).

It is now well established that the TRM compartment of CD8+ T

lymphocytes upregulates CXCR6 homing receptor gene, and ITGA1

gene, encoding CD49a collagen-binding integrin, while

downregulating SELL and CX3CR1 genes, encoding for CD62L

and CX3CR1 molecules, respectively (17, 57, 77). Moreover, Runx3,

Notch, Bhlhe40, Blimp1 and its homolog Hobit, and the AP-1 family

members, including Jun, Junb, Jund, Fos, Fosb, and Batf have been

identified as crucial transcription factors (TFs) in the regulation of

TRM cells formation (59). Additionally, TFs induced by interferon

signaling, such as Stat1, Irf1, Irf7, and Irf9, or related to the NF-kB
signaling pathway, including Bcl3, Rela, Relb, Rel, and Nfkb2 are

enriched in TRM T lymphocytes, adding further markers for this

CD8+ T cell population (59). Altogether, these data highlight the

heterogenicity and complexity within the TRM compartment of the

CD8+ T cell population.
Exhausted CD8+ T cells

All stages of the immune response and their players are perfectly

coordinated and functioning under acute inflammatory states, when

the immune reaction successfully clears antigens. However, persistent

antigen stimulation leads to chronic inflammation, disrupting this

harmoniously synchronized mechanism (78, 79). Effector T cells in

this condition become dysfunctional, undergoing exhaustion,
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potential (78, 79) (Figure 1; Table 1). Importantly, T cell

exhaustion is not just an alteration of cell phenotype and functions,

but also represents a distinct differentiation state, with different

characteristics compared to the memory features (24, 81).

Exhausted (TEX) CD8+ T cells maintain the same characteristics

under different inflammatory conditions, with a well-defined gene

signature, including TCR-signaling related genes such as Batf, Egr2,

Ezh2, Irf4, Nfatc1, Nfatc2, Nr4a1, Nr4a2, and Nr4a3 (94–96),

confirming that continuous exposure to persistent antigens is a key

factor in T cell exhaustion, whereas short antigen exposures lead to

exhaustion recovery (80) (81) (Table 1).

Hyporesponsive TEX cells are defined by their high surface

expression of programmed cell death-1 (PD-1), lymphocyte-

activation gene 3 (LAG-3), CD244 (2B4), T-cell immunoglobulin

and mucin domain-3 (TIM-3), cytotoxic T-lymphocyte-associated

protein-4 (CTLA-4), and CD160 inhibitory receptors (24, 82–85)

(Table 1). These receptors typically expressed on the surface of TEX

CD8+ T bind to a variety of ligands, suggesting that

microenvironment clues, such as ligand availability, may regulate

the functionality of TEX CD8+ T lymphocytes (78, 79).

TEX lymphocyte compartment is heterogeneous showing three

differentiation states: (i) T cell factor 1+ (TCF1+) PD1+ CXCR5+

TEX precursors (TEX-Pre), expressing the T-bet TF and showing

memory-like features, such as the expression of Sell, Ccr7, Id3, and

Bcl6 genes; (ii) PD1+ TIM-3+ TCF1- Intermediate TEX (TEX-Int),

not expressing Zeb1 gene, which encodes for the ZEB-1 TF; and (iii)

PD1+ TIM-3+ CD101+ TCF1- terminally differentiated TEX (TEX-

Term) expressing the TFs ZEB-1, Blimp-1, and Eomesodermin

(EOMES) (24, 97, 98) (Figure 1). Along the differentiation process,

TEX-Pre, TEX-Int, and TEX-Term show a hierarchical decrease of

effector activity, marked by mitochondrial dysfunctions, and

proliferative capacity, while gradually increasing the expression of

inhibitory receptors, ultimately leading to cell death (78, 98, 99)

(Figure 1). However, TEX lymphocytes do not entirely lack effector

functions, exhibiting instead a gradual increase of (i) IL-2

production, (ii) cytotoxicity mediated by granzyme B and

perforin, and (iii) release of pro-inflammatory molecules such as

IFNg and TNF-a (78, 79, 98) (Figure 1; Table 1).
Senescent CD8+ T cells

Senescent CD8+ T cells exhibit cell cycle arrest and poor

proliferation along with severe functional abnormalities similar to

those occurring during T cell exhaustion (78, 87, 88) (Figure 1;

Table 1). They differentiate from effector CD8+ T cells typically

occurring during conditions associated to chronic inflammation,

including auto-immune diseases, cancer and ageing (88–91)

(Table 1). Unlike hypo-functional TEX lymphocytes, senescent

CD8+ T lymphocytes continue to secrete a range of factors

including proteases such as cathepsins and serine proteases, and

cytokines such as CCL5, CCL16, CCL23, TNF-a, IL-29, and IL-18,

which in turn may induce IFN-g production, suggesting a pro-

inflammatory senescent-associated secretory phenotype (SASP)

(87, 92) (Table 1). Moreover, CD45RA molecule is re-express on
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the surface of these hyper-functional CD8+ T lymphocytes, which

are commonly referred as effector memory CD45RA+ (TEMRA) cells

(91). TEMRA cells are characterized by the simultaneous expression

of PD-1, KLRG-1, and CD57 on their surface, which also represent

classical phenotypical markers of senescent CD8+ T lymphocytes

(82, 91, 100–103) (Figure 1). A certain degree of heterogenicity has

been also shown among TEMRA lymphocytes. Accordingly, a recent

report revealed that effector CD8+ T cells differentiate into CD27-

CD28- or CD27+ CD28+ TEMRA cells based on the strength of TCR

engagement and the immunogenicity of the tumor antigens (91)

(Figure 1), while other studies have shown that the lack of CD27

and CD28 surface molecules is associated with the expression of p16

and p21 proteins, causing G1 cell cycle arrest and replicative

senescence (86, 87) (Table 1).

Senescent CD8+ T cells possess the capability to express natural

killer (NK)-associated receptors (NKR), such as NKG2D, NKG2C,

NKG2A, and killer immunoglobulin-like receptor (KIR) families,

allowing them to be reprogrammed into hyper-functional

lymphocytes with the ability to recognize and kill target cells

through both TCR and NKR recognition mechanisms (93)

(Figure 1; Table 1). Notably, senescent CD8+ T lymphocytes

expressing NKR need to be distinguished from invariant natural

killer T (iNKT) cells, which are a subset of natural killer T (NKT)

innate immune cells that decrease with age (104, 105). Thus,

senescent CD8+ T cells seem to have beneficial as well as

detrimental roles during aging, having the potential to retain a

broad spectrum of effector functions to kill malignant and infected

cells, whilst also having the capacity to induce or sustain

autoimmunity and other chronic disorders (106). However,

further studies are required to better clarify the involvement of

senescent CD8+ T cells during homeostasis and disease.
CD8+ T cells during ageing

CD8+ T cell compartment is essential in providing long-term

immune protection, but its composition may be altered during
Frontiers in Immunology 05
aging (26, 28, 89). Naïve CD8+ T cells are mainly located in the

blood, spleen and lymph nodes, where they can respond to new

antigens, while memory CD8+ T cells are found predominantly in

tissues such as lung, gut, and brain to rapidly protect against

potential infections (11, 22, 26, 60, 77, 107). Infancy is

characterized by the egress of a large number of naïve CD8+ T

cells from the thymus, which then differentiate into memory cells

upon antigen exposure (26, 28, 108). Differently, aging is associated

with immunosenescence, resulting in a decrease in the number of

naïve and memory CD8+ T cells and an increase of senescent CD8+

T lymphocytes, particularly in the blood and blood-rich sites, such

as spleen and lungs (26, 28, 60, 77, 82, 109). During aging, the

production of naïve CD8+ T lymphocytes significantly decreases

due to age-related thymic involution. This process also leads to

changes in the phenotype of CD8+ T cells, such as an increased

generation of self-reactive T cells (110, 111), potentially explaining

the higher occurrence of autoimmune disorders in older

individuals (112).

Moreover, the reduced adaptive immune response during aging

promotes innate immunity responses and the release of pro-

inflammatory mediators, leading to a state of low-grade systemic

inflammation, creating a vicious cycle that further contributes to

immunosenescence (113–115). Inflammageing also causes the

accumulation of TEX and senescent CD8+ T cells in various

organs, where they can make up to 60% of all CD8+ T cells,

contributing to significant immune alterations during aging (115,

116). This overall decline in T cell functionality, combined with an

increased apoptotic rate of T lymphocytes, can lead to the

development of age-related diseases, including neurodegeneration

(114). Accordingly, it was recently demonstrated that accumulation

of CD8+ T cells in the CNS of aged mice drives axonal degeneration

and contributes to age-related cognitive and motor decline through

the release of the cytotoxic molecule granzyme B (20). In addition, it

was shown that clonally expanded INF-g-producing CD8+ T cells

infiltrate old neurogenic niches in the healthy brain, inhibiting the

proliferation of neural stem-cells, potentially contributing to age-

related deterioration of brain functions (117). These data suggest
TABLE 1 Main differences between exhausted and senescent CD8+ T lymphocytes.

CD8+ T cell subset Key features References

Exhausted

Loss of effector functions and proliferative potential (78, 79)

Chronic activation due to prolonged antigen exposure (80)

Exhaustion recovery after short antigen exposures (81)

Upregulation of inhibitory receptors (24, 82–85)

Hypo-functionality (78, 79)

Senescent

Cell cycle arrest - Replicative senescence (78, 86–88)

Increased during chronic inflammation (auto-immune diseases, cancer, ageing) (88–91)

Senescence-associated secretory phenotype (SASP) (87, 92)

DNA damage response (p16 and p21) (86, 87)

Expression of NKR (93)

Hyper-functionality (87, 92)
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that targeting CD8+ CNS-associated T cells in older adults might

mitigate aging-related decline of brain structures and functions.

Despite these evidences showing that alterations in CD8+ T

lymphocyte characterize ageing and sustain neurodegeneration, it is

still debated whether these are the cause or consequence of age-

related micro-environment perturbations. Recent findings suggest

that reduced extrinsic nutritional availability of glucose, amino-

acids, and lipids in older tissues may negatively affect CD8+ T cell

functioning. In support of this, metabolic alterations are considered

among the main differences between young and old T lymphocytes

(113, 118). Thus, the immune changes considered as characteristics

of ageing could be instead viewed as the manifestation of elderly-

related environmental interferences, which can be modulated by

lifestyle factors. Overall, age-related T cell dysfunctions can be

regarded as alterations potentially mitigated by a nutrition- and

exercise-based approach to improve human health and longevity

(118, 119).
CD8+ T cells in brain diseases

Immunosenescence and inflammageing play a role in patients

with neurodegenerative and neuroinflammatory disorders such as

AD, PD, and MS, in which the well-balanced inflammatory and

anti-inflammatory equilibrium is lost, leading to a prolonged and

uncontrolled state of chronic low-grade inflammation (114, 120). In

addition, senescent CD8+ T lymphocytes were also detected in the

brain of patients affected by LE-induced TLE and Sus, suggesting

common pathogenic mechanisms underlying different brain

disorders (13, 18).
Alzheimer’s disease

AD is a progressive neurodegenerative disorder characterized

by neuronal death and accumulation of amyloid beta (Ab) deposits
and hyperphosphorylated tau protein in the brain, leading to

memory loss and cognitive impairment (121). To date,

approximately 35 million people worldwide have been affected by

AD, making this disease the most common cause of dementia (122).

Approximatively 75% of AD subjects are 75 years old or older,

indicating a strong correlation between the development of AD and

aging (123). Moreover, a shorter telomere length in CD8+ T cells

was correlated to a greater AD severity, together with a lower CD28

expression and an increase of cytotoxic molecules and sensitivity to

apoptosis, suggesting the presence of dysfunctional CD8+ T cells in

AD (124, 125). The majority of studies performed in AD showed

changes in the overall CD8+ T cell population in mice developing

amyloid-related pathology, that may not closely reflect the human

condition in which tau pathology also represents a disease hallmark

(8, 10, 15, 17). Indeed, the association between tau pathology and

CD8 T cells was previously suggested, although more recent studies

found no correlation between tau hyperphosphorylation and the

presence of cytotoxic T cells (15, 126, 127).

The heterogenicity of the CD8+ T compartment has been only

recently studied in AD, showing clonally expanded CD8+ TEMRA
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cells with cytotoxic potential in the cerebrospinal fluid (CSF) of AD

individuals (6). Surprisingly, TEMRA lymphocytes were not clonally

expanded against AD-specific antigens such as Ab peptides or tau

protein, but they were reactive in the presence of Epstein-Barr virus

(EBV) antigens (6) (Figure 2). These data do not provide a causal

link between EBV infection and AD, but suggest that senescence of

CD8+ T lymphocytes may play a role in AD (128). Furthermore, the

absence of clonal expansion toward disease-specific antigens

suggests that CD8+ T cell trafficking into the CNS could be a

stochastic phenomenon (6, 17). Accordingly, the damage of CNS

barriers previously described in AD can favor nonspecific CD8+ T

cells brain invasion from the blood circulation (129) (Figure 2). The

increased expression of lymphocyte function-associated antigen 1

(LFA-1) integrin on infiltrating total T cells in the AD brain, and the

augmented expression of Itgb2 gene, encoding for the CD18 subunit

of LFA-1 molecule, in the hippocampus of a mouse model of

tauopathy compared to controls suggest a role for LFA-1-

intercellular adhesion molecule-1 (ICAM-1) interactions in the

migration of CD8+ T cells in the CNS during AD (8, 126). This

is also supported by the increased expression of ICAM-1 detected

on brain endothelial cells of mice with AD-like disease and higher

levels of soluble ICAM-1 in the plasma from AD subjects compared

to controls (3, 130).

Although ablation of CD8+ T cells in AD mice did not reduce

Ab deposition and cognitive deficits in APP-PS1 mice at later

disease stages, recent studies suggested that CD8+ T cells migrate

in the brain parenchyma in subjects with AD and its mouse models

(15, 127) (Figure 2). The phenotype of CD8+ T lymphocytes in aged

and AD transgenic mice have a TRM gene signature, but the

characterization is still in its infancy (17, 20) (Figure 2). In

summary, existing literature suggests CD8+ T cell heterogeneity

in AD, highlighting a potential role for TEMRA and TRM cells subsets

in the pathogenesis of this disorder. However, the involvement of

CD8+ T cells in AD is still unclear and more studies are needed to

identify the molecular mechanisms mediating a potential CD8+ T

cell-dependent damage.
Parkinson’s disease

PD is the second most common form of neurodegenerative

disorder, affecting more than 10 millions people around the world,

with an increased prevalence in the aged population (131). The

main neuropathological hallmark of the disease is the presence a-
synuclein (a-syn) aggregates, referred to as Lewy bodies, and Lewy

neurites, observed in neuromelanin-containing neurons of the

substantia nigra (SN) (132). This is associated with the classical

PD symptoms of bradykinesia, rest tremor, muscular rigidity,

motor and cognitive alterations, as well as autonomic

dysfunctions (132). Similarly to AD, the initiators of the

pathogenic cascade leading to neuronal death and to the related

neurological alterations are presently poorly understood in PD.

Recently, a study conducted in PD patients provided novel insights

into the T cell-mediated adaptive immune responses by performing

single-cell transcriptome and TCR sequencing, revealing a continuous

progression of CD8+ T cells from a central memory to a terminal
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effector phenotype (133). In addition, previous data showed that CD8+

T cells are increased in the substantia nigra of diagnosed PD cases and

positively correlate with neuronal death (5). Interestingly, CD8+ T cells

infiltration is present since early disease stages, preceding neuronal loss

and a-syn aggregation, suggesting a role for these cells in disease

development (5). Notably, although a direct demonstration is still

lacking, CD8+ T cells with a TRM phenotype were detected near altered

neurons in the substantia nigra, suggesting that CD8+ T cells may exert

cytotoxic functions potentially contributing to the pathological changes

in PD (5) (Figure 2). Furthermore, a longitudinal case study and

analysis of two independent cohorts revealed that elevated a-syn-
specific CD8+ T cell responses in the blood were present prior to and

after diagnosis of motor PD, and were significantly associated with age

(134) (Figure 2). These studies suggest that CD8+ T cell infiltration is

an early event in PD, paralleling the progression of neuronal death and

synucleinopathy, providing insight into new disease mechanisms and
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early diagnosis in PD. Accordingly, T cells from PD patients do not

react to common antigens, but are activated by a-syn-derived antigens,
suggesting that the T cell responses observed in PD may be prevalently

directed towards autoantigens (135).

Recent data showed a core gene signature for a-syn-reactive CD8+
T lymphocytes in PD, which includes the expression of CX3CR1,

CCR5, CCR1 pro-inflammatory genes, but also genes expressed in

neurons such as LRRK2, LAMP3, and aquaporin genes, previously

associated with PD worsening (136). Interestingly, the increased

expression of the leucine-rich repeat kinase 2 (LRRK2) in CD8+ T

lymphocytes fromPD patients correlated with an increased secretion of

pro-inflammatory molecules and cell activation, suggesting that

LRRK2 may represent a therapeutic target in PD (137). Accordingly,

increased expression of granzymes and perforin 1 in clonally expanded

CD8+ T cells are present in the blood and CSF of PD patients (133)

(Figure 2). Also, the increased cytotoxicity of CD8+ T lymphocytes in
FIGURE 2

Commonalities and differences in CD8+ T cell-driven immune responses in brain disorders. Alzheimer’s disease (AD), Parkinson’s disease (PD),
multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), limbic encephalitis (LE)-induced temporal lobe epilepsy (TLE), and Susac syndrome (Sus)
are all characterized by the migration of circulating CD8+ T lymphocytes into the CNS. The following molecular pathways drive the extravasation of
CD8+ T cells in these disorders: (i) VCAM-1/VLA-4 adhesion pathway contributes to all diseases discussed in this review; (ii) ICAM-1/LFA-1 adhesion
pathway has a role in PD, MS, and LE-induced TLE; and (iii) PSGL-1/CD62P adhesion pathway is involved only in MS. Once in the CNS, CD8+ T
lymphocytes clonally expanded against non-self (AD, MS, and Sus) or self (PD, ALS, and LE-induced TLE) antigens: (i) induce synaptic dysfunctions in
AD; (ii) drive neuronal loss in PD, MS, and ALS; (iii) support seizures and other epilepsy-related symptoms in LE-induced TLE; and (iv) promote blood-
brain barrier (BBB) leakage, neuroinflammation, and microinfarcts damaging endothelial cells in Sus. CD8+ T cell-driven cellular alterations are
induced by direct cytotoxicity (TCR-MHC-I binding) in PD, ALS, and LE-induced TLE, as well as soluble factors, including granzymes, in MS and Sus.
In addition, two district features characterize MS: (i) B cells present Epstein Barr-derived (EBV) antigens to T cells; and (ii) CCL2 is crucially involved in
the homing of blood-derived CD8+ T lymphocytes to the inflamed CNS. ALS is apparently the only disorder not yet associated to BBB dysfunction.
CD8+ T cells from patients with AD, ALS, and Sus show a TEMRA senescent-like phenotype, while in MS CD8+ T cells have an “exhausted” phenotype.
Except for PD, CD8+ T lymphocytes from all discussed CNS disorders, have tissue resident memory (TRM) traits. Created with Biorender.com.
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PD correlates with a terminal effector phenotype and the expression of

proteins involved in cell migration, such as CX3CR1 and the adhesion

G protein-coupled receptor G1 (ADGRG1) (133). The migration of

CD8+ T lymphocytes into the CNS during PD (5) has been associated

with the upregulation of ITGAM and ITGB1 genes, suggesting a role

for CD11b and CD29, subunits of LFA-1 and very late antigen-4

(VLA-4) integrins, respectively (133) (Figure 2). Moreover, the

disruption of the blood-brain barrier (BBB) in PD (138, 139),

indicate that vascular phenomena may also contribute to CD8+

T cell infiltration into the CNS (Figure 2). Overall, these findings

emphasize an increased immune reactivity of CD8+ T cells against

CNS antigens in PD, which is associated with an enhanced clonally

expanded T cell infiltration and cytotoxicity in the brain, suggesting

a circulating origin of a-syn-reactive CD8+ T lymphocytes in the

PD brains (133, 135). Future studies exploring the phenotype and

functions of CD8+ T lymphocyte subsets in PD could lead to the

identification of novel and specific therapeutic targets for this

neurodegenerative disease.
Multiple sclerosis

MS is a chronic inflammatory and autoimmune disorder of the

CNS affecting approximatively 2.8 million people worldwide (140).

Multifocal inflammatory lesions develop in both brain and spinal

cord (SC), resulting in demyelination and neurodegeneration and

leading to a progressive decline in motor, sensory, and cognitive

functions (141). In most patients, MS is characterized by a relapsing

and remitting onset, followed by a chronic, prolonged, and

progressive inflammatory state during which the neurological

symptoms gradually worse (141). Several studies have shown that

CD8+ T lymphocytes predominate in active MS lesions (142–144).

Furthermore, CD8+ T cells from in MS lesions are clonally

expanded against common antigens and have been probably

recruited from the periphery (12, 142, 145) (Figure 2). Indeed, it

has been demonstrated that blood, CSF and brain CD8+ T cell

clones share a high degree of phenotypic similarity further

supporting the view that CD8+ T cells invading the MS brain

originate from the periphery and contribute to MS progression

(144, 145). The homing of clonally expanded CD8+ T lymphocytes

to the CNS of MS patients may be further promoted by BBB damage

and increased expression of adhesion molecules and

chemoattractants on brain endothelial cells (143, 146) (Figure 2).

Moreover, previous studies have shown a role for platelet and

endothelial cell adhesion molecule 1 (PECAM1), P-selectin

glycoprotein ligand-1 (PSGL-1), vascular cell adhesion protein-1

(VCAM-1), intracellular adhesion molecule-1 (ICAM-1), VLA-4

and LFA-1 in the migration of CD8+ T cells into the CNS (143, 144,

147, 148) (Figure 2). Once infiltrated to the CNS, CD8+ T cells

express higher levels of cytotoxic molecules (19, 143, 144), thus

suggesting their detrimental role in the progression of MS-related

neurological alterations. Indeed, CD49d+ CD8+ T lymphocytes

invading the MS brain exhibited a pro-inflammatory effector

phenotype, expressing CD137 and CD95L, as well as inhibitory

receptors TIM-3 and PD-1 on their surface, in addition to the
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transcriptional factor EOMES (12, 14, 19, 143) (Figure 2).

Importantly, an increased production of granzyme B by CD8+ T

cells in MS lesions, has been suggested to contribute to neuronal

alterations (143, 144) (Figure 2). In line with these findings, in early

MS brain lesions the majority of CD8+ T lymphocytes express

CD69, but not CD103, and were shown to contain granzyme B (12).

Although a link has been suggested between T cell exhaustion and

the progression of chronic neuroinflammation in MS, the

contribution of TEX CD8+ T lymphocytes in MS course is unclear

(149). EBV infection is now considered a key environmental factor

for chronic CNS inflammation during MS and CD8+ T cells are

clonally expanded against EBV-derived antigens presented by B

cells in MS patients (12). EBV can establish a prolonged latent and

intermittent reactivation within B cells (150), potentially resulting

in a series of CD8+ T cells immune responses, suggesting that B

cells may represent essential players in promoting chronic CD8+ T

lymphocyte activity in MS (151). Overall, MS represents the

neurodegenerative disease in which CD8+ T cells were studied

more into detail, although the molecular mechanisms leading to

brain damage are not yet fully understood.
Amyotrophic lateral sclerosis

ALS is an incurable and devastating neurodegenerative

disorder, that causes a progressive degeneration of motor neurons

leading to a loss of voluntary muscle control and, in severe cases, to

respiratory failure (152). Most commonly, symptoms of ALS appear

between the ages of 40 and 70, and several genes were associated to

the development of this disease, including superoxide dismutase 1

(SOD1) (152–155). The normal function of SOD1 protein is to

protect cells from oxidative damage, and its alterations lead to

increased oxidative stress and mitochondrial dysfunctions (156). In

addition, oxidative stress levels are substantially increased by

neuroinflammation, which has been recently included among the

hallmarks of ALS (157, 158).

A role for CD8+ T lymphocytes in SOD1-associated ALS form

was recently suggested (159–161). Particularly, peripheral CD8+ T

cell ablation has been shown to increase motoneuron survival in a

mouse model of ALS, whereas in vitro studies showed that SOD-1

expressing CD8+ T lymphocytes recognize and selectively kill

motoneurons via binding MHC-I molecules expressed on these

cells, suggesting a possible autoimmune origin for ALS (159)

(Figure 2). Moreover, activated CD8+ T lymphocytes expressing

mutant SOD-1 produce high levels of IFNg and eliminate a subset of

motoneurons in ALS through an antigen restricted, MHC-I-

dependent cytotoxic pathway, suggesting a neurotoxic role for

self-reactive CD8+ T cells in ALS (159) (Figure 2). These data

were supported by studies performed in ALS patients showing an

increased activation of peripheral and intrathecal CD8+ T cells,

with the activation status of CD8+ lymphocytes in the blood being

higher in ALS compared to MS and dementia, further suggesting a

role for cytotoxic lymphocytes in ALS (160).

Clonally expanded TEMRA CD8+ T cells originating from the

circulation have been reported in the CNS of Setx knock-in (KI)
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mice developing ALS4-like disease, as well as in ALS4 patients, who

typically have mutations on senataxin (SETX) gene (18) (Figure 2).

These data point to TEMRA cells as negative contributors during ALS

and are further supported by a recent retrospective study

demonstrating higher frequencies of senescent-like T cells in ALS

individuals, suggesting that lymphocyte senescence may drive

disease progression (162). Furthermore, the immunophenotyping

of TEMRA CD8+ T lymphocytes detected in the CNS of Setx KI mice

revealed a CD49d+ PD-1+ CD103- profile (18), which is consistent

with their peripheral origin in ALS4-like mice, suggesting

pathological changes of the TRM CD8+ T cell compartment

similar to those observed in MS (12) (Figure 2). Nevertheless,

differently from MS, the severity of ALS does not appear to be

correlated with BBB leakage, suggesting that the infiltration of

CD8+ T cells into the CNS of ALS patients and animal models

could represent a tightly regulated process, rather than being

favored by stochastic events (163, 164) (Figure 2). Recent data

obtained in two ALS mouse models showed that blocking a4-
integrins reduces the migration of peripheral immune cells into the

CNS and decreases IFNg, which is primarily produced by CD8+ T

lymphocytes and NK cells, further supporting a role for peripheral

cytotoxic T cells in ALS (159, 161, 165). However, more research is

needed to identify the molecular mechanisms governing the

extravasation of CD8+ T cells into the CNS during ALS.
Limbic encephalitis-induced temporal
lobe epilepsy

Limbic encephalitis (LE)-induced temporal lobe epilepsy (TLE)

is a rare form of epilepsy characterized by different types of epileptic

seizures, including focal seizures, secondarily generalized seizures,

and status epilepticus (166). This subtype of encephalitis is also

characterized by a potent inflammatory reaction predominantly

against neurons in the grey matter of the medial temporal lobes of

the brain, leading to the generation of recurrent seizures (167, 168).

Previous studies associated neuroinflammation, BBB dysfunction

and leukocyte migration to the induction of seizures (169–172).

LE is triggered by an autoimmune response favored by various

underlying causes, including viral infections and paraneoplastic

syndromes (173–175). Indeed, the presence of autoantibodies

directed toward neuronal surface antigens (NSAbs) was well

described in LE patients (176–180). Moreover, it was suggested

that IFNg-producing CD8+ T lymphocytes promote MHC-I

upregulation on LE neurons, thus supporting a neuron-directed

CD8+ T cell attack, similar to the immune reactivity demonstrated

in ALS (16, 181) (Figure 2). CD8-mediated neurotoxicity has been

suggested to contribute to neuronal excitability and acute seizure

generation, promoting psychiatric disturbances, memory

impairment and behavioral changes (182). Furthermore, it has

been hypothesized that chronic neuroinflammation can induce

persistent changes in the structural and electrical properties of

certain neuronal networks, resulting in the development of

chronic spontaneous seizures and epilepsy (16, 181, 182)

(Figure 2). Notably, infiltration of granzyme B-producing CD8+
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T lymphocytes, which may attack and destroy neurons expressing

MHC-I, was found among other leukocyte populations in the

hippocampi of TLE patients (2, 16, 183–188) (Figure 2).

Interestingly, cytotoxic CD8+ T cells accumulate in the brain of

LE patients, suggesting that self-reactive CD8+ T cells can directly

cause neurotoxicity, but can also contribute to the conversion of LE

into TLE (178) (Figure 2).

Recent studies showed that activated CD44+ ovalbumin

(OVA)-specific CD8+ T cells, directed against the “SIINFEKL”

chicken peptide (OVA 257-264) expressed exclusively by

hippocampal neurons, migrate into the brain and promote

seizures (16). Furthermore, CD8+ T lymphocyte infiltration leads

to prolonged epileptic activity and memory deficits, suggesting that

circulating CD8+ T cells may play a role in the induction and

progression of LE-induced TLE (16) (Figure 2). Brain invasion by

circulating CD8+ T lymphocytes correlate to BBB dysfunction in

experimental models of TLE and magnetic resonance imaging

revealed BBB alterations after the transfer of OVA-specific CD8+

T cells, followed by a size reduction and degeneration of the

hippocampus (2, 16, 169) (Figure 2). Moreover, brain-invading

CD8+ T lymphocytes showed an increased expression of CD69

surface marker, suggesting that these cells may acquire a TRM

phenotype once migrated into the brain (16), similarly to what

has been previously described in MS (12). This may be supported by

previous studies showing that ICAM-1 and VCAM-1 are

upregulated in TLE hippocampi and after seizure induction and

that preventive blockade of a4 integrins or ICAM-1 adhesion

receptor abrogates seizure induction (2, 169). Of note, TLE

patients display a T cell activated phenotype in peripheral blood

(185). Thus, CD8+ T lymphocytes could migrate into the inflamed

brain in TLE using LFA-1 and/or a-4 integrins, as shown in ALS

and as previously suggested in patients with MS and epilepsy

(189) (Figure 2).
Susac syndrome

Sus is a rare disorder characterized by neuroinflammation and

CNS dysfunction, due to focal microangiopathy affecting small and

medium size vessels of the brain, retina and the inner ear (190, 191).

The etiology of Sus remains largely unknown, and the role of

neuroinflammation has only recently started to be addressed.

However, the successful use of immunosuppressive and

immunoregulatory drugs in Sus cases, support an autoimmune

origin for this disease (192, 193). Accordingly, an increased immune

cell infiltration into the brain, with the majority of cells being CD8+

T lymphocytes, has been found in Sus patients compared to healthy

controls (9, 194). Also, it has been suggested that circulating self-

reactive CD8+ T lymphocytes may promote endothelial cell

alterations and BBB dysfunction during Sus, potentially leading to

microinfarcts and leukocyte transmigration across the BBB (13)

(Figure 2). Moreover, Sus patients treated with natalizumab, which

inhibits lymphocyte migration into the CNS, or mice treated with

an antibody blocking anti-a4 integrins, showed a reduction in

disease severity compared to controls, further supporting the idea
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that Sus shares several key immunopathological elements with MS

(13) (Figure 2). Indeed, VLA-4 neutralization was found to restrict

infiltration of CD8+ T lymphocytes into the CNS of EAE mice (143,

195), suggesting this may be the case also in Sus. Despite several

common disease mechanism between MS and Sus, the total number

of leukocytes detected in the CSF is in the normal range in Sus

patients, whereas it is significantly increased in MS cases (13).

However, the proportion of CD8+ T cells is selectively and

significantly increased in the CSF of Sus subjects, suggesting a

role for these cells in Sus (13). Sus patients have a larger proportion

of clonally expanded CD57+ CD8+ TEMRA lymphocytes of

circulating origin close to disease onset, with lower clonal

expansion levels during remission, further supporting a

relationship between Sus pathogenesis and CD8+ T cells (13).

Moreover, immunophenotyping of CD8+ T lymphocytes in brain

of Sus patients revealed a cytotoxic capacity, as evidenced by the

higher expression of granzyme B lytic molecule compared to

healthy controls (13) (Figure 2). Overall, several lines of evidence

point to a key role for CD8+ cells in Sus, but more studies are

needed to understand how these cells contribute to BBB

dysfunction and neuronal damage.
Conclusions

CD8+ T lymphocytes are adaptive immune cells that, upon

antigen recognition, undergo a complex differentiation process

(Figure 1). In acute inflammatory responses, when antigen is

effectively cleared, short-lived effector T cells undergo controlled

apoptosis, while long-lived effector T lymphocytes differentiate into

memory T cells, thus efficiently resolving the inflammatory

reaction. However, during chronic inflammatory conditions, this

natural resolution is impaired, and CD8+ T lymphocytes become

exhausted or senescent, retaining a neurotoxic potential and

contributing to several neurodegenerative diseases. CD8+ T cells,

reacting against self and non-self antigens are clonally expanded in

all brain disorders discussed in this review: AD, PD, MS, ALS, LE-

induced TLE and Sus. It is worth noting that although these

disorders may have distinct causes, occurrence rates, and clinical

presentations, they share common immunopathological

characteristics. These include the circulating origin of CNS-

invading CD8+ T lymphocytes, the clonal expansion of CD8+ T

cells, and phenotypical traits that resemble senescence (Figure 2). In

the light of growing evidence suggesting that senescent and

exhausted CD8+ T cells contribute to aging and various brain

disorders, a promising therapeutic approach for these conditions

may be represented by targeting deleterious functions of CD8+ T

cells. Indeed, targeting senescent and exhausted CD8+ T cells may

create a personalized neuroimmunotherapy, with the ultimate goal

to rejuvenate T cells through tailored diagnostic and therapeutic

protocols (87, 196). Strategies such as epigenetic modulation and

using senolytic compounds to induce apoptosis in senescent and

exhausted CD8+ T cells may also be explored. Several studies are

ongoing to prove the effectiveness of interventions targeting tissue-

damaging senescent cells, which may slow, prevent, and alleviate
Frontiers in Immunology 10
disorders in preclinical models (197). The development of senolytic

small-molecules that can specifically eliminate senescent cells, may

represent a promising strategy for treating multiple CD8+ T cell

senescent-mediated disorders and age-related conditions in

humans (197). Also, the epigenetic modulation of senescent and

exhausted CD8+ T cells involving small molecules and biologics to

target the molecular pathways involved in developing and

maintaining these cell types, can modify the senescence and

exhaustion, potentially reversing these deleterious phenotypes

(198–200). For example, it has been recently observed that EZH2-

expressing T cells are precursors to KLRG1+ effector lymphocytes,

while EZH2LOW-expressing T cells predominantly produce non-

cytotoxic CD103+ CD69+ TRM CD8+ T cells (201). Thus, the

silencing or deficiency of the Ezh2 gene, which mediates these

epigenetic modifications in CD8+ T lymphocytes, may be therefore

targeted to induce repression of the exhausted phenotype (200).

Overall, these approaches may help to reduce the number of

neurotoxic CD8+ T cells and potentially mitigate the effects of

aging and neuroinflammatory disorders.
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