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Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a

Ca2+permeable, non-selective cation channel that is found primarily in sensory

nerve fibres. Previous studies focused on pain transmission. However, recent

studies have found that the TRPV1 channel, in addition to being associated with

pain, also plays a role in immune regulation and their dysregulation frequently

affects the development of rheumatoid arthritis (RA). A thorough understanding

of the mechanism will facilitate the design of new TRPV1-targeted drugs and

improve the clinical efficacy of RA. Here, we provide an updated and

comprehensive overview of how the TRPV1 channel intrinsically regulates

neuronal and immune cells, and how alterations in the TRPV1 channel in

synoviocytes or chondrocytes extrinsically affect angiogenesis and bone

destruction. Rapid progress has been made in research targeting TRPV1 for the

treatment of inflammatory arthritis, but there is still much-uncharted territory

regarding the therapeutic role of RA. We present a strategy for targeting the

TRPV1 channel in RA therapy, summarising the difficulties and promising

advances in current research, with the aim of better understanding the role of

the TRPV1 channel in RA pathology, which could accelerate the development of

TRPV1-targeted modulators for the design and development of more effective

RA therapies.
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GRAPHICAL ABSTRACT
1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease

with morning stiffness, swelling, pain, and functional impairment of

the joints as the main clinical manifestations (1). The pathological

process of RA involves immune cell infiltration, excessive cytokine

production, angiogenesis, and cartilage destruction, which can lead

to joint ankylosis, destruction, and deformity, resulting in disability

and affecting the patient’s quality of life (2).

Inflammation and pain are prominent problems in the

treatment of RA. Glucocorticoids, non-steroidal anti-

inflammatory drugs (NSAIDs), and disease-modifying anti-

rheumatic drugs (DMARDs) are currently available to improve

the patient’s condition, and bio DMARDs or targeted synthetic

DMARDs can be used when improvement is not evident (1, 3, 4).

Despite the many drugs currently available, the response to

treatment remains unsatisfactory, usually between 50% and 70%,

and a significant number of patients have poor treatment outcomes

(5).In clinical practice, if arthritis does not respond to initial

treatment, we should change the treatment strategy as soon as

possible. Some DMARDs suppress the immune system, resulting in
Frontiers in Immunology 02
an added risk of infection in RA patients and further aggravating

the disease condition (6–8). Therefore, there is a real requirement to

develop therapeutic agents for new targets to improve the outcome

of RA treatment and prognosis.

TRPV1 is the first identified member of the vanilloid receptor

subfamily of the TRP ion channel.TRPV1 is not only involved in the

sensation of heat and pain but is also associated with abnormal

immune cell function and the production of inflammation in the

body, among other mechanisms (9). It was revealed that synovial

fibroblasts from RA patients express TRPV1 (10). Compared to

TRPV1+/+ animals, TRPV1-/- animals exhibited reduced pain and

reduced joint inflammation following complete Freund’s adjuvant

(CFA)-mediated induction of arthritis (11). Injection of TRPV1

antagonists A-889425 and JNJ-17203212 systemically reduces pain

behaviour and decreases peripheral A and C fibre joint afferent

nerve and injury receptor firing in a model of arthritis (12, 13).In

this review, we summarise the TRPV1 channel expression

associated with RA reported to date, and the impact of channel

alterations on the pathogenesis of RA inflammation, pain,

angiogenesis, and cartilage destruction. The impact of interfering

with the TRPV1 channel on the above mechanisms is also listed in
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detail to further assess the therapeutic potential of targeting TRPV1

in RA to guide future research efforts.
2 Structure and function of TRPV1

TRPV1 is a non-selective cation channel, which was

characterized as a receptor for capsaicin (CAP) by the Julius

laboratory in 1997 (14). TRPV1 has a tetrameric structure, similar

in structure to most TRP channels, and consists of three parts: the

N- and C-termini located in the cell, and six transmembrane

regions (S1-S6), with the pore loop region located between S5 and

S6 (15). TRPV1 has a long N-terminal containing an anchor protein

repeat domain and a C-terminal containing a TRP-box close to the

sixth transmembrane structural domain (16), the N-terminal plays

a role in the sensitivity of the channel to activators, and the C-

terminal TRP-box mainly affects channel stability and function.

Binding sites on the repeat structural domain of TRPV1-anchored

proteins can bind to nucleotide triphosphates like ATP and

calmodulin at the identical site (17, 18), upon binding, these

molecules modify the sensitization of TRPV1 and modulate its

function (19). The structure of the TRPV1 channel is summarized

in Figure 1.

TRPV1 is mainly expressed in sensory nerve fibres, including

unmyelinated C nerve fibres and small-diameter myelinated A

nerve fibres. As a result, early studies focused on pain

transmission, including thermal and inflammatory pain. However,

as research progressed, it was discovered that TRPV1 was not only

found in neuronal cells but also in other cell types, including RA

synovial fibroblasts and human immune cells such as dendritic cells

(DCs), macrophages or T lymphocytes (20). TRPV1 is tightly

correlated with autoimmune diseases. TRPV1 knockout (TRPV1

KO) mice confirm a key role for TRPV1 in pain and inflammation

(21). Therefore, understanding its anti-inflammatory and analgesic

mechanisms and how TRPV1-targeted therapies work in joints and

other tissues may provide new options for the treatment of

inflammation and pain in RA patients.
Frontiers in Immunology 03
3 The potential role of TRPV1 in RA

3.1 TRPV1 is involved in
organismal inflammation

Inflammation is a key pathological manifestation in the

pathogenesis of RA, and there is increasing interest in the

mechanisms involved, mainly related to the over-activation of

immune cells and dysregulation of inflammatory cell secretion

(22–25). TRPV1 has been reported to show increased expression

at the mRNA and protein levels in synovial fibroblasts from RA

patients, correlating with RA inflammation and pain (10). The use

of TRPV1 antagonists or knockouts relieves joint inflammation

(26), again confirming its key role. Further studies should focus on

the cell types expressing TRPV1 and the regulatory role of TRPV1

on cells, in relation to cytokine release, to elucidate the true function

of TRPV1 in the pro-inflammatory process.

3.1.1 Immune cell infiltration
The site of RA is mainly confined to synovial joints and is

closely associated with immune cell infiltration (27). TRPV1 was

identified as present in cells of either the innate or adaptive immune

system, regulating immune cell activation and influencing their

function (28–32). TRPV1 is involved in Ca2+ signalling and the

transduction of external stimuli (e.g. temperature or pH). Ca2+ is a

well-known second messenger and plays a pivotal role in the

activation of immune cells, proliferation, cytokine secretion and

other functions (33, 34). Therefore, TRPV1 appears to be an

essential participant in the regulation of immune cells.

3.1.1.1 T lymphocytes

The immunopathogenesis of RA spans decades, with T-cell

dysregulation found in the asymptomatic autoimmune abnormal

phase of RA (a period of autoantibody production to post-

translational modified proteins), the acute synovitis phase, and

the chronic destructive synovitis phase (35). Aberrant T cell

differentiation is fundamental in promoting the remodelling of
FIGURE 1

The structure of the TRPV1 channel. TRPV1 contains N- and C-termini and intermediate transmembrane structural domains (S1-S6). The N-terminus
has a cam-binding site and an anchor protein repeat structural domain (16). The C-terminus has a TRP-box near the sixth transmembrane structural
domain that can influence channel function (16). The pore loop region is located between S5 and S6, and when activators act on TRPV1, the
structure of S5-6 is altered and contributes to Ca2+-based cation inward flow (15).
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the immune system prior to the disease (36). Another way in which

pathogenic T cells drive chronic inflammation is associated with the

formation of organised lymphoid structures (37), which provide

strength and persistence to inflammatory immunity. Moreover,

synovial T cells are an important source of inflammatory factors

such as IFN-g (38), IL-17 (39), and TNF-a (40), and are a key bridge

between cytokines and adaptive immune abnormalities and

tissue remodelling.

Expression of TRPV1 was detected in human primary T cells,

Jurkat T cell line, and mouse spleen T cells (29, 41–43). TRPV1 is

positioned on the T cell plasma membrane and is one of the pivotal

components of the T cell receptor (TCR) signalling cascade. TRPV1

activation and function can be regulated through TCR-induced

signalling pathways (44). TRPV1 is rapidly recruited to the TCR

cluster in an Src-dependent manner after TCR stimulation (42),

which is an important way to increase Ca2+ concentration in CD4+

T cells. Resiniferatoxin, a specific agonist of TRPV1, leads to

increased Ca2+ influx in T cells (29). Elevated intracellular Ca2+ is

imperative for promoting T cell functions, such as activation,

proliferation, differentiation and exerting effector functions (45).

Genetic deletion or pharmacological inhibition of TRPV1 can

attenuate the pro-inflammatory phenotype of CD4+ T cells (42,

46). Knockdown of TRPV1 in human primary CD4+ T cells reduces

the expression of CD25 and shared epitope-positive HLA-DR alleles

and diminishes the generation of anti-citrullinated protein antibodies

(ACPA) in RA patients (42).In addition, TRPV1 antagonists can

reduce the production of inflammatory factors. Compared to wild-

type(WT), TRPV1-/-CD4+ T cells secreted fewer cytokines (IFN-g, IL-
17A, IL-2, IL-10, IL-4 and TNF) following anti-CD3 + 28 stimulation,

and their reduced cytokine production may be due to a decrease in

TCR-induced the TRPV1 channel-mediated Ca2+ influx (42).

Although the role of TRPV1 and T cell activation in the

pathogenesis of RA remains to be clarified, the role of TRPV1-

mediated Ca2+ influx in T cell proliferation and activation is

undisputed. Considering the important pathological role of T-cell

activation inRA, it canbe inferred that targetingand regulatingTRPV1

to restore normal physiological functions of T-cells holds great

promise in the treatment of RA.

3.1.1.2 Macrophages

TRPV1 has been reported to be involved in macrophage-related

immune mechanisms (47). Abnormal activation of pro-

inflammatory macrophages in synovial tissue is detected in early

RA (48, 49). When pro-inflammatory macrophage M1 are over-

polarized, the secretion of cytokines such as IL-1b, IL-6 and TNF-a
increases in vivo (48, 50), inducing inflammation production and

leading to high disease activity in RA. TRPV1 hyperactivation

promotes M1-type pro-inflammatory macrophage activation by

altering macrophage status (51). An imbalance in the M1/M2 ratio

of articular synovial macrophages is a distinctive feature of the acute

inflammatory phase of RA (52, 53). Not only are macrophages

themselves a source of inflammation, but they are also associated

with the activation of T cells. Macrophages can present non-self

antigens to nascent T cells, by releasing cytokines and growth factors

that elicit Th1 or Th2-mediated immune responses and modulate
Frontiers in Immunology 04
inflammation in vivo (54). Pretreatment of mousemacrophages with

TRPV1 inhibitor AMG9810 or CPZ significantly inhibited the

expression of pro-inflammatory cytokines IL-6, IL-1b and IL-18, as

well as cyclooxygenase 2 (COX-2) (55). An opposite result has been

shown, with TRPV1 agonist treatment significantly reducing

macrophage polarisation, attenuating synovial inflammation and

minimising cartilage destruction and bone formation (31).

Macrophage polarization derangement is a key mechanism of

bone destruction in RA. The degree of synovial macrophage

infiltration is closely related to the degree of joint erosion (49).

An interesting subpopulation of macrophages called arthritis-

associated osteoclast macrophages, has been discovered in the

synovial fluid and tissues of RA patients (56). These macrophages

are characterised by a high osteoclastogenic potential (56). TRPV1

activation facilitates the mobilization of M1-type pro-inflammatory

macrophages. Inflammatory macrophages are involved in joint

surface erosion through the production and release of matrix

metalloproteinases (57). M1-type macrophages are intimately

associated with osteoblasts. During the erosive phase of the

disease, chemokine CCL21 enhances RA osteoclastogenesis by

driving Th17 polarization through M1-type macrophages. Thus,

CCL21-mediated differentiation of M1-type macrophages linked to

Th17 cells extends joint inflammation into bone erosion (57). The

macrophage-osteoclast axis may be an important mechanism of

bone destruction in RA (58). TRPV1 can reduce inflammation and

osteoclast production by regulating the M1/M2 macrophage

imbalance and is expected to be a new therapeutic target for RA.

TRPV1 and macrophages are not limited to their involvement

in inflammation and bone destruction but are also associated with

mechanical pain and burning sensations. IL-23/IL-17A/TRPV1 axis

activation contributes to macrophage-sensory neuron crosstalk,

creating mechanical pain (59). Radiofrequency irradiation lowers

TRPV1 activation, diminishes neuropeptide expression, attenuates

neuropeptide-induced macrophage activation, and ultimately

reduces inflammatory factor expression and burning pain in vitro

models (60). The mechanism by which TRPV1 is involved in

macrophages to regulate inflammation and bone destruction in

the body has been well clarified. Yet, the mechanism of TRPV1-

induced neuropeptide expression and macrophage activation in RA

patients with burning joint pain remains to be further elucidated.

3.1.1.3 Dendritic cells

TRPV1 has been proven to be expressed in mouse and human

DCs at the protein and gene levels (28, 61, 62). The TRPV1 agonist

CAP exhibits a dose-dependent effect of inducing DCs

differentiation and prompting DCs activation. TRPV1 binds to

immature DCs and promotes DCs maturation through antigen

presentation and upregulation of co-stimulatory molecules (61).

Substantial amounts of DCs are recruited in the synovial fluid and

tissues of RA patients and are integral in the pathogenesis of RA (63,

64). DCs specialized antigen-presenting cells bridge innate and

adaptive immunity (65), drive Th1/Th2 imbalance, activate B cells

and follicular helper T cells (Tfh) (66, 67), and stimulate the body to

generate high levels of autoantibodies, resulting in an

inflammatory response.
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TRPV1 regulates DCs function, and sustained opening of the

TRPV1 channel promotes activation of calcium-regulated neuro

phosphatase/NFATc2 signalling in DCs, impairing Ca2+

homeostasis in DCs, enhancing Th17 cell differentiation, inducing

cytokine secretion and strengthening susceptibility to inflammatory

factors (68). Excessive secretion of chemokines by synovial DCs in

RA patients and recruitment of immune cells with pro-

inflammatory functions, such as macrophages and neutrophils

(69, 70). Overexpression of NF-kB was found in RA synovial

DCs, causing upregulation of nuclear RelB, a binding protein for

NF-kB, and promoting inflammation. Similar manifestations were

found in inflammatory bowel disease (IBD) mice, where activation

of TRPV1 promoted DCs recruitment and activation compared to

TRPV1-/-, exacerbating the colitis manifestations of the model (68).

However, studies have suggested the opposite, that the failure of

CAP to induce changes in intracellular Ca2+ or membrane currents

in DCs does not support the expression of the TRPV1 channel in

DCs (71). The reason for this may be that although CAP can

agonize the TRPV1 channel, numerous studies have shown that

TRPV1 receptors may not be the only target of CAP. The specific

role of TRPV1 in the regulation of DCs by CAP remains unclear.

Although several studies have supported the idea that TRPV1

regulates DCs and influences the inflammatory response of the

body. Further validation at the cellular level using TRPV1-/- or

agonists and inhibitors to elucidate the mechanisms of TRPV1

regulation of inflammation in DCs and RA patients is an important

next step in the research.

3.1.2 Cytokine production
3.1.2.1 IL-1

Overproduction of IL-1b causes vasodilation, promotes

granulocyte recruitment to inflamed tissues and induces

prostaglandin (PG) expression, contributing to acute joint

inflammation and pain (72, 73). IL-1b also stimulates osteoclast

formation through the induction of osteoclast genesis in regulatory

T-cells (Tregs), contributing to bone erosion and joint function

reduction (74, 75). TRPV1 is an integral pathway for IL-1b release.

Studies have shown that injurious TRPV1+ axons co-express IL-1R1

and are tightly correlated with infiltrating IL-1b+ cells. In both

mouse and human models, IL-1R1 was found to be highly expressed

through a subpopulation of TRPV1+ dorsal root ganglion neurons

(76). TRPV1 channel induces Ca2+ influx in the extracellular

medium and increases cytosolic Ca2+ concentration, possibly

through increased nuclear NF-kB phosphorylation leading to

increased IL-1b release (77). Pretreatment with TRPV1 antagonist

significantly eliminates IL-1b-induced pain (78). No elevation of IL-

1b was seen in the TRPV1 KO mouse model compared to WT mice

(79, 80). Inhibition of IL-1 secretion through modulation of the

TRPV1 channel to attenuate joint inflammation and pain merits

further exploration.

3.1.2.2 IL-6

Elevated levels of synovial TRPV1 in RA patients are

accompanied by abnormal secretion of IL-6 (81). TRPV1-induced

IL-6 secretion plays an instrumental role in patients’ pain,
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inflammation, and joint destruction. Activation of TRPV1

operates as an inducer of inflammatory signalling and

collaborates with neuropeptides to augment the production of the

cytokine IL-6. However, this synergistic mechanism does not affect

healthy synovial cells, and only inflammation-initiated cells can

generate IL-6 through the activation of the TRPV1 channel (81). IL-

6 plays a checkpoint role in the differentiation pathway of naive T

cells to pro-inflammatory Th17 cells or Tregs (82). IL-6 acts as a

chemoreceptor for monocytes at the site of inflammation, affecting

signalling molecules such as Toll-like receptors (TLR) and

promoting angiogenesis (83). IL-6 mediates the induction of bone

resorption by TNF-a and IL-1. IL-6 stimulates the release of

osteoblast nuclear factor-kB receptor activator (RANK) ligand

(RANKL) and destroys bone via the RANK/RANKL/

osteoprotegerin (OPG) pathway (84). The simultaneous

destruction of the vascular opacification leads to irreversible

damage to the joint (85). The use of TRPV1 inhibitors reduces

the body’s IL-6 levels (86). TRPV1 KO mice secreted less IL-6

compared to WT mice (87). Thus, TRPV1-induced IL-6 secretion

has an essential role in inflammatory, neurogenic and pressure pain

in the body.

3.1.2.3 IL-8

TRPV1 has a regulatory effect on IL-8. It was revealed that

activation of TRPV1 often induces IL-8 formation. Elevated levels

of TRPV1 in the hyperosmotic state and response to dramatic

temperature changes stimulate MAPK and NF-kB activation and

mediate an increase in the chemokine IL-8 (88). IL-8 is a key

chemokine that promotes neutrophil migration (89). IL-8 activates

neutrophils, stimulates neutrophil extracellular trap formation,

promotes their degranulation, produces respiratory bursts,

releases superoxide and lysosomal enzymes, and facilitates the

activation and recruitment of neutrophils at sites of inflammation

(90). IL-8 also has the capability to appeal to and activate

monocytes, and large quantities of inflammatory cells infiltrate

the interstitial matrix of articular cartilage and bone (91, 92). IL-8

can also stimulate angiogenesis, resulting in the formation of RA

vascular opacities (91). The use of the TRPV1 agonist CAP confirms

the regulatory function of TRPV1 on IL-8 (93). Reduced local pH is

an essential pathological feature of RA. Acidic conditions can

contribute to elevated IL-8 mRNA expression (94). Intriguingly,

the selective TRPV1 antagonist 5’-iodoresiniferatoxin reduced the

production of IL-8 under acidic conditions and attenuated the

inflammatory state of the organism (95).

IL-8 also has osteoclastogenic activity. IL-8 promotes the

formation of pro-osteoblast-like cells (OCL) in an environment

with anti-RANKL antibodies, demonstrating that IL-8 may

compensate for RANKL function during the induction of OCL in

a low-RANKL environment and accelerate the process of RA bone

destruction (96). TRPV1 may have an impact on bone destruction

in RA patients by mediating IL-8 secretion.

3.1.2.4 IL-17

It was revealed that TRPV1+ injury receptors are closely related

to the production of IL-17. IL-17 can induce aggregation of
frontiersin.org
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neutrophils and monocytes in the circulatory system, activates a

series of inflammatory cascades and plays a fundamental role in RA

(97). TRPV1 activates the IL-23/IL-17 axis, which mediates

inflammation through macrophage-neuron crosstalk drive (98).

TRPV1 KO abrogates IL-23/IL-17 axis-induced inflammation. At

the same time, IL-17, in turn, acts on TRPV1, the two interact

through neural-immune interactions, contributing to the body’s

mechanical pain (59). The use of TRPV1 agonists CAP, SA13353

[1-[2-(1-adamantyl)ethyl]-1-pentyl-3-[3-(4-pyridyl)propyl]urea]

also demonstrated anti-inflammatory effects. CAP administration

inhibited the expression of the IL-23/IL-17 pathway in psoriasis

models, alleviated the microscopic appearance of lesions and

reduced the secretion of various cytokines (99). SA13353

suppresses the recruitment and production of IL-17-producing

cells and decreases inflammation in the body (100). TRPV1 KO

confirmed its induction of IL-17 production causing inflammation

in the body, but its agonist use also reduced inflammation in the

body, suggesting that both agonists and inhibitors of TRPV1 can

exert anti-inflammatory effects via IL-17 secretion, and the

mechanism of action requires further exploration.
3.1.2.5 TNF-a
TNF-a induces inflammation and promotes osteoclastogenesis,

which is critical in the pathogenesis of RA. TNF-a inhibitors are

widely used to treat RA and can mitigate RA symptoms by

preventing the pro-inflammatory signalling pathway mediated by

TNF receptor 1 (TNFR1) (101). TRPV1 promotes TNF-a
production and is also induced by TNF-a, both of which exert

synergistic inflammatory effects. Pretreatment of isolated rat vagus

nerves with TNF-a enhances the response of sensory neurons to

TRPV1 agonists and mediates increased TRPV1 expression and

Ca2+ influx (102). In TNF-a overexpressing mice, elevated TRPV1

levels and elevated Ca2+ influx levels were demonstrated, indicating

that TNF-a overexpression induced TRPV1 sensitization (103).

TNF-a-triggered thermal and mechanical hypersensitivity in the

body is mediated by TRPV1 signalling downstream of TNFR1

receptor activation, respectively, and sensitization of injury

receptors is dependent on TNFR1 expression (104).

Also, TRPV1 mediates the production of TNF-a. Paeoniflorin
inhibits TRPV1 expression in foot pad tissue samples, suppresses

inflammatory cytokine TNF-a production and ameliorates

inflammation and pain in mice in an LPS-induced acute pain

model (105). However, the analgesic effect of paeoniflorin can be

significantly reversed by CAP, suggesting that TRPV1 channel

activation mediates the release of inflammatory factors such as

TNF-a, leading to inflammatory pain.

TRPV1 and TNF-a exhibit a close reciprocal relationship and

their mutual regulatory role cannot be ignored. Of interest is that in

two studies, TRPV1 agonists showed a dual anti-inflammatory and

pro-inflammatory effect and inflammatory cytokines such as TNF-

a also showed a paradoxical elevation and inhibition (106, 107).

The mechanism of TRPV1’s role in this requires further

clarification. It is undeniable that TRPV1 is tightly associated

with TNF-a, and blocking the reciprocal relationship may reduce

the inflammatory response in RA patients, and may also delay bone
Frontiers in Immunology 06
destruction, diminish disability and improve the quality of

patient survival.

3.1.2.6 IFN-g
Overproduction of IFN-g in RA patients drives the recruitment

of synovial neutrophils, which is accompanied by high disease

activity and leads to persistent inflammation (108, 109). TRPV1

mediates IFN-g production. In a model of inflammation induction,

both inflammatory genes IFN-g and TRPV1 channel were

upregulated, and TRPV1 agonists systematically increased T cell

counts, enhanced CD8+ T cell recruitment and induced

overproduction of IFN-g in healthy mice (110, 111). Nevertheless,

a novel TRPV1 agonist, SA13353, attenuated IFN-g cytokine levels,
possibly associated with the desensitization of TRPV1 (100).

Although TRPV1 channel opening correlates with IFN-g
secretion, there is still a lack of strong evidence to support this.

Whether TRPV1 KO affects the secretion of IFN-g and thus the

development of RA still needs to be further explored.

Activation of the TRPV1 channel is known to cause

inflammation in vivo, but there is growing evidence that it has

anti-inflammatory effects. TRPV1 is expressed in a variety of

immune cell subpopulations, and activation of the channel is

closely synergistic with the release of regulatory proteins, and

inflammatory factors. These synergistic relationships may

influence the final outcome of TRPV1 activation.
3.2 TRPV1 regulates nociplastic pain

Pain is a distinctive feature of RA and a major source of poor

prognosis and low quality of life for patients. As pain caused by RA

is traditionally considered to be a direct result of peripheral

inflammation, doctors have traditionally considered pain to be a

marker of inflammation. However, despite the success of DMARDs

in suppressing inflammation, many people with RA still have pain.

Pain in inflammatory arthritis has a variety of causes; peripheral

inflammatory triggers, structural damage, psychosocial factors, etc.

These factors are entwined with the central mechanisms of pain

(112). Pain management in RA is an increasing challenge for

rheumatologists. Comprehending the underlying biological

mechanisms of pain is essential to improving treatment, disease

management and patient health. The pathogenesis of pain can be

divided into 3 categories (113): 1) Nociceptive pain, which is the

response of the somatosensory system to an injurious stimulus; 2)

Neuropathic pain, defined as a consequence of direct neurological

damage; 3) Nociplastic pain, defined as a dysfunctional neurological

response to pain management in the absence of peripheral tissue

injury, somatosensory system damage or injury receptor

engagement, is manifested as neuro sensitisation. Cutting-edge

research confirms nociplastic pain as an essential cause of non-

inflammatory pain in RA (113).

Excessive release of neuropeptides (including substance P (SP)

and calcitonin gene-related peptide (CGRP) and microglia

dysfunction were revealed to be crucial mechanisms in the

collagen-induced arthritis (CIA) model (114). There is substantial
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1232013
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qu et al. 10.3389/fimmu.2023.1232013
evidence that TRPV1 is widely expressed in the CNS and that

TRPV1 agonist-endocannabinoids can be used to treat pain caused

by nerve sensitization. TRPV1 affects neuropeptide secretion,

contributes to microglia activation and is closely associated with

neuron sensitization, which may play an essential role in non-

inflammatory pain in RA (115). Therefore, starting with TRPV1

and inhibiting abnormal activation of neuropeptides and microglia

overproliferation may be a potential mechanism to inhibit central

and peripheral sensitization and treat non-inflammatory pain

in RA.

3.2.1 TRPV1 affects neuropeptide secretion
TRPV1 mediates CGRP release. Immunohistochemistry

showed that TRPV1 receptors and CGRP co-localized in a

considerable proportion of neurons (116). Decreased calcium-

regulated neuro phosphatase activity in sensory neurons leads to

activation of the TRPV1 channel and increased intracellular Ca2+

concentration, which can cause increased CGRP secretion. Drugs

reduce the pain-induced phosphorylation state of the TRPV1

channel by enhancing calcium-regulated neuro phosphatase

activity, diminishing Ca2+ inward flow, and mediating neuro

calmodulin-dependent desensitization of TRPV1 in sensory

neurons, reducing subsequent CGRP neuropeptide transmitter

release (117). TRPV1 KO or pretreatment with GCRP receptor

antagonists significantly reduced the mechanosensitization induced

by C5a, a component of the complement system, confirming that

TRPV1andCGRP receptors are key steps in themechanosensitization

process (118). Overexpression of aCGRP found in RA patients (119).

ElevatedTRPV1mRNAand increasedCa2+ influxwith the subsequent

increasedneuronal release ofCGRPwere detected in theCFA-induced

pain model compared to the control group (120). As mechanical

hypersensitivity develops in the disease, innervated neurons

exhibit enhanced CGRP expression, as well as stronger pain

manifestations (121).

TRPV1 is not just essential for promoting the synthesis and

release of CGRP (122), but SP is also regulated by TRPV1. SP

activation was observed in cultured RA synovial cells to stimulate

the release of PGE2 and collagenase from synovial cells and

promote synovial cell proliferation (123). Sensory neurons of

TRPV1+ release SP upon stimulation in an allergic mouse model

(124). In a chronic compression injury model, SP rises with TRPV1

levels. Treatment with ferulic acid reduces TRPV1 levels and

subsequently reduces serum SP levels, inhibits peripheral

sensitization and alleviates sciatica (125). The TRPV1 antagonist

capsazepine significantly attenuates TRPV1 expression and SP

release (126). Consistent with this, CAP treatment activates the

TRPV1 channel and dose-dependently promotes the release of

neuropeptides SP and CGRP (127). Interestingly, neuropeptides

interact with TRPV1, with neuropeptides, in turn, activating

TRPV1 in RA synovial fibroblasts and promoting IL-6 and IL-8

production, promoting synovial peripheral inflammation (81).

TRPV1 and the neuropeptides SP and CGRP have been shown

to be abnormally elevated in RA patients. Multiple pain models

demonstrate that TRPV1 mediates SP and CGRP secretion.

However, the effect of TRPV1 KO or antagonists on downstream
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SP and GCRP neuropeptide secretion, on central and peripheral

sensitization in RA models remains to be further investigated.

While most anti-inflammatory drugs can target the immune

cellular component of neuroinflammation, they usually fail to

interfere with the neuronal component (117). Interfering

neuropeptides have great potential value for the treatment of

non-inflammatory pain in RA.

3.2.2 TRPV1 and microglia activation
Nociplastic pain is associated with microglia overactivation

(128). Various humoral factors released by microglia (such as IL-

10, IL-1b), contribute to synapse formation and mediate pain caused

by nerve sensitization, which may be a key mechanism connecting

synaptic plasticity and pain (129). Pharmacological inhibition of

microglia reverses region-specific synaptic plasticity in a pain model,

reaffirming the key role of microglia in nociplastic pain (130).

Notably, TRPV1 is highly expressed in microglia. Activation of

the TRPV1 channel regulates microglia function and microglia

influence synaptic transmission and plasticity in neurons (131).

Chronic pain model studies provide ample evidence (131): (a) Pain

model cortical microglia exhibit high expression of TRPV1 mRNA

and protein compared to negative controls; (b) The TRPV1 agonist

CAP induces the shedding of microvesicles from the surface of

microglia, increases glutamatergic synaptic activity and regulates

synaptic transmission within the central nervous system; (c)

Microglia change both morphologically and phenotypically upon

TRPV1 activation, demonstrating an activation phenotype; (d) the

TRPV1 channel is highly permeable to Ca2+ primarily in microglia.

activation of microglial TRPV1 by CAP drives up intracellular Ca2+

and promotes the release of mitochondrial cytochrome c, leading to

increasedmicroglial apoptosis and autophagy (132); (e)Application of

TRPV1 agonist to elicit concentration-dependent migration and

chemotaxis of microglia (133). Several studies have shown that

microglia exhibit hyperproliferation and increased reactivity in the

CIAmodel. Progressive increase inmicrogliawithescalatingactivation

and sensitization to injurious neurons in CIA joints, closely associated

with pain (121, 134). Peripheral inflammatory signals can stimulate

CNS-resident microglia, prompting rapid conversion to an activated

phenotype that perpetuates neuroinflammation (135).

This differential TRPV1 expression pattern in chronic pain

conditions places microglia TRPV1 at the centre of a new and

important mechanism, providing a link between physiological and

pathological states. Demonstrating a key role for TRPV1 regulating

microglia in nociplastic pain. AMG9810, a TRPV1-specific

inhibitor, attenuates microglia activation, effectively attenuates

mechanical hypersensitivity and reduces pain (136). The use of

the TRPV1 blocker SB366791 significantly inhibited microglia

migration and attenuated the development of mechanically

abnormal pain and nociceptive hyperalgesia, with the same results

observed in TRPV1 KO mice (133).

The above studies support the vital role of abnormal microglia

activation in RA nociplastic pain. Focusing on sensitization and pain

caused by abnormal microglia activation, modulating the TRPV1

channel, inhibiting microglia overactivation, and repairing neural
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sensitization may be a promising strategy for treating nociplastic pain

in RA.
3.3 TRPV1 mediates angiogenesis

Angiogenesis in synovial tissue is a key pathological event in the

progression of RA (137). Angiogenesis recruits inflammatory cells

from the circulatory system, leading to persistent synovitis and the

formation of invasive vascular opacities that further lead to cartilage

destruction and exacerbate the progression of RA (137). Endothelial

Ca2+ signalling plays a crucial role in angiogenesis. Various pro-

angiogenic factors, such as Vascular endothelial growth factor

(VEGF) and transforming growth factor b1 (TGF-b1), are involved
in regulating endothelial cell proliferation and angiogenesis by

increasing intracellular Ca2+ concentration (138, 139). TRPV1, a

multimodal cation channel that mediates Ca2+ influx, is an

important player in vascular endothelial cell migration, proliferation

and angiogenesis (140). It was found that intraperitoneal injection of

theTRPV1 ligandwogonin (aTRPV1agonist) promoted angiogenesis

in WT mice (141). The same results were observed in in vitro

experiments (142). In contrast, TRPV1 antagonists eliminated drug-

induced angiogenesis (143). TRPV1 KO and siRNA-interfered

animals show a significant reduction in induced angiogenesis, and

VEGF and TGF-b1 expression is inhibited in TRPV1 KOmice (144).

Not only that but interestingly, recent findings suggest that TRPV1

triggers angiogenic activity independently of VFGF and that blocking

the TRPV1 channel has no effect onVEGF-stimulated angiogenesis or

Ca2+ signalling in vitro (142). The TRPV1 agonist CAP exhibits an

inhibitory effect on angiogenesis. Retinal microvasculature in diabetic

rats exhibits increased retinal neovascularization andCAP ameliorates

diabetic retinopathy by activating TRPV1 (145). Another study also

demonstrated that CAP inhibits VEGF-induced endothelial cell

proliferation, migration and angiogenesis (146). It is worth noting

that TRPV1 is not the only channel activated by CAP, and the above

studies did not explore the role of the TRPV1 channel in CAP anti-

angiogenesis,whichmayberelated toothermechanismsofCAPaction

in vivo. The role of TRPV1 in angiogenesis has been repeatedly

demonstrated through technical means such as gene knockout,

interference and inhibitors. Thus, modulation of the TRPV1 channel

may be a possible means of inhibiting RA angiogenesis.
3.4 Potential role of TRPV1 in
joint destruction

Cartilage destruction in the affected joints is the main

pathological feature of RA that causes disability. Cartilage

destruction occurs rapidly from the onset of RA and can lead to

joint deformation and functional deterioration. Therefore,

controlling cartilage destruction is an important part of treatment

to reduce the disability rate of RA (147). Abnormal activation of

osteoclasts leads to increased bone resorption and insufficient

production of osteoblasts leads to impaired bone formation.

Osteoclast/osteoblast imbalance underlies bone loss in RA,

including bone erosion, periarticular bone loss and systemic
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osteoporosis. RANKL is an important mediator of osteoclast

production and the key role of osteoclasts in bone erosion has been

demonstrated in basic research and the clinical efficacy of antibodies

targeting RANKL (148).

It was found that TRPV1 was expressed in chondrocytes (149).

TRPV1channel activation enhances RANKL-mediateddifferentiation

of bone marrow-derived macrophages (BMM) to osteoblasts. TRPV1

channel inhibition reduces RANKL-mediated osteoclast formation.

This suggests that although TRPV1 activation by itself does not induce

osteoclastogenesis, it has a critical synergistic effect on RANKL-

mediated signalling events. In vivo, experiments showed the same

results, with mice in the TRPV1 agonist (curcumin or CAP) group

having a higher degree of trabecular osteoclast formation, trabecular

microstructure erosion, bone loss and reduced vertebral bone density,

comparable to the ovariectomized group (150).Capsazepine, a TRPV1

ion channel antagonist, inhibits osteoclast bone resorption and

prevents ovariectomy-induced bone loss in mice (151). The reduced

osteoclast formation in TRPV1 KO mice is a strong indication of the

important role of TRPV1 in bone destruction. In vitro, experiments

have further explored the mechanism of action of the TRPV1 channel

in regulating bone destruction. In bonemarrow-osteoblast co-cultures

and RANKL-generated osteoblast cultures, capsazepine inhibited

osteoclast formation and bone resorption in a dose-dependent

manner. The TRPV1 agonist CAP enhances RANKL-stimulated

osteoclast formation. CAP also inhibits RANKL-induced

phosphorylation of IkappaB and ERK1/2 and causes apoptosis in

matureosteoblasts, and inhibits alkalinephosphatase activity andbone

nodule formation in calcified osteoblast cultures (151). The use of

glucocorticoids is also known to be an important cause of joint

destruction and bone loss in RA. TRPV1 can be induced to

dysregulate by glucocorticoids and promote osteoclastogenesis. The

pharmacology of TRPV1 significantly inhibited the over-activation of

osteoclasts, suggesting a therapeutic use of this channel in protecting

against glucocorticoid-induced bone loss (152).

In summary, the TRPV1 channel regulates osteoclast activation

and apoptosis and also affects osteoblasts, playing an important role

in RA articular bone/chondral destruction. Modulation of the

TRPV1 channel may be a promising therapeutic idea to mitigate

bone destruction in RA.
4 TRPV1-targeted therapy

The above studies shed light on the key role of TRPV1 in the

mechanisms of inflammation and pain in RA(Figure 2). In recent

years, TRPV1-targeted drugs have received much attention in

inflammatory arthritis, e.g. RA, OA, gouty arthritis, etc. Data on

the modulation of the TRPV1 channel for arthritis are summarised

in Table 1. Many clinical trials are also being conducted to treat

arthritis and pain by targeting TRPV1(Table 2).

It is clear from the above that TRPV1 is a highly druggable

target. The development of TRPV1-targeted drugs for arthritis is

actively pursued worldwide. There is considerable evidence in the

table that TRPV1 channel inhibition plays an important role in

reducing joint oedema and destruction, as well as relieving

inflammation and pain. TRPV1 channel agonists can also target
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intractable pain and chronic pain after inflammatory remission

through desensitization, suggesting that targeting TRPV1 has great

potential for the treatment of RA. However, the development of

TRPV1-targeted drugs has not always been smooth. TRPV1 has

complex regulatory functions and is essential for the maintenance

of normal body temperature (117). Systemic antagonism of TRPV1

can damage harmful heat sensations in human skin, increasing the

harmful heat threshold and leading to accidents such as burns and

scalds (177). Antagonizing TRPV1 also interferes with body

thermoregulation, leading to excessive body temperature rise

(172). The use of TRPV1 agonists such as CAP causes a strong

initial pain response and induces vasodilation and the

desensitisation and toxicity doses are relatively close to each

other, making adverse effects difficult to control (178).

Although these issues have lowered expectations, there has been

some promising progress. Region-specific antagonism of TRPV1

can exert analgesic effects without causing hyperthermia (179).

“Non-stimulatory” TRPV1 agonists have been developed, such as
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Olvanil (NE19550) and MRD-652, both of which have shown

promise in inflammatory pain models (178, 180), its clinical

value, as yet, remains to be proven. In addition, we can also look

for natural products that have a regulatory effect on the TRPV1

channel. Given the complexity of TRPV1 function, keeping TRPV1

activity within the physiological range and reducing its sensitizing

effects that occur in pathophysiological pain states may be a more

promising research and development Strategy.
5 Conclusion

The therapeutic role of TRPV1 is a topic that cannot be ignored

in the field of inflammation and pain, with some scholars even

calling it the “holy grail of pain management” (181). Based on the

evidence reviewed, it is clear that TRPV1 plays a central role in the

pathology of RA. Excessive activation of TRPV1 leads to immune

cell dysfunction and excessive release of inflammatory factors that
FIGURE 2

The potential role of the TRPV1 channel in the pathogenesis of RA. (A) TRPV1 is expressed not just in synovial cells but also in immune cells such as
T cells (44), macrophages (47), and dendritic cells (68), controlling immune cell activity, influencing cytokine release, and causing inflammation in the
body. (B) The opening of the TRPV1 channel induces increased Ca2+ influx, activates microglia (131), promotes the release of the neuropeptide
substance P and CGRP from sensory nerve fibres (116, 126), causes neuron sensitization and the release of cytokines, and results in nociplastic pain.
(C) TRPV1 is expressed in chondrocytes, induces RANK/RANKL production, promotes the maturation of pre-osteoclasts, and mediates the formation
of osteoclasts from BMM, leading to bone destruction (150, 151). (D) The opening of the TRPV1 channel can cause an increase in Ca2+ influx,
promoting VEGF and TGF-b1 generation (144), and inducing angiogenesis. TCR, T-cell receptors; IFN-g, Interferon-g; IL-17A, Interleukin-17A; Pre-
DC, Immature dendritic cells; DC, Dendritic cells; TNF-a, Tumor Necrosis Factor-a; TNFR1, Tumor necrosis factor receptor 1; MAPK, Mitogen-
activated protein kinase; NF-kB, Nuclear factor kappa-B; IL-8, Interleukin-8; IL-1b, Interleukin-1b; IL-23, Interleukin-23; COX-2, Cyclooxygenase-2;
RANK, receptor activator of NF-kB; RANKL, Receptor activator of NF-kB ligand; CGRP: Calcitonin gene-related peptide; VEGF, Vascular endothelial
growth factor; TGF-b1,Transforming growth factor-b1.
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TABLE 1 Summary of studies modulating TRPV1 in the treatment of inflammatory arthritis.

Drugs Dosage Disease
models

Medication
method

Drug type Results Citation

CAP 5、10mM OA i.a. TRPV1
agonist

Increase mechanically evoked responses (13)

0.05mg RA i.d. TRPV1
agonist

Induce vasodilatation in the skin overlying joints (153)

RTX 30-70-100mg/
kg

(pretreatment,
3 days)

RA i.h. TRPV1
agonist

Increased joint oedema; Attenuate late mechanical
hyperalgesia

(154)

10µg/time OA Intraarticular
injection

TRPV1
agonist

Suppress pain, improve gait and weight bearing (155)

Oleylethanola-
mine

10−11M to 10
−6M

RA TRPV1
agonist

Combination with the COX-2 inhibitor nimesulide
significantly reduced cytokine and MMP-3 production

(156)

Palmitoylethan-
olamine

10−11M to 10
−6M

RA TRPV1
agonist

Alone significantly reduced IL-6 and IL-8 secretion by
RASF

(156)

Anandamide 10−6M/10−8M RA TRPV1
agonist

Reduces IL-6, IL-8 and TNF production by primary
mixed synoviocytes

(156)

860nmol RA TRPV1
receptor
agonist

Induce excitability of notice price afferent subpopulations
and pain

(157)

SA13353 10mg/kg RA p.o. TRPV1
agonist

Inhibit TNF-a production; reduce the hind paw swelling
and joint destruction

(158)

SB-366791 10nmol Gout Inject/Paw TRPV1
selective
antagonist

Reduce Persistent pain sensation and oedema (159)

0.1nmol Gout Inject/Paw TRPV1
selective
antagonist

No effect (159)

A-889425 10-300mmol/kg OA p.o. TRPV1
receptor
antagonist

Alleviated grip force impairment (12)

10、30mmol/
kg

OA i.v. TRPV1
receptor
antagonist

Reduced the responses of nociceptive specific neurons (12)

JNJ-17203212 0.075、0.15
mg/100mL

OA i.a. TRPV1
antagonist

Significantly attenuated weight-bearing asymmetry;
inhibits mechanically evoked responses of knee joint

afferents

(13)

Capsazepine 600ng TMD Inject/TMJ TRPV1
antagonist

Significantly attenuated allodynia of the inflamed TMJ
induced by intra-TMJ injection of CFA

(160)

1mg kg -1 RA TRPV1
antagonist

Produce anti-hyperalgesia and anti-nociception (157)

AMG9810 30pmol Gout Inject/Paw TRPV1
receptor
antagonist

Largely prevented nociceptive and edematogenic
responses to MSU

(161)

ABT-116 10mg/kg Synovitis Intraarticular
injection

TRPV1
proprietary
antagonist

Attenuate Synovitis and lameness (162)

Eucalyptol 600 mg·kg -1 Gout i.p. Downregulate
the expression
of TRPV1

Attenuate mechanical allodynia and ankle oedema (163)

OMDM-198 1mg/kg OA i.p. TRPV1
antagonist

Significant antinociceptive effects (164)

(Continued)
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mediate inflammation in the body. Activation of the TRPV1

channel mediated by neuropeptide release and microglia

activation induces nociplastic pain after inflammation control.

TRPV1 also plays an important role in angiogenesis and cartilage
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destruction. Pain and inflammation, angiogenesis, and cartilage

destruction are all important parts of the treatment of RA. Thus,

TRPV1 is a remarkably promising target for RA therapy, especially

in pain management. This is because interfering with its activity
TABLE 1 Continued

Drugs Dosage Disease
models

Medication
method

Drug type Results Citation

AMG9810 30mg/kg OA i.p. TRPV1
receptor
antagonist

Reverse thermal hyperalgesia and block Pain (165)

APHC3 0.1mg/kg RA i.h. Mode-
selective
TRPV1

antagonist

Reverse pain-induced paw dysfunction (166)

A-995662 100 mmol/kg OA p.o. TRPV1
antagonist

Reduce spinal glutamate and CGRP release; analgesic
efficacy in pain

(167)

Cannabidiol 10µM/20µM RA TRPV1
agonist

Reduce cell viability and proliferation of RASF (168)

SZV1287 20mg RA i.p. TRPV1
antagonist

Decrease hyperalgesia, L4-L6 spinal dorsal horn
microgliosis, oedema and myeloperoxidase activity

(169)

SAFit2 10mg/kg Neuropathic
pain

i.p. Desensitizes
the TRPV1

Diminish excessive neuroinflammation and central
sensitization

(117)

Fish oil
concentrate

Pain
induced
by heat

p.o. Reduce
expression of

TRPV1

Significantly reduces sensitivity to heat-induced pain (170)

ShexiangZhuifeng
Analgesic Plaster

RA External use Downregulate
the expression
of TRPV1

Significantly ameliorated arthritis scores and paw
thickness; improve pathological damage of synovial joints;

remarkably alleviated pain in CIA rats

(171)
fr
TABLE 2 Drugs targeting TRPV1 channel in clinical development.

Action Drug Company Therapy Area Highest
development

status

ClinicalTrials.gov
identifier

Citation

TRPV1
agonist

Capsaicin Not Assigned Pain Launched N/A

TRPV1
agonist

Zucapsaicin Sanofi-Aventis Canada Inc Arthritis Registered N/A

TRPV1
antagonist

JNJ-
39439335

Johnson&Johnson Pharmaceutical
Research&Development, L.L.C.

Arthritis Phase 1 NCT00933582

TRPV1
antagonist

JNJ-
39439335

Johnson&Johnson Pharmaceutical
Research&Development, L.L.C.

Pain Phase 1 NCT01006304

TRPV1
antagonist

NEO6860 Neomed Institute Arthritis Phase 1 NCT02337543

TRPV1
agonist

CNTX-4975 Centrexion Therapeutics Corp Arthritis Phase IIb NCT02558439 (172)

TRPV1
antagonist

V116517 Purdue Pharma Pain and sensitization Phase 1 N/A (173)

TRPV1
antagonist

AZ12048189 AstraZeneca Local tissue
inflammation and pain

Phase 1 N/A (174)

TRPV1
antagonist

SB-705498 Addenbrooke’s Centre for Clinical
Investigation

Heat-evoked pain Phase 1 N/A (175)

TRPV1
antagonist

AMG517 Amgen Inc Pain Phase 1 N/A (176)
ontiersin.org

https://doi.org/10.3389/fimmu.2023.1232013
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qu et al. 10.3389/fimmu.2023.1232013
alters the function of multiple signalling pathways in the

pathogenesis of RA, thereby slowing its progression. Research on

TRPV1 channel-targeting drugs is complex and demanding, and a

better understanding of TRPV1 function and post-antagonism in

the RA paradigm should accelerate the development of TRPV1-

targeted modulators.
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