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Post-translational modification (PTM) refers to the covalent attachment of

functional groups to protein substrates, resulting in structural and functional

changes. PTMs not only regulate the development and progression of liver

cancer, but also play a crucial role in the immune response against cancer.

Cancer immunity encompasses the combined efforts of innate and adaptive

immune surveillance against tumor antigens, tumor cells, and tumorigenic

microenvironments. Increasing evidence suggests that immunotherapies,

which harness the immune system’s potential to combat cancer, can

effectively improve cancer patient prognosis and prolong the survival. This

review presents a comprehensive summary of the current understanding of

key PTMs such as phosphorylation, ubiquitination, SUMOylation, and

glycosylation in the context of immune cancer surveillance against liver

cancer. Additionally, it highlights potential targets associated with these

modifications to enhance the response to immunotherapies in the treatment

of liver cancer.
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Introduction

Liver cancer is one of the most common malignancies worldwide and directly causes

nearly one million deaths each year (1). According to global cancer statistics in 2020, liver

cancer is the sixth most diagnosed cancer and the third most common cause of cancer

death (2). In 2020, about 900,000 people worldwide were diagnosed with liver cancer and

about 800,000 died of liver cancer. It is estimated that the number of liver cancer diagnoses

could reach 1.3 million by the year of 2040 (3). Primary liver cancer mainly includes four

types: hepatoblastoma (HB), hepatocellular carcinoma (HCC), cholangiocarcinoma

(CCA), and combined hepatocellular carcinoma and cholangiocarcinoma (cHCC-CCA)

(4). HCC is the main type of primary liver cancer, accounting for approximately 75% of the
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total number of liver cancer cases worldwide. CCA is the second

most common primary liver cancer, of which intrahepatic

cholangiocarcinoma (ICC) is a highly heterogeneous primary

epithelial liver cancer (5). While novel therapeutic approaches

have demonstrated notable clinical efficacy or promising

prospects in cancer treatment (6), the current primary approach

for liver cancer therapy is still surgical intervention.

Protein translational modifications (PTMs) are covalent

attachment of functional groups to protein substrates and can

alter the activity, stability, protein interaction, and intracellular

localization of target proteins (7). These modifications involve

addition of chemical groups (methylation, acetylation,

phosphorylation, etc.), addition of polypeptide chains

(ubiquitination, SUMOylation, etc.), amino acid modification

(racemization, citrullination, etc.), and addition of complex

molecules (palmitoylation, oxidation, glycosylation, etc.) (8, 9).

PTMs, whether direct or indirect, have a significant impact on the

immunogenicity of cancer cells, thereby affecting their recognition

and susceptibility to immune system. Furthermore, these

modifications also play a crucial role in shaping the response of

various immune cells, influencing their interactions with liver

tumor cells within the microenvironment. PTMs exert a

significant influence on the initiation, progression, immune

evasion, and immunotherapy of cancers. By investigating PTMs,

we can gain valuable insights into the mechanisms governing

cancer-immune cell interactions and potentially develop novel

strategies to enhance anti-cancer immune responses.

Acetylation and methylation have received extensive attention

in previous reviews (10, 11). In this review, our primary focus will

be the profound influence of phosphorylation, ubiquitination,

glycosylation, and SUMOylation on liver cancers, with a

particular emphasis on their immunological significance.
Phosphorylation

Phosphorylation, a highly conserved type of PTM (12),

primarily targets serine, threonine, or tyrosine residues, and

involves a reversible reaction mediated by protein kinases and

protein phosphatase (13). This essential modification plays a

pivotal role in numerous biological processes, including protein

interactions, stability, signal transduction, transcriptional

regulation, and intracellular localization (14).

T cells play a central role in the immune system and tumor

immune response. Some immunotherapies that target T cells, such

as CAR (Chimeric Antibody Receptor)-T cell therapy and

checkpoint inhibitors (15, 16), have shown promising results in

cancer immunotherapy. T-cell development, differentiation, and

activation are intricately regulated by phosphorylation events which

target various transcription factors. These phosphorylation events

play a critical role in dictating T cell fates and functions. The

phosphorylation of specific transcription factors, such as signal

transducer and activator of transcription 1 (STAT1) in Th1 cells,

STAT6 in Th2 cells, and STAT3 in Th17 cells, contributes to their
Frontiers in Immunology 02
differentiation and functional specialization (17–21). In patients

with HCC, Th1 cytokines of serum level are often suppressed, while

Th2 cytokines are frequently elevated (22). Interleukin-6 (IL-6), one

of the Th2 cytokines, has been observed to exhibit a negative

correlation with overall survival rate and can independently serve

as a predictive factor for survival. Conversely, increase of Th1

cytokine responses have been linked to favorable immunological

effects on the prognosis of HCC (23). An increase in Th1-related

cytokines and a decrease in Th2-related cytokines was observed in a

study on primary HCC after radiofrequency ablation (RFA)

treatment (22). Th17 cells, a specific subset of T-helper cells, play

a pivotal role in immune responses through the production of IL-17

(24, 25). IL-17 acts on HCC cells and triggers the activation of AKT

(protein kinase B) through phosphorylation. This activation leads to

the production of IL-6 by HCC cells (26). In patients with HCC,

there is an elevated presence of Th17 cells compared to healthy

individuals, and as the severity of HCC malignancy worsens, the

levels of Th17 cells further escalate (27).

Macrophages are the main effector cells in chronic

inflammation, a known driver of carcinogenesis (28). Serine/

threonine-protein kinase 4 (STK4) was considered as a pivotal

tumor suppressor gene in HCC. Notably , s ignificant

downregulation of STK4 expression observed in macrophages

isolated from HCC patients. This decrease in STK4 expression

shows a strong inverse correlation with the levels of IL-1 receptor-

associated kinase 1 (IRAK1). Through its interaction with IRAK1

and subsequent phosphorylating it, STK4 exerts inhibitory effects

on the secretion of proinflammatory cytokines, including IL-6, IL-

1b, and tumor necrosis factor-a (TNF-a), particularly following the
activation of Toll-like receptor 4/9 (TLR4/9). This implies that the

regulatory mechanism mediated by STK4 attenuates the chronic

inflammatory response and significantly reduces the probability of

HCC development (29).

Macrophages can be categorized into two subpopulation based

on their distinct functions: M1 macrophages, which promote

inflammatory responses, and M2 macrophages, which support

tissue repair and cell proliferation (30). In liver cancers,

macrophages tend to exhibit excessive M2-like polarization,

thereby suppressing immune responses against cancer cells.

Recent findings highl ight the importance of protein

phosphorylation in the cancer microenvironment for macrophage

polarization (31). Sirtuin 1 (SIRT1) has been shown to enhance the

infiltration of M1-like macrophages and inhibit HCC metastasis.

This effect is mediated by SIRT1’s ability to enhance nuclear factor

kappa-B (NF-kB) activation and promote the phosphorylation of

p65, IkB, and IkB kinase (IKK) (22). Zinc finger protein 64

(ZFP64), a gene upregulated in HCC patients with unfavorable

prognosis in anti-PD1 treatment, undergoes direct phosphorylation

at S226 by protein kinase Ca (PKCa), leading to its nuclear

translocation and the transcriptional activation of macrophage

colony-stimulating factor (CSF1). CSF1 derived from HCC cells

further promotes macrophage polarization towards M2 phenotype.

NK (natural killer) cells earned their name due to their

remarkable ability to “naturally” eliminate cancer cells without
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the need for prior sensitization, and without being restricted by the

major histocompatibility complex (MHC) (32). Upon entering the

tumor microenvironment (TME) or encountering cancer cells, NK

cells can eliminate cancer cells through self-destruction

mechanisms (perforin/granzyme mediated) or +antibody-

dependent cell-mediated cytotoxicity (ADCC) mechanism (33). In

contrast to the NK cells found in peripheral blood, the liver harbors

two distinct types of NK cells: one shares similarities with

circulating NK cells (cNK cells), while the other primarily resides

within liver tissue (trNK cells) (34). Despite various pathways easily

active NK cell cytotoxicity, the killing capacity of NK cells can also

be easily inhibited, especially within the TME of HCC. The PI3K/

AKT/mTOR (phosphoinositide 3-kinase, protein kinase B, and

mammalian target of rapamycin) signaling pathway plays a

crucial role in the development of HCC and the immune

response of NK cells against HCC. Aberrant activation of the

PI3K/AKT/mTOR pathway confers HCC cells with enhanced

metabolic capacity, promoting their proliferation and metastasis

(35). The development and cytotoxic capability of NK cells also

heavily rely on the activation of the PI3K/AKT/mTOR signaling

pathway (36). PI3K consists of a catalytic subunit, p100, and a

regulatory adapter subunit, p85. The p85 subunit is responsible for

linking p100 to activated receptor tyrosine kinases (RTKs), thereby

activating PI3K and initiating the PI3K/AKT/mTOR signaling

pathway (37). Tim-3 is one of the checkpoint molecules expressed

on the surface of NK cells. Its expression levels are significantly

elevated in HCC. Bind with phosphatidylserine induces

phosphorylation of Tim-3, which further interferes with PI3K/

AKT/mTOR pathway in NK cells. By competitively binding to

p85, phosphorylated Tim-3 reduces the opportunity for PI3K p110

to bind with p85 and leads to decreased activity of the downstream

AKT/mTOR pathway, thereby suppressing the activity of liver NK

cells, including cNK and trNK (38).
Ubiquitination and SUMOylation

Ubiquitination is a posttranslational modification wherein

ubiquitin molecules are covalently attached to target proteins

(39). This process relies on the coordinated action of three key

adaptor proteins: ubiquitin activating enzyme (E1), ubiquitin

conjugating enzyme (E2), and ubiquitin ligase (E3) (40). The

canonical ubiquitination pathway involves the attachment of

ubiquitin lysine amino acids (Ub) to glycine residues located at

the C-terminus of target proteins, while the atypical pathways

involve the conjugation of ubiquitin to cysteine, serine, and

threonine residues on target proteins (41). Ubiquitination can

facilitate various downstream responses, including degradation,

alterations in activity, changes in subcellular localization, or

modulation of protein-protein interactions (42–44). Modulating

ubiquitin levels has been shown to have a profound impact on T cell

activation and can effectively enhance antitumor responses, as

indicated by reference (45). Here, we will shift our focus towards

the impact of ubiquitination on other immune cells.
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IL-2, IL-15, and IL-21 are members of the common gamma

chain receptor family cytokines. While they share numerous

similarities, these cytokines also show distinct functions within

NK cells. IL-15 is primarily involved in promoting NK cell

maturation, whereas IL-2 enhances NK cell cytotoxicity (32). IL-

21 facilitates NK cell proliferation without causing telomere

shortening (46). However, the mechanisms underlying the

discriminatory capacity of NK cells among these closely related

cytokines, despite their shared receptors, have not been fully

elucidated. IL-15 serves as a critical regulator in the development

and maturation of NK cells (47), and it has demonstrated the ability

to restore NK cell dysfunction that is impaired by HCC (48).

Ubiquitination and deubiquitination processes also play vital roles

during IL-15-mediated NK cell maturation. Similar to IL-2, IL-15

binds to its receptor trigger not only phosphorylation, but also

ubiquitination of AKT. Otub1, a deubiquitinases enzyme, is

involved in inhibiting the ubiquitination of AKT. This negative

regulation exerted by Otub1 serves as a checkpoint mechanism,

influencing the function of NK cells (49). IL-2 and IL-15 share two

identical chains in their receptors, and their downstream effects in

NK cells are highly similar. However, Otub1 has minimal impact on

the activation of AKT by IL-2. Investigating the differential

ubiquitination patterns of downstream molecules may provide

new insights and potential avenues for fully understanding the

function and signal transduction mechanism of these common

gamma chain cytokines.

Although the application of CAR-T cell therapy in liver cancer

is still in its early stages, it holds tremendous promise for future

advancements. A major hurdle in the effectiveness of CAR-T cell

therapy lies in the rapid ubiquitination and subsequent degradation

of CAR upon interaction with tumor antigens. This phenomenon

presents a significant challenge in maintaining the sustained efficacy

of CAR-T cell therapy. Fortunately, recent studies have shown that

by introducing specific mutations that target the amino acid

residues involved in CAR ubiquitination, the long-term killing

capacity of CAR-T cells can be significantly improved (50).

Ubiquitination is also linked to other protein or gene regulatory

mechanisms. For instance, in a study focusing on Treg cells in HCC,

it was observed that the expression level of long noncoding RNA

lnc-EGFR (Epidermal Growth Factor Receptor) was elevated,

showing a positive correlation with tumor size and EGFR/

forkhead box protein 3 (Foxp3) expression levels. By directly

binding to EGFR protein, lnc-EGFR preventing its ubiquitination

and subsequently stabilizing EGFR, thereby enhancing Treg

function and promoting the progression of HCC (51).

SUMO (or SUMOylation), which stands for Small Ubiquitin-

like Modifier, is a protein modification process that commonly

targets lysine residues, involving the attachment of small regulatory

peptides of approximately 11 KDa. Like ubiquitin, this post-

translational modification regulates various biological processes

such as cell division, DNA replication/repair, signal transduction,

and cell metabolism (52). HCC-derived exosomes play a significant

role in remodeling the TME and promoting HCC progression (53).

One key factor involved in this process is the pyruvate kinase M2
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isoform (PKM2) found within these exosomes (54, 55). HCC-

derived exosomal PKM2 not only induces metabol ic

reprogramming in monocytes but a l so t r igger s the

phosphorylation of nuclear STAT3. This phosphorylation leads to

the up-regulation of differentiation-associated transcription factors,

promoting M2-like macrophage differentiation. The SUMOylation

of PKM2 is responsible for its plasma membrane targeting and

subsequent excretion through interaction with arrestin-domain-

containing protein 1 (ARRDC1). Additionally, the cytokines and

chemokines secreted by macrophages further reinforce the

association between PKM2 and ARRDC1 in HCC. This

reinforcement occurs through a CCL1-CCR8 axis-dependent

mechanism, ultimately promoting the excretion of PKM2 from

HCC cells. Consequently, a feed-forward regulatory loop is formed,

contributing to tumorigenesis (55).
Glycosylation

Glycosylation is a form of co-translational and post-

translational modification that involves the attachment of glycans

to proteins. It is primarily categorized into two types: N-chain

glycosylation, where the glycan is linked to asparagine residues, and

O-chain glycosylation, where the glycan is attached to oxygen atoms

on the hydroxyl groups of serine or threonine amino acid residues

within protein (56). Many tumor-associated antigens related to

HCC are highly glycosylated proteins, and their glycosylation

profiles undergo significant changes in HCC patients (56).

Aberrant glycosylation not only promotes the proliferation and

metastasis of HCC but also plays an important role in immune

recognition and immune escape.

Abnormally expressed alpha-fetoprotein (AFP) in HCC has an

inhibitory effect on tumor immune surveillance. It has long been

observed that AFP in HCC undergoes different glycosylation

compared with normal AFP (57). Tumor-derived AFP exhibits

stronger immunosuppressive effects, characterized by lower

dendritic cell maturation and decreased T cell activation (58).

Recent studies using single-cell metabolic profiling and single-cell

energetic metabolism by profiling translation inhibition techniques

have found that HCC-derived AFP binds significantly more

polyunsaturated fatty acids than normal AFP. Phagocytosis of

HCC-derived AFP reduced fatty acid uptake by dendritic cells,

increased glucose uptake and metabolism, decreased expression of

co-stimulatory molecules, and increased expression of immune

checkpoint molecules such as PD-L1. These mechanisms help the

tumor evade T cell mediated immune surveillance (59).

IL-12 is a cytokine of significant importance in promoting T cell

differentiation and IFN-g production. IL-12 not only activates CD8+

T cells and NK cells in HCC tumors (60) but also enhances the

cytotoxicity of Glypican-3-targeting CAR-T cells (61). IL-12 (p70)

is composed of two subunits, p30 and p40. The free p40 subunit can

act as a negative regulator by blocking the binding of IL-12 to its

receptor, thereby inhibiting the biological activity of IL-12 (62). The

IL-12 cytokine and its family members are glycoproteins (63). Post-
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translational glycosylation is a critical step in regulating IL-12

secretion (64). Through molecular biology techniques, mutations

in the N-glycosylation site (N220) of the p40 subunit, a component

of the Th1 cytokine IL-12, have been shown to reduce the secretion

of free p40. However, these mutations have minimal impact on IL-

12 secretion. As a result, they significantly enhance long-term CD8+

T cell responses and provide protection against tumor attacks.

These mutations can be utilized as adjuvants to generate long-

term memory T cells (65).

Keratinocyte-associated protein 2 (KRTCAP2) is a critical

protein involved in N-glycosylation processes, which play a

fundamental role in the modification of proteins with complex

sugar molecules in various cellular contexts. In HCC, there is a

notable upregulation of KRTCAP2 expression, highlighting its

potential significance in HCC pathogenesis and progression.

Interestingly, high levels of KRTCAP2 are associated with a

decreased infiltration of CD8+ T cells and CD68+ macrophages,

both in the tumor region and the surrounding stroma. Furthermore,

the expression level of KRTCAP2 shows a negative correlation with

the expression of PD-L1 in HCC (66). The interaction between PD-

1 and PD-L1 serves as a critical immune checkpoint and has gained

significant recognition as a prominent target for cancer

immunotherapy. Elucidating the precise role of KRTCAP2 in the

modulation of the TME holds considerable scientific significance

and translational potential for overcoming immunosuppression

in HCC.
Summary and discussion

Liver cancer is a common malignant tumor, which poses a great

threat to human health and life. Protein posttranslational

modification and immune response play an important role in the

development of liver cancer, the immune surveillance against liver

cancer, and the treatment of patients with liver cancer. Figure 1

summarized a mechanism by which PTM contributed in cytokine

mediated cancer immune surveillance. Numerous studies have

shown promising therapeutic potential in targeting PTM for liver

cancer treatment. STT3A is a endoplasmic reticulum-associated N-

glycosyltransferase, which glycosylates PD-L1 and maintain its

stability (67). One notable finding is that spermine, a natural

polyamine compound, can activate b-catenin, a protein involved

in cell adhesion and signaling pathways. Activation of b-catenin
leads to the transcriptional expression of PD-L1 and N-

glycosyltransferase STT3A (68). Targeting STT3A might be a

potential strategy for improving the response to checkpoint

inhibitors in HCC patients.

In the treatment of HCC, certain drugs have been observed to

induce alterations in glycosylation. Sorafenib, for instance, has

been identified as capable of modifying the glycosylation patterns

of multiple proteins in HCC. Further research is needed to

determine whether these changes can be targeted to enhance

the efficacy of this HCC therapeutic drugs (69). Additionally,

researchers are exploring novel approaches that focus on the
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aberrant glycosylation sites of tumor-associated antigens in HCC.

These strategies involve the utilization of antibodies or antigen

specific T cells with the aim of converting specific tumor-

associated antigens into tumor-specific antigens. Although

these studies are still in their early stages, promising preclinical

prospects have already emerged (70). Some studies aiming to

establish PTM based immunotherapy strategies against HCC

were listed in Table 1.

In this review, we summarized the current knowledge of post-

translational modification of protein in liver cancer cells, tumor

infiltrated immune cells, and the microenvironment of liver cancer.

Unraveling the intricate network of post-translational modifications

in liver cancer holds great promise for advancing our understanding

of this disease and undoubtedly contributes to the development of

more effective and personalized treatments.
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TABLE 1 Examples of PTM targeting immunotherapy studies for HCC.

Drug Immune
cells PTM Treatment rationale References

TLR3 agonist with
sorafenib

DCs Phosphorylation Decreasing phosphorylation of AKT, MEK1/2, ERK1/2 and played an anti-HCC role. (71)

MY1340 DCs Phosphorylation
Inhibiting tumor growth in vivo by blocking the VEGF-NRP-1 axis through
phosphorylation of p65 NF-kB and ERK1/2.

(72)

Caffeic acid (C9H8O4)
Macrophages,

T cells
Ubiquitination

Inducing ubiquitination-mediated mortalin degradation to inhibit angiogenesis and
reverse sorafenib resistance.

(73)

DMC CD8+T cells Ubiquitination
Promoting the ubiquitin degradation of PD-L1 in HBx-induced HCC and showing an
anti-hepatoma function.

(74)

Targeting MUC1
Glycosylation

CAR-T cells Glycosylation Targeting MUC1 aberrant O-glycosylation can control HCC growth. (75)
MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; MEK, MAPK/ERK kinase; HCC, hepatocellular carcinoma; VEGF, vascular endothelial growth factor; NRP,
neuropilin; NF-kB, nuclear factor kappa-B; DMC, 2,5-dimethylcelecoxib; HBx, hepatitis B virus X; MUC1, Mucin1.
FIGURE 1

Cytokine relevant post-translational modification and immune surveillance. IL-15 active PI3K/AKT/mTORC1 pathway through phosphorylation and
ubiquitination. Phosphorylated Tim-3 competitively inhibits this pathway, while Otub1 downregulates it by deubiquitination. Glycosylation of p40
increases the secretion of free p40, leading to the attenuation of IL-12 signaling.
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