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Background: Observational studies have shown that gut microbiota is closely

associated with inflammatory dermatoses such as psoriasis, rosacea, and atopic

dermatitis (AD). However, the causal relationship between gut microbiota and

inflammatory dermatosis remains unclear.

Methods: Based on Maximum Likelihood (ML), MR-Egger regression, Inverse

Variance Weighted (IVW), MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO),

Weighted Mode, and Weighted Median Estimator (WME) methods, we performed a

bidirectional two-sample Mendelian randomization (MR) analysis to explore the

causal relationship between gut microbiota and inflammatory dermatosis. The

genome-wide association study (GWAS) summary data of gut microbiota came

from the MiBioGen consortium, while the GWAS summary data of inflammatory

dermatosis (including psoriasis, AD, rosacea, vitiligo, acne, and eczema) came from

the FinnGen consortium and IEU Open GWAS project. Cochran’s IVWQ test tested

the heterogeneity among instrumental variables (IVs). The horizontal pleiotropy was

tested by MR-Egger regression intercept analysis and MR-PRESSO analysis.

Results: Eventually, the results indicated that 5, 16, 17, 11, 15, and 12 gut microbiota

had significant causal effects on psoriasis, rosacea, AD, vitiligo, acne, and eczema,

respectively, including 42 protective and 34 risk causal relationships. Especially,

Lactobacilli and Bifidobacteria at the Family and Genus Level, as common

probiotics, were identified as protective factors for the corresponding

inflammatory dermatoses. The results of reverse MR analysis suggested a

bidirectional causal effect between AD and genus Eubacterium brachy group,

vitiligo and genus Ruminococcaceae UCG004. The causal relationship between

gut microbiota and psoriasis, rosacea, acne, and eczema is unidirectional. There

was no significant heterogeneity among these IVs. In conclusion, this bidirectional

two-sample MR study identified 76 causal relationships between the gut

microbiome and six inflammatory dermatoses, which may be helpful for the

clinical prevention and treatment of inflammatory dermatoses.

KEYWORDS

gut microbiota, two-sample mendelian randomization, psoriasis, rosacea, atopic
dermatitis, vitiligo, eczema, acne
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Introduction

Inflammatory dermatoses represent a diverse group of diseases with

multiple etiologies, including genetic factors, infections, and immune

dysregulation (1), involving the activation of various immune cells and

inflammatory mediators in both the innate and adaptive immune

systems. Current studies have shown that gut microbiota may affect

the host’s immune function. Under normal conditions, the interaction

between gut microbiota and Toll-like receptors (TLR) on intestinal

epithelial cells and immune cells facilitates homeostasis of the immune

system (2). Gut microbiota may thus affect host skin immunity directly

or indirectly through the gut-skin axis (3).

Various studies have shown significant differences in the gut

microbial composition of patients with inflammatory dermatoses

(4). For example, Bifidobacterium, considered a probiotic, decreases

in eczema (5), acne (6), psoriases (7), and atopic dermatitis (AD)

(8), but is enriched in rosacea (9). However, studies have varied in

the relationship between gut microbiota and inflammatory

dermatoses, such as Akkermansia muciniphila in psoriasis (10,

11). In observational studies, the association between the gut

microbiota and inflammatory dermatoses is easily affected by

confounding factors such as dietary patterns, environment, age,

and lifestyle (12), making it challenging to draw a causal inference

between gut microbiota and dermatoses.

The genome-wide association study (GWAS) establishes variant-

trait associations by detecting genetic variation in individual genomes

(13). Mendelian randomization (MR) integrates summary data from

GWAS and explores causal relationships between exposure and

outcomes by using exposure-related genetic variation as a substitute

for exposure (14). Research design with MR follows the Mendelian

inheritance law where “parental alleles are randomly assigned to

offspring.” If genotype determines phenotype, the genotype is

associated with a particular disease through the phenotype, and thus

the association between inflammatory dermatoses and gut microbiota

can be inferred using the genotype as an instrumental variable. MR is

less prone to confounding factors because germline genetic variation is

randomly assigned during meiosis and therefore reflects exposure

without being affected by reverse causality. As an extension of the MR

approach, bidirectional MR can be used to determine the direction of

causality between two related phenotypes. In this study, we performed

a bidirectional two-sample MR analysis of gut microbiota and six

inflammatory dermatoses to reveal the causal relationships between

gut microbiota and inflammatory dermatoses.
Methods

Data sources

This analysis employed the largest-scale gut microbiome

genome-wide meta-analysis to date obtained from the international
Abbreviations: MR, Mendelian randomization; ML, maximum likelihood; IVW,

Inverse variance weighted; MR-PRESSO, MR Pleiotropy RESidual Sum and

Outlier; GWAS, genome-wide association study.

Frontiers in Immunology 02
consortium MibioGen (15). The project studied the genome-wide

genotypes and 16S ribosomal RNA gene sequencing of 18,340

participants in 24 cohorts from 11 countries, targeting variable

regions V4, V3–V4, and V1–V2 of the 16S rRNA gene to delineate

the microbial composition and to conduct classification using direct

classification. Microbiome trait loci (mbTL) mapping was performed

to identify genetic loci that affect the relative abundance in gut

microflora. A total of 131 genera, 35 families, 20 orders, 16 classes,

and 9 phyla with an average abundance of over 0.1% were included.

The GWAS summary data of Eczema came from the data released

by the IEU Open GWAS project (GWAS ID: ieu-a-996, Trait name:

Eczema) (16). The GWAS data included 11,059,641 single-nucleotide

polymorphisms (SNPs) and 40,835 samples, including 10,788 in the

case group and 30,047 in the control group. The GWAS summary

data of Psoriasis (Number of SNPs = 16,380,464; ncase = 4,510;

ncontrol = 212,242), Rosacea (Number of SNPs = 16,380,452; ncase =

1,195; ncontrol = 211,139), AD (Number of SNPs = 16,380,443; ncase

= 7,021; ncontrol = 198,740), Vitiligo (Number of SNPs = 16,380,442;

ncase = 131; ncontrol = 207,482), and Acne (Number of SNPs =

16,380,454; ncase = 1,299; ncontrol = 211,139) came from the data

released by FinnGen consortium (GWAS ID: finn-b-L12_PSORIASIS,

finn-b-L12_ROSACEA, finn-b-L12_ATOPIC, finn-b-

L12_VITILIGO, and finn-b-L12_ACNE, Trait name: Psoriasis,

Rosacea, Atopic dermatitis, Vitiligo, and Acne) (17). Age, sex, top

10 major components, and genotyping batches were corrected during

the original author’s analysis (18). The details of the data sources used

in this study are shown in Table S1 (Supplementary 1).
Instrumental variable (IV)

The bacterial taxa were classified into five hierarchical levels

(phylum, class, order, family, and genus) to analyze, and each taxon

was considered as a feature. SNPs associated with the gut microbiome

were identified and used as instrumental variables. To ensure the

authenticity and accuracy of the conclusions on the causal link

between gut microbiome and inflammatory dermatoses risk, we

selected instrumental variables (IVs) based on the following four

criteria. First, the SNP-phenotype association level must reach the

locus-wide significance threshold (P< 5 * 10-8) to select potential IVs.

Unfortunately, only a small number of SNPs were selected as IVs. To

explore more relationships between inflammatory dermatoses and

gut microbiota to obtain more comprehensive results, the second

threshold (P< 1 * 10-5) was used to identify SNPs which were selected

as the second IV set. Second, SNPs with minor allele frequency

(MAF) ≤ 0.01 were removed. Third, SNPs with R2 values<0.001

(clumping window size=10,000 kb) were filtered, and only the one

with the lowest p-value was kept. Fourth, when palindromic SNPs

existed, the allele frequency data were used to infer the forward-

strand alleles.
Statistical analysis

The principle design of the whole study is shown in Figure 1.

The detailed research flow chart and the three assumptions of
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https://doi.org/10.3389/fimmu.2023.1231848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2023.1231848
Mendelian randomization analysis are presented in Figure S1 of

Supplementary 2. In this study, the following popular MR methods

were used to examine whether there was a causal association

between gut microbiota and inflammatory dermatoses: Inverse

Variance Weighted (IVW) test, Maximum Likelihood (ML),

Weighted Mode, MR-Egger regression, Weighted median

estimator (WME), and MR Pleiotropy RESidual Sum and Outlier

(MR-PRESSO). IVW test obtains the overall estimation of the

influence of the gut microbiota on inflammatory dermatoses, by

combining the Wald estimates for each SNP with a meta-analytic

approach. It ignores the intercept term in regression and uses the

inverse of outcome variance (se2) as the weight for fitting. If there is

no horizontal heterogeneity, the IVW results would be unbiased

(19). The ML method is analogous to IVW, and its standard error is

smaller when the same assumptions are met (20). Based on the

assumption of instrument strength independent of direct effect

(InSIDE), MR-Egger regression is used to evaluate the existence

of horizontal pleiotropy with intercept terms (21). If the intercept

term is zero, it indicates no horizontal pleiotropy, and the MR-

Egger regression result agrees with IVW (21). The WME method

can estimate causality more correctly when more than 50% of the

instrumental variables are invalid (22). When the InSIDE

assumption is not fulfilled, the Weighted Mode has been shown

to have a superior ability to detect a causal effect, with less bias and a

lower type I error rate than MR-Egger regression (22). We also

identified and corrected pronounced outliers with MR-PRESSO

tests and MR-Egger regression (23).
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Furthermore, we quantified the heterogeneity among the

selected SNPs with Cochran’s Q statistic and identified potential

heterogeneous SNPs with the “leave-one-out” analysis omitting

each instrumental SNP in turn. Lastly, a reverse MR analysis of

gut microbiota and inflammatory dermatoses was conducted with

the same procedures and parameters as the forward MR.

In addition, we calculated the F statistic performed to assess the

strength of the relevance between instrumental variables and

exposure by the formula F = R2�(n−k−1)
(1−R2)�k . R2 is the proportion of

the variance of the trait accounted for by the SNP, k is the number

of IVs, and n is the sample size (24). An F value over 10 indicates no

significant weak instrumental bias. We utilized an online calculator

tool available on https://shiny.cnsgenomics.com/mRnd/, developed

by Marie-Jo A Brion et al., to determine the power of MR estimates

(25, 26).

Furthermore, we utilized the PhenoScanner software to extract

genes encompassing all identified SNPs and subsequently

conducted a pathway enrichment analysis on those genes linked

to SNPs contained within the instrumental variables of gut

microbes demonstrating a significant causal association with

inflammatory skin disorders (27). The enrichment analysis was

executed using the clusterProfiler package (28). We omitted KEGG

pathways with a P-value exceeding 0.05 and those with fewer than

three mRNAs represented in the enrichment path.

False discovery rate (FDR) correction was conducted by applied

fdrtools procedure, with a false discovery rate of FDR< 0.1 (29). All

analysis was performed on R (version 4.2.2) and MR Analysis was
FIGURE 1

Study design of the two-sample Mendelian randomization for the effect of genetically predicted gut microbiome on inflammatory dermatoses.
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based on MR-PRESSO (version 1.0) (23), TwoSampleMR (version

0.5.6) (30), and meta (version 6.2.1) packages (31).
Results

SNP selection

According to the selection criteria of IVs and removing the

number of SNP repeated in different microorganisms, we identified

27 SNPs associated with gut microbiota at a significance level of p<

5 × 10−8. The details of 27 SNPs in the exposure and six outcome

variables are shown in Table S2 (Supplementary 1). Such few IVs is

not enough for high-performance MR analysis. Therefore, under

the screening of another threshold p< 1 × 10−5, we got 2,123 SNPs

associated with gut microbiota in psoriasis, AD, rosacea, vitiligo,

and acne, and 2,155 SNPs for eczema. The details of 2,155 SNP in

the exposure and six outcome variables are shown in Table S3

(Supplementary 1).
Causal effects of gut microbiota
on the development of six
inflammatory dermatoses

In our study, we employed gut microbiota as an exposure and

investigated its association with six inflammatory dermatoses using
Frontiers in Immunology 04
MR analysis. We filtered the IVs based on a threshold of p< 5 ×

10−8. As indicated in Table S4 (Supplementary 1), the limited

number of available IVs restricted us to only two MR evaluation

methods for analysis. However, the results showed that there was no

causal relationship between the other five dermatoses and gut

microbiota, except for acne, which had a causal relationship with

a few gut microbiota. It is worth noting that MR analysis is not

recommended when there are less than 3 IVs, as per the

authoritative statement on MR analysis. Therefore, we opted to

use IVs filtered by a threshold of p< 1 × 10−5 for subsequent

MR analysis.

All identified gut microbiota with no less than 3 IVs were

retained. The causal effects of the remaining 192 gut microbiota on

psoriasis, rosacea, atopic dermatitis, vitiligo, and acne are shown in

Table S5 (Supplementary 1).

Based on the estimate of IVW and ML, the result showed five,

18, 20, 14, 16, and 12 gut microbiotas had significant causal effects

on psoriasis (Figure 2A), rosacea (Figure 2B), AD (Figure 2C),

vitiligo (Figure 2D), acne (Figure 2E), and eczema (Figure 2F),

respectively. It is worth noting that the common probiotics such as

family Bifidobacteriaceae (OR = 0.82, 95%CI: 0.68–0.99, Pvalue =

0.0230, FDR = 0.0499) and genus Bifidobacterium (OR = 0.84, 95%

CI: 0.73–0.98, Pvalue = 0.0197, FDR = 0.0289) have a protective

effect on AD (Figure 2C). Order Lactobacillales (OR = 0.25, 95%CI:

0.06–0.97, Pvalue = 0.0447, FDR = 0.0757) had a protective effect on

vitiligo (Figure 2D). In addition, family Bifidobacteriaceae (OR =

0.62, 95%CI: 0.43–0.90, Pvalue = 0.0118, FDR = 0.0319), family
A

B

D

E

F

C

FIGURE 2

MR analysis of the causal relationship between genetically predicted gut microbiota and psoriasis (A), rosacea (B), atopic dermatitis (C), vitiligo (D),
acne (E), and eczema (F).
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Lactobacillaceae (OR = 0.70, 95%CI: 0.51–0.96, Pvalue = 0.0159,

FDR = 0.0260), and genus Lactobacillus (OR = 0.68, 95%CI: 0.51–

0.91, Pvalue = 0.0068, FDR = 0.0103) have a protective effect on

acne (Figure 2E).

Figure S2 (Supplementary 2) presents a consolidated network

highlighting gut microbiota implicated in several inflammatory skin

conditions concurrently.
Sensitivity analyses

As shown in Table S5 (Supplementary 1), the explaining rate of

the total variation (R2 values) of the 192 gut microbiota in six

inflammatory dermatoses ranged from 0.40% to 10.58%, and the F

values ranged from 12.27 to 139.83, excluding the possibility of

weak genetic tool variables. Based on Cochran’s IVW Q test, there

was no significant heterogeneity among these IVs (Table S6 in

Supplementary 1). In addition, according to the results of MR-Egger

regression intercept analysis (Table S7 in Supplementary 1), except

for phylum Verrucomicrobia (p = 0.029) on rosacea, the other 205

intestinal microorganisms had no significant horizontal pleiotropy.

However, further MR-PRESSO analysis (Table S8 in Supplementary

1) did not find the horizontal pleiotropy in phylum

Verrucomicrobia (Global test P-value = 0.356) on rosacea.
Bidirectional causal effects between gut
microbiota and six inflammatory
dermatoses

Based on the selection criteria of IVs, we obtained 38, 14, 58, 7,

12, and 42 SNPs (P< 1 * 10-5, R2< 0.001) significantly associated

with psoriasis, rosacea, AD, vitiligo, acne, and eczema, respectively.

Summaries and details of each SNP are presented in Table S9

(Supplementary 1). The results of reverse MR analysis (Table S10 in

Supplementary 1) showed that AD was causally associated with

genus Eubacterium brachy group (OR = 1.41, 95%CI: 1.07–1.87,

Pvalue = 0.0185, FDR = 0.0442, MR Egger). Vitiligo was causally

associated with genus Ruminococcaceae UCG004 (OR = 0.97, 95%

CI: 0.95–0.99, Pvalue = 0.0197, FDR = 0.0279, IVW), which

indicated a bidirectional causal effect between them. No other

significant causal relationship was found between six

inflammatory dermatoses and the gut microbiota (Table S10 in

Supplementary 1). No notable heterogeneity was detected by

Cochran’s Q statistics (Table S11 in Supplementary 1, P > 0.05).

The results of MR-Egger regression intercept analysis indicated a

significant horizontal pleiotropy when we evaluated the cause-effect

of AD on genus Eubacterium brachy group (p = 0.0217) (Table S12

in Supplementary 1). But, further MR-PRESSO global test (Table

S13 in Supplementary 1) suggested no evidence of pleiotropy

(Global test P = 0.566).

By investigating the genes aligned with the instrumental variables

of gut microbes showing a marked causal association with

inflammatory skin disorders (refer to Table S14 in Supplementary

1) and conducting KEGG pathway enrichment analysis, we discerned

a notable enrichment in inflammatory signaling pathways, including
Frontiers in Immunology 05
IL-17 signaling pathway, Chemokine signaling pathway and

Cytokine-cytokine receptor interaction (refer to Table S15 in

Supplementary 1, Figure S3 in Supplementary 2). This underlines

the potential mechanisms by which gut microbes might influence the

progression of inflammatory skin diseases via pathways like

interleukins and cytokines.
Discussion

This study constituted the first-ever attempt to explore a causal

relationship between gut microbiota and inflammatory dermatoses

using the summary statistics of the largest genome-wide meta-

analysis of gut microbiotas conducted by the MiBioGen

consortium. Based on the two-sample MR analysis, we identified

88 causal relationships between the gut microbiome and six

inflammatory dermatoses.

Previous studies generally tended to consider increased gut

microbiota in inflammatory dermatoses as potential risk factors and

vice versa. Despite rich findings in the past (7), ourMR analysis showed

only five genera associated with psoriasis. Nam JH et al. reported that

the genus Desulfovibrio decreased in patients with rosacea (32), while

MR analysis showed that the order Desulfovibrionales was a risk factor.

MR analysis indicated that among the gut microbiota of patients with

AD, the protective factors contained the genus Bifidobacterium, family

Desulfovibrionaceae, phylum Actinobacteria, etc. In addition, the

findings about the genera Dialister and Bacteroides were consistent

with previous studies (33–35). Limited studies of the gut microbiota in

vitiligo have unveiled an association between disease duration and

Ruminococcus, which is consistent with MR results (36). For acne,

related studies found a decrease in the genera Bifidobacterium,

Lactobacillus, Ruminococcaceae and phylum Actinobacteria (6, 37),

which was consistent with our MR analysis results. For patients with

eczema, MR analysis identified the genus Bacteroides and family

Bacteroidaceae as risk factors while the genus Christensenellaceae R-

7 group was a protective factor, which was consistent with the previous

findings (5, 38, 39). In comparison, we can find that many findings are

consistent, confirming the reliability of our MR results. However, the

correlation between gut microbiota and inflammatory dermatoses can

hardly be indicated based on the altered abundance of the

gut microbiota.

The microbiota, identified as protective or risk factors, have also

been much studied in their impact on inflammatory dermatoses.

Bacteria such as Akkermansia, Ruminococcus, Bifidobacterium,

Eubacterium, and Coprococcus are producers of short-chain fatty

acids (SCFAs) (40, 41), including acetate, propionate, and butyrate.

SCFAs are transported from the intestine to the skin via peripheral

circulation. They modulate the function of immune cell function to

reduce inflammatory factor release (42), improve mitochondrial

function (43), and promote keratinocyte metabolism and

differentiation (43). These effects are achieved through binding to

G protein-coupled receptors (GPCR) and peroxisome proliferator-

activated receptor gamma (PPARg) (42, 44), promoting

mitochondrial fatty acid b-oxidation (FAO) (45), and inhibiting

histone deacetylase (HDAC) (46). Epidermal keratinocytes can

metabolize butyrate into long-chain fatty acids (LCFAs) and very
frontiersin.org
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long-chain fatty acids (VLCFAs), which contribute to ceramide

synthesis for skin barrier repair (43). In addition, SCFAs benefit the

intestinal barrier (47). Topical and oral administration of SCFAs or

their derivatives have also been found to be effective in treating

inflammatory dermatoses (48). Lactobacillus and Bifidobacterium

may inhibit immune inflammation by increasing tryptophan (Trp)

and Trp metabolites, maintaining intestinal barrier function on the

one hand and reducing acne inflammation on the other (49, 50).

Bifidobacterium longum can metabolize Trp to indole-3-

carbaldehyde (I3C), activating the aryl hydrocarbon receptor

(AHR)-mediated immune signaling pathway, suppressing Th2

cells, and thus relieving AD (51). Sulfate-reducing bacteria (SRB),

including Desulfovibrionaceae, convert sulfate in the intestine to

hydrogen sulfide (H2S), which impairs epithelial barrier function by

interfering oxidation of butyrate in the colon, with subsequent

disruption of intestinal permeability (52). Bifidobacterium,

Lactobacillus, and Roseburia spp metabolize polyunsaturated fatty

acids, including omega-3 and omega-6 fatty acids, to conjugated

linoleic acid (CLA) (53, 54), thereby inhibiting COX-2/5-LOX and

TLR4/NF-kB signaling pathway and attenuating skin lesions of AD

(55). Oral administration of Lactobacillus can reduce insulin-like

growth factor 1 (IGF-1) and increase forkhead box protein O1

(FoxO1) expression in the skin, improving the condition of acne

(56). However, the microbiota of similar lineages may bring

different outcomes for the same or different inflammatory

dermatoses. For example, Ruminococcus produces SCFAs which

can alleviate inflammatory dermatoses. However, the genera

Ruminococcaceae UCG004 and Ruminocaccaceae UCG005 were

identified as risk factors for vitiligo and acne, respectively, while the

genus Ruminococcus torques group was identified as a protective

factor for acne. Future studies should clarify the effects of different

microbiota for different dermatoses.

Existing findings have pointed out a potential avenue for

treating inflammatory dermatoses by manipulating the gut

microbiota. From a dietary standpoint, dietary composition and

bioactive substances can influence inflammatory dermatoses by

altering the gut microbial structure (57–59). The intake of

probiotics, prebiotics, and synbiotics also alleviates inflammatory

dermatoses (60). It is important to emphasize that the common

probiotics, Lactobacillus and Bifidobacterium were identified as

protective factors for the corresponding inflammatory

dermatoses. After receiving fecal microbiota transplantation

(FMT) from healthy mice, AD mice experienced changes in their

gut microbiota, including a significant increase in the family

Desulfovibrionaceae and the genus Lactobacillus. The level of

SCFA in the feces of AD mice increased after FMT, balancing the

abnormal immune responses and alleviating AD skin lesions (61).

The present study has the following strengths. First, our study is

the first to assess the bidirectional causal relationship between gut

microbiota and inflammatory dermatoses using a two-sample MR

analysis. Second, the results of the two-sample MR analysis were

less susceptible to confounding factors, reverse causality, and

exposure than in the observational study. Third, the strength of

instruments in the MR analysis was ensured by using the most

extensive available GWAS meta-analysis of the MiBioGen

consortium; sensitivity analysis was performed to ensure the
Frontiers in Immunology 06
consistency of causal estimation and the robustness of the results;

the detection and exclusion of horizontal pleiotropy by using MR-

PRESSO and MR-Egger regression intercept term tests.

However, there are some limitations to this study. First, the

analysis used pooled data of disease types and therefore did not

allow for subgroup analysis around disease subtype and severity.

Second, the main participants in GWAS are from Europe, so the

extrapolation of results to other ethnicities will be limited. Third,

the SNPs used in the analysis did not reach the traditional GWAS

significance threshold (P< 5 × 10-8). Still, we needed to include more

genetic variation as IV for sensitivity analysis and horizontal

pleiotropy detection. When the P value is set to 5 × 10-8 or 1 ×

10-6, only one or no SNP is available for each microbe. For this, we

used FDR correction to restrict the possibility of false positives.

There are a lot of high-level studies screened in this way (15, 62).

Finally, the bacterial groups were analyzed only at the order or

family level. Future studies using more advanced metagenome

sequencing analysis will produce more specific and accurate results.
Conclusion

In conclusion, the results of our two-sample MR analysis

support a potential causal relationship between gut microbiota

and six inflammatory dermatoses. Various probiotics, including

Lactobacillus and Bifidobacterium, have been shown to have

protective causality against inflammatory dermatoses. However,

the gut microbiota of similar lineages or that share the same

characteristics in some way may bring different outcomes for the

same or different inflammatory dermatoses. The results of this study

deepen the understanding of the “gut-skin axis” and help to prevent

and treat inflammatory dermatoses by regulating the structure of

the gut microbiota.
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