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Exploring the potential
relationship between frozen
shoulder and Dupuytren’s
disease through bioinformatics
analysis and machine learning

Yulong Ouyang1,2†, Shuilin Chen1,2†, Yuanqing Tu1,2, Ting Wan1,2,
Hao Fan1,2 and Guicai Sun1*

1Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang,
Jiangxi, China, 2The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, China
Background: Frozen shoulder (FS) and Dupuytren’s disease (DD) are two closely

related diseases, but the mechanism of their interaction is unknown. Our study

sought to elucidate the molecular mechanism of these two diseases through

shared gene and protein interactions.

Methods: GSE75152 and GSE140731 data were downloaded from the Gene

Expression Omnibus (GEO) database, and shared genes between FS and DDwere

selected by using R packages. Then, we used Cytoscape software and the

STRING database to produce a protein−protein interaction (PPI) network.

Important interaction networks and hub genes were selected through MCODE

and cytoHubba algorithms. To explore the potential mechanisms of the

development of the two diseases, the hub genes were further enriched by GO

and KEGG analyses. We predicted the transcription factors (TFs) of hub genes

with Transcriptional Regulatory Relationships Unraveled by Sentence-based Text

mining (TRRUST). Moreover, we identified candidate genes for FS with DD with

cytoHubba and machine learning algorithms. Finally, we analyzed the role of

immunocyte infiltration in FS and constructed the relationship between

candidate genes and immunocytes in FS.

Results: We identified a total of 321 shared genes. The results of GO and KEGG

enrichment of shared genes showed that extracellular matrix and collagen fibril

tissue play a certain role in the occurrence and development of disease.

According to the importance of genes, we constructed the key PPI network of

shared genes and the top 15 hub genes for FS with DD. Then, we predicted that

five TFs are related to the hub genes and are highly expressed in the FS group.

Machine learning results show that the candidate genes POSTN and COL11A1

may be key for FS with DD. Finally, immune cell infiltration revealed the disorder

of immunocytes in FS patients, and expression of candidate genes can affect

immunocyte infiltration.
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Conclusion: We identified a PPI network, 15 hub genes, and two immune-

related candidate genes (POSTN and COL11A1) using bioinformatics analysis

and machine learning algorithms. These genes have the potential to serve as

diagnostic genes for FS in DD patients. Furthermore, our study reveals disorder

of immunocytes in FS.
KEYWORDS

frozen shoulder, Dupuytren’s disease, diagnosis, machine learning, immunocyte
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Introduction

Frozen shoulder (FS) is a common joint disease that causes pain

and stiffness (1). FS is the third most common cause of

musculoskeletal disability in the United States and affects patients

between the ages of 40 and 60 years, with a prevalence rate of 2% to

5% (2, 3). FS is typically classified as either primary or secondary FS

(4). Primary FS usually occurs without a clear cause, whereas

secondary FS is caused by trauma or immobilization (4).

Although the disease is self-limited and shows some improvement

after conservative treatment or surgical treatment, most patients

who are followed up long term develop permanent disability (5, 6).

However, the pathogenesis of FS is still unclear.

Studies have shown that FS may be associated with

hyperthyroidism, hypothyroidism, diabetes, and Dupuytren’s

disease (DD) (7). Among these diseases, DD and FS have very

similar histopathological and immunocytochemical characteristics

(8, 9). DD is one of the most widespread inherited connective tissue

disorders and appears to be common in northern Europeans (10). The

prevalence of DD ranges from 3% to 42% worldwide (11). DD is a

common benign fibroproliferative condition (12). A fibrotic nodule

over the palmar fascia is the most common symptom of the disorder.

These bands have the ability to contract, leading to flexion contracture

of the facet joints of the hand, known as Dupuytren’s contracture

(DC) (13). However, the exact pathophysiology of DD is not known.

The unknown causes of FS and DD make treating patients

difficult, and their high prevalence brings a great economic burden

to society (14). Therefore, studying the pathogenesis is helpful and

necessary for the development of disease treatments. Increasing

evidence shows not only that there are some similar pathological

features between DD and FS but also that there is a strong clinical

correlation between them (12, 15). There may be a breakthrough in

understanding the pathogenesis of these two diseases due to their

similarity. However, little is known about the common

characteristics of FS and DD based on gene regulatory mechanisms.

Recently, as sequencing technology and bioinformatics have

developed, it has become possible to determine how diseases

interact genetically (16, 17). Screening out hub genes and

analyzing the correlation between them is very important for

studying diseases. In this study, we aimed to uncover shared

genes and clusters of coexpression between FS and DD, providing

a relevant foundation for future research on the two diseases. We
02
constructed a protein–protein interaction (PPI) network for the

shared genes and identified hub and candidate genes by using

cytoHubba and machine learning algorithms. We explored the

relationship between transcription factors (TFs) and these

diseases on the basis of hub genes. Moreover, we analyzed the

role of immunocytes in FS patients and constructed the relationship

between candidate genes and immunocytes in FS.

Methods

Dataset download and processing

We used the term “frozen shoulder” or “Dupuytren’s disease” to

search for gene expression profiles in the Gene Expression Omnibus

(GEO) (http://www.ncbi.nlm.nih.gov/geo/) database. GSE75152

and GSE140731 were obtained. For GSE75152, total mRNA was

extracted from connective tissue in the hand and detected with the

Illumina HumanHT-12 V3.0 expression beadchip (18). For

GSE140731, total mRNA was extracted from tissue from the

anterior capsule and rotator interval and detected using RNA

sequencing (19). These data are all from humans. After

downloading the two datasets, we preprocessed the data. Then,

we performed log2 transformation for gene expression profiling and

matched the probes to their gene symbols using the annotation

document for the appropriate platforms. Finally, a gene matrix was

obtained for subsequent analyses.
Identification of shared genes

We identified differentially expressed genes (DEGs) in FS and

DD (|log FC| > 0.585, adjusted p-value < 0.05). There was overlap

between genes in the FS and DD modules with positive correlation

coefficients, as assessed by the “VennDiagram” package (20).

Functional enrichment was performed to analyze common DEGs

and total DEGs in DD and FS via R packages (enrichplot,

RColorBrewer, ComplexHeatmap, etc.).

Physical protein interaction network

DD and FS shared genes were used to draw a physical

interaction network with the STRING database (version 11.5).
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The interaction network was extracted, and the extracted network

data were visualized by using Cytoscape software (version 3.9.1). To

analyze the extracted network data using Cytoscape software, the

MCODE algorithm and the cytoHubba algorithm were employed in

the analysis of the PPI network and cluster analysis. Gene clusters

with the top 15 hub genes were obtained. The interacting genes and

functions of these genes were predicted, and related PPIs were

generated in the GeneMANIA database (https://genemania.org/).

Further enrichment of hub clusters was achieved through analysis

of GO functional terms and KEGG pathway enrichment analysis.
Construction of the transcriptional
regulatory network

To identify substantial changes at the transcriptional level and

to gain an in-depth understanding of the regulatory role of DEGs,

we used the hub gene to introduce Transcriptional Regulatory

Relationships Unraveled by Sentence-based Text mining

(TRRUST, https://www.grnpedia.org/trrust/). Next, enrichment of

hub genes was assessed to obtain corresponding TFs. Then,

Cytoscape software was used to produce a TF regulatory network.

Finally, differential expression of TFs in FS patients was analyzed to

identify TFs that play a critical role in the disease.
Machine learning

We used least absolute shrinkage and selection operator

(LASSO) regression and support vector machine (SVM) learning

to identify potential candidate genes related to the diagnosis of FS

and DD. LASSO regression is a machine learning technique that

combines variable selection and regularization, which can improve

prediction accuracy (21). SVM learning is very powerful at

recognizing subtle patterns in complex datasets (22). It aims to

create a decision boundary between two classes such that labels

from one or more feature vectors can be predicted (23). We used the

“glmnet”, “e1071”, “kernlab”, and “caret” software packages of R

software to carry out LASSO regression and SVM learning. The

intersection of these two results can be used as candidate genes for

diagnosis. To determine the importance of candidate genes in

diagnosis, we used the “rms” R package to construct a

nomogram. We further evaluated the prognostic value of the

candidate genes by ROC analysis. The area under the ROC curve

(AUC) and 95% confidence interval (CI) were obtained. An AUC

value > 0.7 is considered to indicate good diagnostic efficacy.
Immune infiltration analysis

We used the CIBERSORT tool to evaluate immunocyte

infiltration based on gene expression profiles. A bar plot was used

to visualize the proportion of immunocytes, while a violin plot was

used to compare the proportions of these cells between the FS and

control groups. We established the relationship between candidate
Frontiers in Immunology 03
genes and immunocytes by Spearman analysis and used a Lollipop

plot to visualize their correlation.
Statistical analysis

Data were analyzed with R 4.3.0 (https://www.rproject.org/),

Cytoscape software (version 3.9.1), Perl 5.32.1 (https://

www.perl.org), and R Bioconductor packages. All statistical

p -va lue s were two-s ided , w i th p < 0 .05 cons idered

statistically significant.
Results

Identification of DEGs in DD and FS

Two microarray datasets were first analyzed separately. The

volcano plot and heat map in Figures 1A–D show the genetic

differences between the two diseases. Compared with the control

group, there were 2,762 differentially expressed genes in the FS

group, including 1,245 downregulated and 1,517 upregulated genes.

There were 1,555 differentially expressed genes in the DD group

compared with the control group, including 764 downregulated and

791 upregulated genes.
Common DEGs in DD and FS

There were 321 common differential genes among GSE75152

and GSE140731 DEGs, namely, 255 upregulated genes and 66

downregulated genes (Figures 2A, B). We analyzed GO

information and KEGG pathways for these common DEGs to

explore their underlying biological information. The results of

GO analyses showed that in biological process (BP), genes

involved in extracellular matrix structure, extracellular structure

organization, encapsulating structure organization, ossification, and

collagen fibril organization, among others, were especially enriched.

In cellular component (CC), collagen-containing extracellular

matrix, collagen trimer, and focal adhesion, among others, were

represented. Molecular function (MF) items that were enriched

included extracellular matrix structural constituents such as

collagen binding and actin binding (Figures 2C–E). KEGG

enrichment results showed the DEGs to be mainly enriched in

protein digestion and absorption, ECM–receptor interaction, focal

adhesion, and PI3K-Akt signaling pathways (Figures 2F, G).
PPI network construction of
common DEGs

We used common DEGs to construct a PPI network in STRING

to understand potential connections between proteins, with a

minimum required interaction score of 0.7 and a PPI enrichment

p-value < 1.0e-16. This score means that the connection has a high
frontiersin.org
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degree of confidence (Figure 3A). To understand expression of

interacting proteins in FS with DD, we scored protein−protein

interactions and combined the PPI network with a score greater

than 0.7 with whether the common DEGs were upregulated or

downregulated (Figure 3B). We used the “MCODE” algorithm of

Cytoscape to analyze and detect key clustering modules. The module

consists of 15 nodes and 67 edges, and the cluster score (density

multiplied by the number of members) was 9.571 (Figure 3C).
Identification of hub genes and PPI
network construction

To understand interaction between hub genes, we used the

“cytoHubba” algorithm to identify the top 15 hub genes. Then, the

interaction of these genes was visualized, whereby a darker color

indicates a more important gene (Figure 4A). GeneMANIA was

used with the PPI to evaluate 15 hub genes and 20 interacting genes

to predict relationships between coexpression, shared protein

domain, colocation, and pathway aspects (Figure 4B). The outer

circle is the predictive genes, and the inner circle is the hub genes.
Frontiers in Immunology 04
Network analysis showed that these genes are associated with

extracellular matrix structural constituents, extracellular matrix

organization, collagen trimer, collagen trimer complex, and

fibrillar collagen trimer.
GO and KEGG pathway analyses of
hub genes

To further understand the function of hub genes in FS with DD,

we enriched hub genes. According to GO analysis, collagen fibril

organization, extracellular matrix organization, and extracellular

structure organization, among others, were enriched in BP.

Collagen-containing extracellular matrix, fibrillar collagen trimer,

and banded collagen fibril, among others, were enriched in CC.

Extracellular matrix structural constituents conferring tensile

strength, extracellular matrix structural constituents, and platelet-

derived growth factor binding, among others, were enriched in MF

(Figures 5A–C). KEGG analysis showed that the hub genes were

enriched in protein digestion and absorption, ECM–receptor

interaction, and focal adhesion, among others (Figures 5D–F).
A B

DC

FIGURE 1

Volcano plot and heatmap show genetic differences between the two groups of diseases. (A) Heatmap of gene expression levels between the DD
and control groups. (B) Volcano plot of gene expression levels between the DD and control groups. (C) Heatmap of gene expression levels between
the FS and control groups. (D) Volcano plot of gene expression level differences between the DD and control groups.
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Association between hub genes and TFs

TFs are involved in gene regulation. To explore the role of TFs,

we used TRRUST to predict key TFs that affect these two diseases

through hub genes. Analysis of interactions between TFs and

common DEGs revealed that 11 TFs coordinated 8 common

DEGs, indicating a high level of cooperation (Figure 6A). The top

TFs were ranked according to their p-values and included RELA,
Frontiers in Immunology 05
NFKB1, CEBPZ, SP3, TWIST2, CIITA, STAT6, MYB, TFAP2A,

YY1, and SP1 (Table S1). These findings reveal a significant

relationship between common DEGs and TFs.

By analyzing expression of these TFs in GSE140731, we detected

significant differences in SP3, YY1, SP1, RELA, and CEBPZ between

FS patients and healthy patients (Figures 6B–F). This indicates

that TFs influence the development of these diseases and

their occurrence.
A B C

FIGURE 3

PPI network of common DEGs in DD and FS. (A) PPI network of shared genes (interaction score of 0.7 and PPI enrichment p-value < 1.0e-16). (B)
PPI network of upregulated and downregulated shared genes (orange represents upregulated genes, and blue indicates downregulated genes). (C)
Key clustering module of the PPI (the cluster score is 9.571).
A B

D E F G

C

FIGURE 2

Identification and biological characteristics of common DEGs in DD and FS. (A) Venn diagram showing upregulated shared genes in DD and FS. (B)
Venn diagram showing downregulated genes in DD and FS. (C) Circle diagram of gene enrichment numbers for each GO item among the shared
genes. (D) GO analysis of the shared genes. (E) The bubble chart shows the GO enrichment and count of enrichment items among the shared
genes. (F) KEGG analysis of the shared genes. (G) The bubble chart shows the KEGG enrichment and count of the shared enriched items.
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Identification of candidate genes via
machine learning

LASSO regression and SVM algorithms were utilized to identify

potential candidate genes of FS combined with DD. LASSO

regression analysis and SVM algorithms identified 23 and 37

genes closely related to FS with DD, respectively (Figures 7A, B).

The intersection of the 37 genes from SVM and 23 genes from
Frontiers in Immunology 06
LASSO identified six genes (COL11A1, POSTN, LBH, CH25H,

SMOC2, and PALLD). COL11A1 and POSTN were also the top 15

hub genes (Figure 7C). The AUC and 95% CI of these genes were

calculated by constructing an ROC curve to evaluate the diagnostic

effect, as shown in Figures 7D, E. The results were as follows:

POSTN (AUC: 0.979, CI: 0.950–0.997) and COL11A1 (AUC: 0.994,

CI: 0.981–1.000). We constructed a nomogram with 2 candidate

diagnostic genes (Figure 7F).
A B

D E F

C

FIGURE 5

GO and KEGG analyses of hub genes. (A) GO analysis of hub genes. (B) The bubble chart shows the GO enrichment and count of enrichment items
in hub genes. (C) The circle diagram shows the relationship between key genes and GO enrichment items. (D) KEGG analysis of hub genes. (E) The
bubble chart shows the KEGG enrichment and count of enrichment items in hub genes. (F) The circle diagram shows the relationship between hub
genes and KEGG enrichment items.
A B

FIGURE 4

PPI network of hub genes. (A) PPI network of 15 hub genes (the darker the color is, the more important the gene is). (B) GeneMANIA predicted
relationships between coexpression, shared protein domain, colocation, and pathway.
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D

E

FC

FIGURE 6

Association between hub genes and TFs. (A) Prediction of TF genes and their interaction network with hub genes. (B) Differences in expression of
SP1 in the FS and control groups. (C) Differences in expression of SP3 in the FS and control groups. (D) Differences in expression of CEBPZ in the FS
and control groups. (E) Differences in expression of RELA in the FS and control groups. (F) Differential expression of YY1 in the FS and control groups
(*p < 0.05, ***p < 0.001).
A B

D E F

C

FIGURE 7

Identification of candidate genes. (A) Screening of key genes by LASSO regression. (B) Screening of key genes by SVM learning. (C) Candidate genes
identified in the LASSO model, SVM learning, and cytoHubba algorithm. (D) ROC curve of the POSTN gene. (E) ROC curve of the COL11A1 gene. (F)
Nomogram for diagnosis FS with DD.
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Immune infiltration analysis

Immunocytes may be involved in the pathogenesis of DD.

However, as the relationship between immunocytes and the

pathogenesis of FS is rarely reported, we conducted immune

infiltration analysis to explore the effect of immunity on FS. The

proportion of immunocytes in the FS group and control group is

shown in Figure 8A. Compared with the control group, there were

significant differences in levels of naive B cells, memory B cells,

plasma cells, follicular helper T cells, regulatory T cells (Tregs), M1

macrophages, and M2 macrophages in the FS group (Figure 8B).

Then, we established the relationship between candidate genes and

immunocytes and observed the effects of different candidate genes

on immunocytes (Figures 8C, D, S1). The results showed that

expression of the POSTN gene was closely related to M1

macrophages, M2 macrophages, naive B cells, M0 macrophages,

plasma cells, and regulatory T cells (Tregs) (Figure 8C). Expression

of the COL11A1 gene was closely related to M1 macrophages, M2

macrophages, plasma cells, naive B cells, follicular helper T cells,

regulatory T cells (Tregs), and memory B cells (Figure 8D).
Discussion

Before 1872, FS was thought to be an inflammation of the

shoulder and was labeled periarthritis by Duplay. Then, in 1934,

Codman first proposed the term frozen shoulder (24). The change

in terms seems to indicate that the pathological changes associated
Frontiers in Immunology 08
with FS have gradually shifted from inflammation to fibrosis. As the

most common hereditary disease of connective tissue, DD is mainly

characterized by pathological fibrosis of connective tissue (25). In

1936, Schaers (26) first reported the close relationship between FS

and DD. Subsequently, increasing clinical evidence has proven the

correlation between them (8, 27, 28). Furthermore, an increasing

number of basic studies are also attempting to reveal the

pathogenesis and potential relationship between FS and DD.

Lundberg (29) reported histological similarities linking the two

pathologies as early as 1969. Bunker (9) also found that there are

histological similarities between FS tissue and DD tissue,

confirming that both types of tissue constitute a combination of

synovial inflammation and capsular fibrosis. These studies show

that DD and FS share a common mechanism, but the molecular

mechanism of their interaction and pathogenesis is still unclear.

Few studies have explored the susceptibility factors of DD in FS

at the genetic level. Exploring the interaction of two related diseases

at the genetic level may provide some inspiration for research on the

two diseases. In this study, bioinformatics analysis through a public

database was used to explore the mechanism of FS and DD at the

gene level. First, we analyzed genetic differences in the high-

throughput data of patients with FS and DD and found

significant differences between patients with the two diseases and

the healthy group. Subsequently, shared genes with common

upregulation and downregulation were found in the two diseases,

and GO and KEGG enrichment analyses were performed. These

analyses showed a certain association between the two diseases at

the genetic level. Third, we used the shared genes to build a PPI
A

B D

C

FIGURE 8

Immunocyte infiltration analysis in FS. (A) The bar plot shows the proportion of 22 immunocytes in GSE140731. (B) Levels of infiltrating immunocytes
in the FS and control groups (*p < 0.05, **p < 0.01, ***p < 0.001). (C) The lollipop plot shows the relationship between POSTN genes and
immunocytes. (D) The lollipop plot shows the relationship between COL11A1 genes and immunocytes.
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model and selected key clustering modules from it. The results

showed an interaction at the protein level. Next, we selected the top

15 genes according to the algorithm and constructed an interactive

network; similar to the key PPI model, interaction of these genes

plays an important role in the pathogenesis of the two diseases.

Some of the 15 hub genes have been reported to be closely related to

the two diseases, such as COL1A1 and MMP2 (30–32). However,

many genes have not been reported in the pathogenesis of DD or

FS. Next, we examined the GO and KEGG pathways that were

enriched among the hub genes, and the results showed extracellular

matrix deposition, cell adhesion, and fibrosis to be closely related to

these two diseases. This view is supported by previous studies (33,

34). We found some pathways that may be related to the two

diseases, such as the PI3K-AKT pathway, Wnt pathway, and TGF-b
pathway (Tables S2, S3). Rui Yang showed that IL-6 is upregulated

in FS synovium and can promote the formation of FS fibrosis

through the PI3K-AKT pathway (35). Chen reported that TGF-b1
can induce shoulder fibrosis in a rat model and that a PPAR-g
agonist can be used as a treatment (36). Similarly, some studies have

suggested that the TGF-b pathway and Wnt pathway are key

pathways in DD (37, 38). These studies prove the reliability of

our enrichment. However, compared with other diseases, studies on

the mechanism of these two diseases are scarce. Interestingly, we

identified the AGE-RAGE signaling pathway, which is closely

related to diabetes, in our enrichment results. Many studies have

found that diabetes is a high-risk factor for FS and DD (39–42).

However, the mechanism is unclear, though the AGE-RAGE

signaling pathway may be a key pathway linking these diseases.

Moreover, according to hub genes, we predicted TFs related to the
Frontiers in Immunology 09
diseases and found that some differ between the diseases. TFs play

an important role in the regulation of various diseases. Our results

prove that these TFs may provide an important basis for the study

of FS with DD.

We identified the candidate genes POSTN and COL11A1 by

machine learning. They are involved in skeletal system

development, ossification, or osteoblast differentiation (43). They

may play a role in FS with DD disease progression. Linda’s studies

have proven that POSTN is upregulated in DD and that it can

promote the transformation of fibroblasts into myofibroblasts, thus

promoting progression of the disease (44). This study proves the

accuracy of our bioinformatics analysis. However, studies on the

effect of POSTN on FS have not been reported.

Since DD can induce FS, we wanted to determine the effect of

candidate genes on FS immune cells. Then, we found that

immunocytes are involved in the pathogenesis of FS. Although

there are few studies on the mechanism of the effect of immunocytes

on FS, the role of inflammation in the two diseases has been proven;

thus, immunocytes are very important for progression of the

disease. Exploring the mechanism of immune cells in FS may be a

breakthrough in the study of disease mechanisms. The important

role of imbalance between M1 and M2 macrophages in fibrotic

diseases has been demonstrated by many studies (45, 46). Our study

also found that imbalance between M1 and M2 macrophages is

involved in the occurrence and development of FS. Finally, to

further explore the important role of immune cell infiltration and

candidate genes in FS, we assessed the correlation between them.

Our results show that the candidate genes can affect disease

progression by regulating immunocytes.
FIGURE 9

Pathogenesis of the two diseases at the genetic level.
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Limitations of the study

Through the interactive study of FS and DD, we explored the

pathogenesis of the two diseases at the genetic level (Figure 9). The

results suggest new implications for the study of the pathogenesis of

the two diseases. However, there are still some shortcomings in our

study. First, the key genes and pathways found were not verified by

experiments. However, some genes and related pathways have been

confirmed in previous studies, which proves the reliability of this

study. The focus of our subsequent studies will be to demonstrate

the effects of these pathways and genes on FS. Due to the lack of

high-throughput FS and DD datasets, the results cannot be verified

by other datasets. More high-throughput sequencing data are

needed to verify our results. Finally, the larger the sample size is,

the more accurate the results of bioinformatics analysis is. It is

hoped that there will be larger sample size datasets in the future.
Conclusion

We identified the PPI network, 15 hub genes, and two immune-

related candidate genes (POSTN and COL11A1) using

bioinformatics analysis and machine learning algorithms. These

genes have the potential to serve as diagnostic candidate genes for

FS in DD patients. Furthermore, our study reveals disorder of

immunocytes in FS. We clarified the potential mechanism of the

relationship between FS and DD at the genetic level, providing a

new idea for future research on DD and FS.
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