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cGAS–STING pathway in
ischemia-reperfusion injury: a
potential target to improve
transplantation outcomes

Zijian Chen, Yangqi Liu, Zeying Lin and Weizhe Huang*

Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical
College, Shantou, China
Transplantation is an important life-saving therapeutic choice for patients with

organ or tissue failure once all other treatment options are exhausted. However,

most allografts become damaged over an extended period, and post-

transplantation survival is limited. Ischemia reperfusion injury (IRI) tends to be

associated with a poor prognosis; resultant severe primary graft dysfunction is

the main cause of transplant failure. Targeting the cGAS–STING pathway has

recently been shown to be an effective approach for improving transplantation

outcomes, when activated or inhibited cGAS–STING pathway, IRI can be

alleviated by regulating inflammatory response and programmed cell death.

Thus, continuing efforts to develop selective agonists and antagonists may

bring great hopes to post-transplant patient. In this mini-review, we reviewed

the role of the cGAS–STING pathway in transplantation, and summarized the

crosstalk between this pathway and inflammatory response and programmed

cell death during IRI, aiming to provide novel insights into the development of

therapies to improve patient outcome after transplantation.
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1 Introduction

The innate immune response mediated by the cyclic guanosine monophosphate-

adenosine monophosphate (cGAMP) synthase-stimulator of interferon (IFN) genes

(cGAS–STING) pathway has long been the front-line defense against pathogens, such as

bacteria, parasites, DNA viruses, or retroviruses (1, 2). However, owing to the sequence-
Abbreviations: IRI, Ischemia-reperfusion injury; cGAS-STING, cyclic guanosine monophosphate-adenosine

monophosphate synthase-stimulator of interferon genes; cGAMP, cyclic guanosine monophosphate-

adenosine monophosphate; cGAS, cyclic GMP-AMP synthase; IFN, interferon; dsDNA, double-stranded

DNA; STING, synthase-stimulator of interferon genes; PCD, programmed cell death; ER, endoplasmic

reticulum; IRF3, IFN regulatory factor 3; TBK1, TANK-binding kinase 1; SAVI, STING-associated

vasculopathy with onset in infancy; EC, endothelial cell.
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independent identification of double-stranded DNA (dsDNA),

relevant research on the cGAS–STING pathway has indicated

that cellular function extends beyond resisting the invasion of

foreign pathogens, and unnecessary activation by accidental

sensing of self-derived DNA or mutations can lead to

autoinflammatory diseases (3). For example, STING-associated

vasculopathy with onset in infancy (SAVI) commonly develops in

patients with gain-of-function mutations in TMEM173 (4, 5).

Aicardi-Goutières syndrome mainly presents with an aberrant

generation of type I IFN, and accumulation of DNA damage may

be an important driver of STING-related inflammatory responses

(6, 7).

During organ acquisition, preservation, and transplantation,

ischemia-reperfusion injury (IRI) exacerbates damage to donor

graft tissues when blood flow is restored after a certain ischemic

time. A deficient arterial blood supply invariably leads to a redox

imbalance and creates a hypoxic environment in donor graft tissues.

Surgical blood reperfusion can lead to severe oxidative damage and

an inflammatory response following reoxygenation. This series of

events aggravates allograft injury and may lead to primary graft

dysfunction, which is associated with high mortality and morbidity

(8, 9). The cellular and molecular events that occur during IRI are

complex and involve innate immune system activation and

programmed cell death (PCD) (10, 11). However, their interplay

is still not clearly understood. In the context of limited treatment

options, it is urgent to develop less toxic and higher specificity

immunosuppressors to better control graft rejection and avoid

mortality related to their toxicity (12).

In the present review, we offer an overview of the cGAS–STING

pathway and highlight its role in patients who have undergone

transplantation. We then summarize the pharmacological basis for

targeting the cGAS–STING pathway for treating IRI to explore

potential treatment approaches for IRI following transplantation.
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2 Overview of the cGAS–STING
pathway

Cyclic GMP-AMP synthase (cGAS) serves as a novel cytosolic

DNA sensor that stimulates IFN production by binding to

abnormal DNA within the cytoplasm and activates STING, this

activation then triggers host innate immunity in response to

“danger signals” (13, 14). The overview of the cGAS–STING

signaling pathway is illustrated in Figure 1. The binding of

abnormally accumulated dsDNA to cGAS in the cytoplasm

greatly induces a phase transition, during which cGAS is

activated. Recognition is independent of a specific sequence (15–

18). Owing to the dsDNA-induced oligomerization of cGAS, a

dimerized cGAS–dsDNA complex is catalytically formed (19–21).

Activated cGAS promotes conformational changes in the catalytic

pocket that allow the cyclization of GTP and ATP as substrates for

conversion into cGAMP as a second messenger (22, 23).

Important sources of DNA within the cytoplasm include

damage-associated DNA released from nuclear and mitochondrial

leakage, as well as exogenous pathogen-associated DNA resulting

from microbial infection (24, 25). Compared with bacterial cyclic

dinucleotides, dsDNA-activated cGAS contains a linear 2’-5’-linked

dinucleotide between GMP and AMP that effectively activates

human STING (26, 27). Furthermore, higher DNA-binding

valences and longer-packed DNA structures facilitate cGAMP

production and innate immune signaling (15). Via gap junctions,

receptor-based transport, and membrane fusion approaches,

activated cGAS can trigger cGAMP transfer from original cells to

bystander cells as additional routes to induce downstream signaling

cascades (28, 29), which is illustrated in Figure 2. Regarding

canonical cGAS–STING signaling, cGAMP is produced as an

agonist for STING, and its binding to STING located in the

endoplasmic reticulum (ER) induces a 180° rotation for ligand
FIGURE 1

Overall explanations about the cGAS–STIBG signaling pathway.
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binding with the transmembrane domain as a reference, which

unlocks the right-handed cross–over connections.

Therefore, during the rearrangement of the STING dimer, the

ligand-binding pocket is closed. This important conformational

transition enables the oligomerization and release of STING from

anchoring proteins, which are further translocated by integrating

with cytoplasmic coat protein II complex vesicles (30–32).

Cytoplasmic coat protein I-mediated retrograde membrane

trafficking is also significant for STING activation (33, 34). Under

the assistance of ADP-ribosylation factor GTPases and cytoplasmic

coat protein II, higher-order complex STING is transferred from the

ER through the ER-Golgi intermediate compartment to the Golgi

apparatus. There, STING and the transcription factor IFN regulatory

factor 3 (IRF3) are phosphorylated by recruited TANK-binding

kinase 1 (TBK1), and nuclear factor kB is activated simultaneously

(35–38). Phosphorylated IRF3 further oligomerizes and migrates into

the nucleus with nuclear factor kB, and both synergistically initiate

the expression of type I IFN and inflammatory cytokines,

contributing to the innate immune response (39, 40).
3 cGAS–STING pathway and
transplantation outcomes

Few studies have tried to elucidate the role of the cGAS–STING

pathway in transplantation models. Some preclinical and clinical
Frontiers in Immunology 03
studies have demonstrated STING as an effectiveness therapeutic

target for graft-versus-host disease following allogeneic

hematopoietic stem cell transplantation (41). However, research

on solid organ transplantation is still in its infancy, and thus more

attention should be paid to this field.

The traditional Chinese herbal medicine ingredient ginsenoside

Rb3 could alleviate oxidative stress caused by ischemia-reperfusion

damage (42, 43). Li et al. used ginsenoside Rb3 to suppress adhesion

molecule expression in endothelial cells (ECs) and improve

microcirculation of murine transplanted skin flaps. They

confirmed that the protective effect of IRI resulted from the

inhibition of STING–IRF3 signaling (44). Besides, Yang et al.

demonstrated that tumor necrosis factor-a-induced protein-8 like

2 (TIPE2), a negative immunoregulator for immune homeostasis,

showed a positive correlation with apoptosis and TIPE2 expression

in the graft, which might activate ferroptosis-mediated transplant

rejection. TIPE2−/− mice that had undergone heart transplantation

experienced insufficient IFN-g production through the TBK1

signaling axis and increased expression of glutathione peroxidase

4 compared with wild-type mice. Mechanistically, TIPE2 deficiency

may inhibit IFN-g generation in T cells by suppressing the TBK1

signaling axis, prevent lipid peroxidation, and relieve ferroptotic cell

death in an injured allograft (45, 46). Mesenchymal stromal cell

therapy combined with low-dose tacrolimus is a feasible and safe

therapeutic regimen (47, 48). Surprisingly, Chen et al. revealed that

combination treatment using low-dose tacrolimus (FK506) and

mesenchymal stem cells is beneficial to graft survival, possibly

due to weakened graft inflammation by suppressing IFN-g
production and TBK1/IRF3 phosphorylation (49). The generation

of STING-deficient mice through gene deletion is more conducive

to improving our understanding of the cGAS–STING pathway and

its importance in transplantation, and clinical trials are

urgently needed.

SAVI is an autoinflammatory disease arising from gain-of-

function mutations in the STING 1 gene from abnormal

encoding, leading to the overproduction of type I IFN (5). Three

patients diagnosed with SAVI who underwent solid organ

transplantation have been reported. The first patient was a 1-

year-old infant with SAVI who underwent liver transplantation

and immunosuppressive therapy but developed severe multiple

biliary cysts and cholangitis in the transplanted liver at the age of

3. Intensive tacrolimus, hydroxychloroquine, prednisolone, and

mycophenolate mofetil were administered; however, the patient

experienced fatal gastrointestinal bleeding 1 year later (50). The

second patient was a 34-year-old woman with SAVI who

underwent double-lung transplantation but experienced acute

primary graft dysfunction, with acute liver and systemic

vasculature complications; she finally died from multiple organ

failure (51). The last patient was a 17-year-old girl with SAVI who

underwent lung transplantation and developed systemic

inflammatory symptoms within 4 months; she was treated with

three immunosuppressors, including mycophenolate mofetil,

tacrolimus, and prednisolone; however, her symptoms relapsed

during prednisolone dose reduction (52). Despite reporting on

individual cases, these studies indicated that the abnormal

activation of STING in patients receiving transplantation
FIGURE 2

Intercellular communication in cGAS–STING signaling. (A) Gap
junctions, (B) receptor-based transport, and (C) membrane fusion
could serve as approaches for intercellular transmission of cGAMP.
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probably led to extremely poor outcomes, even when

immunosuppressive therapy was administered. Although the

relationship between SAVI and the cGAS–STING pathway is not

yet clear, inhibiting STING may be beneficial for improving the

outcome of transplant recipients. However, research into this area is

still lacking and is considered an important area for future studies.
4 Crosstalk between cGAS–STING
pathway and IRI

4.1 IRI: an important player in
allograft injury

IRI is a major transplant issue, mostly because there is still no

effective treatment plan. Recently, it has been demonstrated that

targeting the cGAS–STING pathway may be a feasible approach to

improve transplantation outcomes by alleviating IRI. In general, the

inflammatory response and PCD following ischemia and

reperfusion play vital roles in triggering transplant rejection (53,

54). Both transplantation and non-transplantation models of IRI

share these key pathogenic mechanisms to increase the incidence

rate and mortality, and the cGAS–STING pathway participates in

their regulation (2, 55). This suggests a possible relation between

post-transplant IRI and the cGAS–STING pathway. Therefore, we

have summarized the regulatory mechanisms of the cGAS–STING

pathway in IRI in Figure 3; Table 1, providing new insights for the

development of new treatment strategies. Besides, we extracted

potential therapeutic agents for treating IRI that may help

improve transplant prognosis.
4.2 Inflammatory response in IRI

Although it is yet to be fully explored, it would not be surprising

to find that the inflammatory response of post-transplant IRI can be

triggered by cGAS–STING pathway. Damage-associated molecular

patterns (DAMPs) induced by injury are recognized by cGAS,

which trigger immune-mediated inflammation. In general,

targeting cGAS–STING pathway may help reduce the

inflammatory response in transplantation models.

Increased cytosolic DNA can be recognized by the pathogen

recognition receptor cGAS and trigger STING activation-induced

inflammation, especially for mitochondrial DNA (mtDNA).

Elevated mtDNA accumulation caused by IRI is related to

delayed graft function (24, 79, 80). Phosphoglycerate mutase 5-

mediated Bax dephosphorylation triggers mtDNA release,

activating the cGAS–STING pathway and causing acute kidney

injury following IRI (56). Furthermore, kidney IRI increases

receptor-interacting protein 3 levels to facilitate mtDNA damage

and leakage and then activates the cGAS–STING–p65 pathway by

promoting cytosolic mtDNA expression and increases the

transcription of pro-inflammatory factors (57). In contrast, mixed

lineage kinase domain like (MLKL) pseudokinase knockout

significantly enhances PTEN-induced kinase 1-mediated

mitophagy activation to alleviate oxidative stress in hepatocytes,
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thereby inhibiting macrophage cGAS–STING activation and liver

IRI (58). These make mtDNA an important target for inhibiting

cGAS–STING pathway activation. In addition, a flap endonuclease

I inhibitor has been shown to inhibit mtDNA fragment release and

cGAS–STING pathway activation (81), which should be further

verified in transplantation models. Notably, IRI, especially for

apoptosis, is often associated with mitochondrial damage and

mtDNA release, shaping a positive feedback circuit (82, 83).

Thus, combination therapy for inhibiting cGAS–STING signaling

and concurrent mtDNA fragment release may have a synergistic

effect. Nowadays, some preclinical studies have made progress.

STING inhibitor H-515 can prevent extracellular cold-inducible

RNA-binding protein, a potent DAMP, from activating STING and

causing intestinal and distant organ injuries (59). Moreover, by

transcriptionally upregulating cGAS expression, histone deacetylase

3 (HDAC3) activates the cGAS–STING pathway in a p65-

dependent manner; tissue inflammation and injury are triggered;

accordingly, HDAC3 inhibitors, such as trichostatin A and MS275,

can reverse this detrimental effect (60). Post-translational

modifications of cGAS play critical roles in regulating its activity

and stability (84, 85), and thus regulation of cGAS expression and

function may be another intervention approach.

Recently increasing attention on macrophage-mediated innate

immunity as a crucial player in allograft injury (86). Editing

macrophage effector function may be an adjuvant therapy to

alleviate inflammation. At present, most studies on the regulation

of macrophages mediated by the cGAS-STING pathway have set

liver IRI as the main research object. Aged mice are more

susceptible to aggravated hepatic injury following ischemia-

reperfusion, and stronger NLRP3 activation and pro-

inflammatory activity of macrophages. Probably because aged

parenchyma cells have more extracellular DNA than younger

ones, which triggers a stronger STING/TBK1 signaling in

macrophages. Consistent with previous studies, older donors are

associated with reduced recipient and graft survival rates (61, 87,

88). Knockout of STING in Myelocyte can reduce liver IRI and

inflammatory response, indicating that STING activation may

promote the proinflammatory response of Monocyte derived

macrophages in liver transplantation (62). In addition, Kupffer

cells act as tissue-resident macrophages in the liver, playing an

important role in in liver IRI as well, but the effect of cGAS-STING

pathway toward it is still not clear. However, the promotion of

microglial cell M1 polarization can be attenuated by the STING

inhibitor C-176 during IRI-induced mtDNA release (63).

It is well known that T cell-mediated immune response is

closely related to post-transplant IRI, which is an important

factor affecting transplantation prognosis. The cGAS-STING

pathway activates adaptive T cell responses by regulating

dendritic cells and macrophages (64). By using cGAS-deficient

donor tissue, the activation of CD8+ T cells in the graft and the

proportion of effector memory lymphocytes in the spleen were

reduced, and the graft survival was significantly prolonged, this

provided a basis for immunosuppressive therapy targeting T cells

(65). In addition, the induction of transplantation tolerance

depends on the presence of Treg. Surprisingly, activation of the

cGAS-STING pathway can induce an increase in the production of
frontiersin.org
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TABLE 1 cGAS-STING pathway-based regulation involved in IRI-related mechanism.

Mechanism Signaling axis/
Trigger

Involved cell/
organelle

Regulation description Impact on
IRI

Ref.

Innate immunity-mediated
inflammatory response

PGAM5-Mitofilin-cGAS-
STING

Mitochondria Promote DAMP sensing Proinflammatory (56)

RIP3–Mitofilin-cGAS-
STING-p65

Mitochondria Promote DAMP sensing Proinflammatory (57)

PINK1-cGAS-STING Macrophage Promote PINK1-induced mitophagy to suppress
STING-mediated inflammatory

Anti-
inflammatory

(58)

eCIRP-STING Macrophage Promote DAMP sensing Proinflammatory (59)

HDAC3-p65-cGAS-STING Microglial cell Promote DAMP sensing Proinflammatory (60)

STING-NLRP3 Macrophage Upregulate NLRP3 Proinflammatory (61)

STING-TBK1/AMPK Macrophage Upregulate AMPK
Downregulate HIF-1a

Anti-
inflammatory

(62)

mtDNA-STING Microglial cell Promote DAMP sensing Proinflammatory (63)

dsDNA-cGAS-STING T cells Promote DAMP sensing Proinflammatory (64)

IFI16-STING-NF-kB Mitochondria Promote mitophagy, EC activation Anti-
inflammatory

(65)

cGAS-STING-ERS Lung epithelial type
II cell

Promote ERS Proinflammatory (66)

TXNIP-NRF2-OASL1-
STING/TBK1

Macrophage Upregulate OASL1 to promote STING-mediated
TBK1 activation

Proinflammatory (67)

STING-AMPK Unavailable Upregulate AMPK Anti-
inflammatory

(68)

BMDM Promote lipid peroxidation Proinflammatory (69)

(Continued)
F
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FIGURE 3

Mechanisms underlying cGAS–STING activity in ischemia–reperfusion injury (IRI) condition. When IRI happens, self-DNA recognition is the primary
determinant for cGAS–STING activity. mtDNA leakage, which is executed by RIP3 and PGAM5, is an important source of cGAS stimulation during IRI.
But mitophagy mediated by PINK1 and IFI16 help to counteract mtDNA stress. Besides, HDAC3 can upregulate cGAS expression. cGAMP can be
transmitted from parenchymal cells to neighboring macrophages through intercellular transmission to activate immune response. PGAM5,
phosphoglycerate mutase family member 5; RIP3, receptor-interacting protein 3; IFI16, interferon gamma-inducible protein 16; PINK1, PTEN-
induced kinase 1; NLRP3, NOD-like receptor protein 3.
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regulatory cytokine IL-10 and promote the inhibitory activity of

Treg. Therefore, damage to grafts caused by T-cell-mediated

adaptive immunity triggered by the cGAS-STING pathway may

be the result of immune imbalance (89). Interestingly, although it

has been speculated that STING gain-of-function mutations cause

disease through abnormal type I interferon signaling, another study

suggests that T cell-mediated adaptive immunity may be the main

pathogenic factor, but more researches are needed to confirm

it (90).

ECs form the primary barrier between the host and solid organ

allografts and are essential for inducing cell-mediated acute rejection

following transplantation (91). Mitochondrial exposure may

upregulate EC adhesion molecules and enhance inflammatory

responses by activating ECs (92). Mitochondrial transplant was able

to reduce the risk of primary graft dysfunction in lung transplant

recipients during ex-vivo lung perfusion (93). Mitochondrial

transplantation therapy has shown promise as a therapy in clinical

practice, but there is still a lack of research on the underlying molecular

mechanisms. A recent study suggested that exposing murine heart ECs

to exogenous mitochondria triggers internalized mitochondria-

activated IFI16–STING–NF-kB signaling. Subsequently, STING-

dependent mitophagy stabilized the endothelium and weakened

apoptotic activity, and activated ECs promoted T-cell-mediated co-

stimulation blockade-resistant rejection (94); the cGAS–STING

pathway possibly plays a significant role in this.
Frontiers in Immunology 06
Communication between the ER and mitochondria bridges ER

stress and activates the innate immune system (66). Inhibition of the

cGAS–STING pathway suppresses ER stress, thereby attenuating

lung IRI (95). Surprisingly, ER stress-induced NLRP3

inflammasome activation is possibly a pivotal driver during post-

transplant IRI (67). Moreover, the macrophage TXNIP-mediated

CYLD-NRF2-OASL1 axis possesses a regulatory effect, and TXNIP

disruption suppresses STING-mediated TBK1 activation and

subsequent inflammation (96). However, these regulatory effects on

macrophages should be further verified in transplantation models.

The cGAS–STING pathway is also involved in controlling

energy metabolism. Activated cGAS–STING signaling is

accompanied by systemic and cellular metabolism abnormality,

involving increased nutrient metabolism and decreased

mitochondrial respiration (68). In adipocytes, TBK1 attenuates

AMP-activated protein kinase (AMPK) activation to increase

energy reserves but inhibits respiration, and promotion of tissue

inflammation can be observed in adipocyte-specific TBK1 knockout

models (97). Surprisingly, by activating AMPK signaling, the

STING inhibitor C-176 improves intestinal IRI-induced acute

lung injury (98). Notably, metabolic disorders are often

accompanied with intensive mitochondrial damage (69). This

indicates the need to determine whether modulation of cGAS–

STING pathway-induced metabol ism is beneficia l to

inflammation regulation.
TABLE 1 Continued

Mechanism Signaling axis/
Trigger

Involved cell/
organelle

Regulation description Impact on
IRI

Ref.

STING-mediated lipid
peroxidation

Programmed cell death cGAS-STING-Bcl−2/Bax/
Caspase−3

Cardiomyocyte Activate Bcl−2/Bax/Caspase−3 Anti-apoptosis (70)

miR-24-3p-STING-IRF3 Hepatocyte Upregulate miR-24-3p to downregulate STING Anti-apoptosis (71)

cGAS-STING-NCOA4 Neuron Upregulate NCOA4 Pro-
ferritinophagy

(72)

PI3K-PKB-cGAS-STING Neuron Activate PI3K-PKB pathway to suppress cGAS-
STING-mediated over autophagy

Pro-autophagic
cell death

(73)

25-HC-mTOR/STING Neuron Downregulate mTOR/STING to suppress
STING-mediated over autophagy

Anti-autophagic
cell death

(74)

cGAS-mediated regulation
of autophagy

Hepatocyte Regulate autophagy Anti-autophagic
cell death

(75)

TBK1-FMR1 Renal tubular
epithelial cells

Upregulate FMR1 Anti-ferroptosis (76)

mtDNA-STING-IFN/TNF-
a

Intestinal
endothelial cell

Upregulate IFN, TNF-a Pro-necroptosis (77)

STING-calcium-dependent
caspase 1-GSDMD

Macrophage Upregulate calcium-dependent caspase 1-
GSDMD

Pro-pyroptosis (78)
frontier
BMDM, bone marrow derived macrophage; STING, stimulator of interferon genes; TBK1, TANK-binding kinase 1; TXNIP, thioredoxin-interacting protein; HIF-1a, hypoxia-inducible factor-1
alpha; AMPK, AMP-activated protein kinase; NLRP3, nucleotide-binding domain and leucine-rich repeat containing protein 3; eCIRP, extracellular cold-inducible RNA-binding protein;
DAMP, damage-associated molecular pattern; IFI16, interferon gamma- inducible factor 16; EC, endothelial cell; cGAS, cyclic GMP–AMP synthase; ERS, endoplasmic reticulum stress; 25-HC,
25-Hydroxycholesterol; IRI, ischemia-reperfusion injury.
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4.3 Programmed cell death in IRI

The cGAS–STING pathway participates in a variety of cell

death pathways, including pyroptosis, ferroptosis, necroptosis,

apoptosis, and autophagy, but without obvious specificity. During

IRI following transplantation, multiple types of PCD may coexist.

The cGAS–STING pathway serves as a target to provide further

insight into their relation.

A strong STING signaling is associated with apoptosis induction

(99, 100). Scutellarin plays a protective role in IRI through

downregulation of the NLRP3 inflammasome, and it inhibits Bcl

−2/Bax/Caspase−3 and the cGAS–STING pathway to ameliorate

graft dysfunction and apoptosis (101, 102). STING antagonists can

probably be used in combination with it in transplant models.

Additionally, the in vitro upregulation of miR-24-3p relieves

cardiomyocyte apoptosis following IRI (71). This protective effect

may be due to the targeting of STING by miR-24-3p to salvage the

STING–IRF3 activation-mediated inflammatory response and

cellular apoptosis (103). Currently, there is a lack of non-invasive

biomarkers in clinical practice that can be used to predict transplant

prognosis (72). Although significant miRNAs in tissues are hardly as

useful as non-invasive biomarkers, they can be used to inspire later

research on biological fluids. More studies are necessary to discover

the correlation between miRNAs and transplantation prognosis.

Recent studies have indicated that autophagy is involved in IRI

regulation. Direct regulation of autophagy alleviates IRI following

transplantation (104). Ferritinophagy is a type of autophagy that

targets ferritin to maintain balanced intracellular iron levels.

NCOA4-mediated ferritinophagy plays a vital role in IRI, and

suppression of the cGAS–STING pathway can diminish

ferritinophagy, thus ameliorating IRI (105). Activin A, a well-

known neuroprotective factor, is also involved in IRI alleviation

through inhibition of cGAS/STING-mediated autophagic cell death

(73). 25-hydroxycholesterol is an oxidized cholesterol associated

with the pathophysiological pathways of cholesterol homeostasis,

immune response, or cell survival, it alleviates IRI by inhibiting

STING and excessive autophagy-induced cell death (74, 106).

Combinations of these agents with STING antagonists may

probably help to lower doses of immunosuppressive drugs and

reduce toxicity. Interestingly, cGAS-mediated autophagy has been

shown to relieve liver IRI, with this novel protective effect being

independent of STING (75). The cGAS–STING pathway

participates in the regulation of autophagic cell death in a

bidirectional manner. These conflicting results may be related to

the existence of multiple noncanonical cascades (76). Thus, future

studies should aim to validate the precise mechanism involved in

selective activation and understand whether it is equally applicable

to other pathogenic process.

Ferroptosis is triggered under conditions of excessive oxidative

stress, such as IRI (107, 108). Ferroptotic cell death contributes to

inflammatory responses following transplantation (109).

Mechanistically, this PCD is induced by activation of the cGAS–

STING pathway via lipid peroxidation, this damage can be reversed

by the anti-lipid peroxidation drug liproxstatin-1 (110).

Surprisingly, lipid peroxidation induced by cellular stress also
Frontiers in Immunology 07
specifically weakens the STING pathway (70). Thus, more

accurate experiments are required to explain their relationship.

Additionally, Ubiquitin-specific protease 7 inhibition could reverse

ferroptosis-induced IRI, probably because of the suppression of

TBK1 degradation and DNA methyltransferase 1 (DNMT1)-

mediated methylation of FMRP translational regulator 1 (77, 111).

Both pyroptosis and necroptosis are inflammatory forms of cell

death (112, 113). The cGAS–STING–IFN pathway is responsible for

maintaining mixed lineage kinase domain-like pseudokinase

(MLKL) expression, which is a key component for initiating

necroptosis (114). Interestingly, mtDNA released from ECs

during intestinal IRI activates the STING pathway and triggers

necroptosis through collaborative IFN and tumor necrosis factor-a
signaling (115). The cGAS–STING–NLRP3 axis has been

demonstrated to be the default mode of inflammatory body

activation and pyroptosis. STING activation induces lysosomal

cell death and triggers the classic mode of NLRP3 activation (78).

STING deficiency in macrophages can inhibit pyroptosis and the

subsequent intense inflammatory response during liver IRI; this

protective effect is probably due to reduced calcium-dependent

caspase 1-GSDMD processing in macrophages (116). However,

these results need to be confirmed and complemented in

transplantation models.
5 Outlook and future perspective

At present, immunosuppressors effectively control transplant

rejection; however, considerable issues, such as opportunistic

infections, higher occurrence of malignancy, and drug toxicity,

have been linked to their use. Compared to immunosuppressor,

the breadth of the cGAS-STING pathway in inflammation and PCD

is its most powerful advantage, so it has the potential to serve as a

multifunctional therapeutic target. Because the mechanism of IRI

after transplantation is very complex, single immunosuppressor is

limited and combinations are required to achieve the desired

therapeutic effect. Superimposed drug toxicity inevitably

deteriorates the prognosis. Among them, the most serious side

effect of Immunosuppressive drug in transplantation is the severe

infection caused by the excessively low immunity of the body (117).

The activation of the cGAS-STING pathway has a highly

collaborative characteristic, and partial rather than complete

blockade seems sufficient to produce anti-inflammatory effects,

and proper activity of the cGAS-STING pathway is allowed under

obvious infection conditions. Therefore, it is feasible to retain

necessary ability of anti-infection while achieve anti-

inflammatory, and achieving this balance can help improve

prognosis. In order to achieve this balance, a key aspect in the

future is to better understand the minimum level of inhibition

required for therapeutic benefits. In addition, personalized

treatment is the biggest problem faced by the clinical application

of immunosuppressors. A lot of efforts are being made to develop

small molecule inhibitors targeting the cGAS-STING pathway, and

precise treatment based on this pathway may become an important

component of future clinical organ transplantation (118).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1231057
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1231057
6 Conclusion

IRI is currently a serious complication after transplantation,

mainly because there is still no effective therapy to manage it.

Attempting to utilize the cGAS–STING pathway as a potential

target can provide new insights and help develop treatment

approaches for post-transplant IRI. So far, many drugs targeting

the cGAS–STING pathway have played therapeutic roles in IRI

based on the mechanisms of inflammation and PCD. The next step

may include further analysis of the results of these agents in

transplantation models and exploring more convincing evidence

to elucidate their clinical translation value. In addition, the detailed

molecular mechanism of the cGAS–STING pathway is not yet clear,

and preventing unexpected and adverse cascade reactions are also

issues that need to be addressed.
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