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Animals often mount complex immune responses to infections. Aside from

cellular and molecular defense mechanisms, animals can alter their behavior in

response to infection by avoiding, resisting, or tolerating negative effects of

pathogens. These behaviors are often connected to cellular and molecular

immune responses. For instance, sickness behaviors are a set of behavioral

changes triggered by the host inflammatory response (e.g., cytokines) and

could aid in resisting or tolerating infection, as well as affect transmission

dynamics if sick animals socially withdraw or are being avoided by others. To

fully understand the group and population level transmission dynamics and

consequences of pathogen infections in bats, it is not only important to

consider cellular and molecular defense mechanisms, but also behavioral

mechanisms, and how both interact. Although there has been increasing

interest in bat immune responses due to their ability to successfully cope with

viral infections, few studies have explored behavioral anti-pathogen defense

mechanisms. My main objective is to explore the interaction of cellular and

molecular defense mechanisms, and behavioral alterations that results from

infection in bats, and to outline current knowledge and future research avenues

in this field.
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Introduction

Animals often change their behavior in response to infection, which can have profound

impacts on how individuals recover, or transmit pathogens (1–5). These behaviors can aid

in avoiding, resisting, or tolerating negative fitness consequences of pathogenic infections

and are often tightly connected to cellular and molecular immune responses such as

inflammatory processes (2, 6, 7). For instance, sickness behaviors such as lethargy, anorexia

or social withdrawal are triggered by a complex interaction of host inflammatory responses,

neuroendocrinological mechanisms and the brain (1, 2, 4, 8, 9). Sickness behaviors could
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help the infected individual increase its tolerance to the infection

(10) or resist the pathogen by diverting energetic resources to a

costly immune response (5). These same behaviors can also affect

uninfected conspecifics if infected individuals withdraw from social

situations and, hence, are less likely to infect others (11–14).

Uninfected conspecifics can also detect behavioral changes or

other cues in their infected conspecifics and avoid them (3, 15).

Despite mounting interest in how bats harbor highly pathogenic

viruses and what immunological mechanisms are involved in

controlling viral pathogenesis (16–19), there are relatively few

examples that explore behavioral anti-pathogen defense

mechanisms and their connection to host immunology in bats

(but see (11, 20)). Here, I will explore how infection and subsequent

immune responses may lead to behavioral defense mechanisms in

bats and affect their social interactions. I will mainly focus on the

behavioral component of this interaction, as in vitro and in vivo

studies on cellular and molecular immune responses in bats have

been reviewed rigorously elsewhere (see (16, 21)). While I will

outline existing studies, I will also highlight gaps in our knowledge

and behavioral mechanisms to be further explored (Figure 1).

Overall, I aim to connect research studying cellular and molecular

defense mechanisms in bats and research trying to tie these immune

traits to behavioral alterations that might affect downstream

transmission dynamics and host-pathogen co-evolution.
Behavioral changes as a
response to infection

Upon infection with pathogens (or exposure to inflammatory

triggers), the body initiates a cascade of innate responses, which lead

to physiological changes in the infected animal and ultimately affect

their behaviors (2, 4, 7). Conserved receptors on immune cells

(pathogen recognition receptors, PRRs) recognize equally

conserved pathogen-associated molecular patterns (PAMPs) and

initiate inflammatory responses such as the secretion of pro-

inflammatory cytokines, including Interleukin-1 beta (IL-1b),
Interleukin-6 (IL-6), Tumor necrosis factor alpha (TNF-a), and
Interferons such as Interferon gamma (INF-g), among others (2,

7, 22).

Cytokine secretion not only helps the animal to reduce

pathogen proliferation in early stages of the infection by

protecting and preparing nearby cells, but also initiates the

adaptive arm of the immune system (23, 24). Importantly, these

early immune responses also change the behavior of the host.

Sickness behaviors such as lethargy and social withdrawal among

others, are a direct result of in increased circulation of

proinflammatory cytokines acting in the periphery and in the

brain (2, 4, 6–8, 22), and recent research has begun to identify

specific neuronal populations that are likely involved in triggering

and mediating sickness behaviors (25, 26).

While the adaptiveness of sickness behaviors is still debated (4,

27, 28), one way they could function to increase an individual’s

resistance is by helping to clear the infection. For instance, sickness-

induced lethargy could divert energy to metabolically costly

responses such as fevers (4). Sickness behaviors could also
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tissues (10) or affect transmission to conspecifics if sick individual

withdraw socially or move less (1, 12, 13, 27, 29).

Toll-like receptors that are crucial in the recognition

mechanisms that mediate sickness behaviors are highly conserved

and are present throughout the animal kingdom (23). While in

many cases functional studies of the specific signaling pathways are

still lacking in bats (Figure 2, (16)), there has been increased interest

in identifying bat PRRs that are involved in the recognition of

pathogens (especially viral pathogens, reviewed in (16)). For

instance, in the black flying fox (Pteropus Alecto) a full set of

TLRs (1–10) transcripts has been sequenced (30), and functional

studies in different bat cell cultures confirm that sensing of a PAMP,

double-stranded RNA (dsRNA) and complete viruses, is likely

conserved between humans and bats (31–35). In vivo studies that

use injections of PAMPs (e.g., Lipopolysaccharide, Poly I:C,

Zymogen) elicit typical innate immune responses and

physiological symptoms, such as increases in white blood cell

counts, weight loss, fever, and increased oxidative stress in a wide

range of bat species, with intriguing species differences that need to

be further explored (36–46). This suggests that bat innate immune

systems are recognizing PAMPs and mounting acute phase

responses. Studies on behavioral changes that accompany this

acute phase response and could lead to changes in social

interactions, however, are less common and limited to only a few

species. Both vampire bats (Desmodus rotundus) and Egyptian fruit

bats (Rosettus aegyptiacus) express sickness behaviors such as

lethargy and social withdrawal in response to injections with

bacterial LPS (11, 20, 47–49). Similarly, rabies-infected vampire

bats show lower levels of social interactions (50) and little brown

bats (Myotis lucifugus) are less active when infected with

Pseudogymnoascus destructans, the fungus that causes White-nose

Syndrome (51). While such studies suggest that sickness behaviors

can occur during immune responses in bats, further studies across a

wider range of bat species are needed to evaluate how sickness

behaviors are connected to inflammatory traits in bats (Figure 1).

In recent years, bats have been identified as potential reservoirs

for emerging viruses (52–54), which has sparked interest in what

makes them immunologically unique in tolerating pathogens that

are often lethal to other species (reviewed in (16–18)). Recent

studies suggest that one mechanism by which bats tolerate

otherwise highly pathogenic viruses is through a sophisticated

regulation of the inflammatory response, which prevents damage

to the host while also limiting viral propagation (18, 19, 55, 56). Bats

that are experimentally infected with viruses often do not show any

symptoms of illness (57–61), and both in vitro and in vivo studies

suggest that inflammatory responses to viral triggers are often

dampened (for detailed reviews of signaling pathways and

immunological mechanisms, see (16, 21)). This raises the

question of whether dampened inflammatory responses do or do

not translate into behavioral symptoms.

Viral infections often result in behavioral changes in different

taxa (2, 62). For example, in mice, systemic injection of Poly I:C

(synthetic dsRNA, a viral mimetic) causes physiological symptoms

such as elevated levels of IFN-g and sickness behaviors (63).

Similarly, TLR-3 deficient mice have attenuated sickness
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FIGURE 1

Behavioral anti-pathogen defenses in bats. Open questions and future directions. Created in BioRender.
FIGURE 2

Schematic representation of sickness behaviors in bats. Illustrating the need to understand different layers of how molecular and cellular immune
responses lead to changes in behavior and downstream transmission dynamics. Figure created in BioRender.
Frontiers in Immunology frontiersin.org03

https://www.biorender.com/
https://www.biorender.com/
https://doi.org/10.3389/fimmu.2023.1232556
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stockmaier 10.3389/fimmu.2023.1232556
behaviors in response to influenza infections (64). These findings

suggest that stimulation of TLR-3 and downstream cytokine

expression in the periphery can change host behavior. But, what

if the inflammatory response to viral antigens is uniquely regulated

as described above? Do inhibited inflammatory responses found in

bats translate into less severe behavioral symptoms? What are the

downstream effects of inhibited inflammation and, potentially,

reduced symptoms on social interactions and transmission in bats?
Physiological and behavioral changes
that lead to infection recognition

Infection can not only change the behavior of hosts but can also

cause visual, auditory, or olfactory cues that may be recognized by

uninfected conspecifics. Such conspecific responses can range from

conspecific avoidance (3, 65, 66) to aid provided to the sick

conspecific (67), which can help them tolerate negative effects of

an infection (1, 67, 68).

Before even having to engage in an immunological response,

hosts could benefit from avoiding infected conspecifics (1, 3, 65, 66).

Such conspecific avoidance is a widely observed behavior in

vertebrates (e.g (69–73)), and offers a first line of defense.

Infection itself can produce a variety of cues (olfactory (69, 72,

74); visual (75, 76); auditory (47, 77); and behavioral (2, 3)) that

could lead to conspecific avoidance (3). Importantly, while

avoidance of sick conspecifics has been shown in many different

taxa, exact mechanisms of recognition are less well understood (but

see (69)). Some studies in bats have examined conspecific responses

to immune-challenged individuals (20, 47, 49). In these cases,

reduced contact appeared to be primarily driven by the sick

individual not engaging in social interactions (e.g., through

lethargy, reduced movement, or social withdrawal) and less by

conspecific avoidance. Importantly, these studies used immune-

challenges as opposed to naturally infecting pathogens that might

produce different infection cues (e.g., visible lesions, respiratory or

neurological symptoms).

Some unanswered questions remain in bats: Do bats avoid their

sick conspecifics? What are the cues and the mechanisms of

recognition that mediate avoidance? What is the cost-benefit

balance between conspecific avoidance and forgoing beneficial

social interactions (e.g., see (49))? Given that bat species vary in

which sensory system is predominantly used, does infection

perception occur in the predominantly used sensory modality or

in a single system (e.g., olfactory perception) regardless of which

sensory modality is most frequently used in other aspects of the

bats’ life?

Most bat species are social (78) and their propensity to live in

social groups could (i) affect their immune-system and increase

resistance, and/or (ii) help them mitigate negative effects of

infection (i.e., increased tolerance), Research suggests that social

integration as opposed to isolation or social adversity has a range of

fitness benefits and can alter the regulation of the immune response

(reviewed in (79)). For instance, experimental studies in primates

suggest that increased social adversity leads to increased expression
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of genes linked to the inflammatory response (80, 81). While

research aimed at understanding the interplay of social group

living and immunity is gaining traction, studies in bats are

lacking. How does living in social groups affect bat health

positively or negatively, and how are immunological defense

mechanisms affected by bat social interactions? Because bat

species vary in their level of sociality (78), this could be addressed

in comparative studies evaluating immune traits in relation to

sociality. Another intriguing research avenue is “immune-

priming” in response to perceived infection of conspecifics (82).

This anticipatory response has been observed in several taxa (82–

84). For instance, in humans, perception of disease related cues

triggers the immune system to mount a stronger response (83). Due

to their high levels of sociality, bats are presumably often exposed to

infected conspecifics. How does their immune system respond to

this exposure? Similarly, social interactions with infected others

(e.g., food sharing or grooming) could lead to low-dose exposure,

priming the immune system for subsequent encounters with the

same pathogen.

Helping infected conspecifics can increase their tolerance by

maintaining their fitness despite negative effects of infections (i.e.,

high pathogen load). Such help could manifest in the form of food

provisions, temperature regulation, or even just in the maintenance

of “normal” levels of social interactions that benefit the infected

individual (i.e., some individuals might not choose to avoid their

infected conspecifics). Theoretically, healthy individuals might help

infected individuals tolerate infections if the individual costs are not

too high (e.g., low virulence, (5, 68)) or if they indirectly benefit

from helping specific individuals (e.g., socially bonded partners or

kin (85)). Vampire bats will share food with immune-challenged

conspecifics (49), though, here, immune-challenged bats were

simultaneously fasted which makes it difficult to discern the exact

cause of food sharing behaviors. The question remains if and under

which social circumstances bats do not avoid, or even aid their

infected conspecifics, and how this affects individual tolerance of

pathogens and, potentially, supports recovery.
Group- and population-level
effects of infection-induced
behavioral changes

Whether individuals socially withdraw as a response to

infection, avoid infected conspecifics, or increase contact with

them to provide aid, will affect how pathogens spread through

their social networks (1). In humans, behavioral symptoms as a

results of influenza infections reduce the number of social contacts

and predicted R0 (13). Similarly, immune-challenged mice move

less, are less connected, and predicted pathogen transmission is

therefore contained within few animals (12). While the behavioral

effects of infection, or immune-challenges on individuals and their

downstream effects on group characteristics and dynamics have

been described in other species (12, 86, 87), this has rarely been

done in bats (but see 48), especially with pathogens that infect them

naturally. The question overall remains, how do sick bats and their
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groupmates behave, and how does this affect transmission to

others? If sickness behaviors are connected to an inflammatory

response, they can have downstream effects on how pathogens are

transmitted illustrating the need to understand different layers of

how inflammatory responses affect (i) the expression of sickness

behaviors, (ii) interactions with others, and (ii) group of

population-level transmission dynamics (Figure 2).

Many bats live in fission-fusion type social organizations or

disperse, involving frequent movement of individuals to other

roosts (78). How does reduced movement because of infections

affect spread to other roosts and new individuals? New methods will

allow for answers to some of these questions. For instance, the

questions of how sick bats interact and move and how this could

affect pathogen transmission to others might be answered using

combinations of diagnostic methods to detect active infection in

bats, and next-generation animal tracking methods such as GPS

loggers and proximity sensors that quantify movement and host-

host contacts (20, 48, 88).

Importantly, these infection-induced changes in behavior can

also affect host-pathogen co-evolution if they affect transmission of

the pathogen. Pathogens could evolve changes in virulence, pre- or

asymptomatic periods, and reductions in infection-induced cues to

avoid detection (1, 89, 90). The ability of viruses to mitigate sickness

behaviors that might affect their transmission has recently been

suggested in the case of SARS-CoV2, where a viral protein can help

silence pain which could theoretically reduce sickness behaviors and

increase transmission (91).
Concluding remarks

While the unique ability to deal with certain pathogens has

triggered an interest in bat's inflammatory traits (16–19, 21), there

has been far less interest in how these immune responses affect bat

behavior even though behavioral alterations might affect pathogen

transmission and host-pathogen co-evolution (1). Future research

on immunological responses in live bats, and especially studies

using experimental infections with bat-infecting pathogens, should

include behavioral components to answer questions of how sick

bats behave and how this affects their healthy conspecifics and

groups. Behavioral observations could range from scoring of

individual or social behaviors (11, 50) to more sophisticated

methods such as proximity sensors used to quantify individual-
Frontiers in Immunology 05
individual contacts and network-wide effects on transmission

(48, 92), or GPS tracking to quantify bat movement in relation to

their infection, or immune status (20).

Here, I argue that to understand the group- and population-level

transmission dynamics and consequences of pathogenic infections in

bats, it is not only important to study their molecular and cellular

defense mechanisms, but also behavioral defence mechanisms, and

how they interact.
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