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Influence of genetically
predicted autoimmune
diseases on NAFLD

Min Xu †, Tong Wu †, Zhaoxia Li and Guijie Xin *

Department of Hepatology, The First Hospital of Jilin University, Changchun, China
Introduction: Non-alcoholic fatty liver disease (NAFLD), the emerging cause of

end-stage liver disease, is the most common liver disease. Determining the

independent risk factors of NAFLD and patients who need more monitoring

is important.

Methods: Two-Sample Mendelian randomization (MR) was performed in the

analysis to investigate the causal association of different autoimmune diseases

with NAFLD using summary level data. Genome-wide association study (GWAS)

of 5 autoimmune diseases including celiac disease (CeD), Crohn’s disease (CD),

multiple sclerosis (MS), rheumatoid arthritis (RA), and type 1 diabetes (T1D) were

selected for Instrument variables (IVs). NAFLD was included as outcome.

Result: After adjusting for confounding factors, genetic predisposition of CeD

(OR= 0.973, [0.949,0.997], IVW p-value=0.026), MS (OR= 1.048, [1.012,1.085],

IVW p-value= 0.008), RA (OR= 1.036, [1.006,1.066], IVW p-value=0.019), T1D

(OR= 1.039, [1.002,1.079], IVW p-value= 0.041) is causally associated with

NAFLD. No causal effect was found between CD and NAFLD.

Conclusion: CeD itself may be a protective factor for NAFLD, the results of

previous observational studies have been influenced by confounding factors, and

the morbidity of NAFLD may be higher in patients with MS, RA, and T1D than in

common populations, and monitoring the prevalence of NAFLD in these

populations is considerable.
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Abbreviations: NAFLD, Non-alcoholic fatty liver disease; MR, Mendelian randomization; GWAS, Genome-

wide association study; CeD, Celiac disease; CD, Crohn’s disease; MS, multiple sclerosis; RA, rheumatoid

arthritis; T1D, type 1 diabetes; IVs, Instrument variables; T2D, type 2 diabetes; SLE, systemic lupus

erythematosus; GD, Graves’ disease; IBD,inflammatory bowel disease; SNP, Single Nucleotide

Polymorphism; BMI, body mass index; GFD, gluten-free diet; IR, insulin resistance; ROS, reactive oxygen

species; RNS, reactive nitrogen species.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common

chronic liver disease in the world (1), with a prevalence of close to

25% in the general population, causally associated with obesity and

type 2 diabetes (T2D) (2). NAFLD includes a spectrum of liver

pathologies including simple steatosis, steatohepatitis, fibrosis, and

cirrhosis. Due to its high prevalence, NAFLD is currently the

fastest-growing cause of liver-related death worldwide and is

emerging as a significant cause of end-stage liver disease, primary

liver cancer, liver transplantation, and a significant health economic

burden (3). Therefore, it is important to determine the independent

risk factors for NAFLD and which patients should receive more

stringent health monitoring.

Autoimmune diseases occur when the immune response is

misdirected to the tissues of the self, ultimately leading to

structural and functional disorders of the body and organs.

Genetic factors, environmental influence, and immune

abnormalities (including infections) often combine to trigger

autoimmune diseases (4). There are nearly 100 identified

autoimmune diseases, the most common of which include

systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),

multiple sclerosis (MS), type 1 diabetes (T1D), Graves’ disease

(GD), inflammatory bowel disease (IBD), etc. (5). Considerable

epidemiological evidence links these disorders to NAFLD, and most

are tend to increasing risk of increased NAFLD (6–10).

The gold standard for exploring causality is randomized

controlled trials. In theory, randomized controlled trials require

strict randomization of patients with different autoimmune

diseases, intervention, and follow-up to document the incidence of

NAFLD. Such trials are difficult to conduct because of the time and

high cost required. Mendelian randomization (MR) is a statistical

research method similar to randomized controlled trials, where MR

uses a genetic variation to determine whether the observed

association between exposure and outcome is consistent with a

causal effect (11). MR relies on the natural random combination of

genetic variants during meiosis, resulting in a random distribution of

genetic variants in the population (11), and is not prone to

confounding factors and reverse causal associations.

In this study, MR was used to investigate the causal relationship

between several autoimmune diseases and NAFLD.
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2 Methods

2.1 Two-sample MR study design

Based on summary-level data, two-sample MR was performed

to investigate the causal association between different autoimmune

diseases and NAFLD. A total of 5 autoimmune diseases including

celiac disease (CeD), Crohn’s disease (CD), multiple sclerosis (MS),

rheumatoid arthritis (RA), and type 1 diabetes (T1D) were selected

for our MR study (12–18), Table 1 provides detailed information on

all the summary data used in the study.

MR studies should be conducted under three main assumptions

(19): Genetic variables should be closely related to exposure (12–

16); Genetic variables should not be associated with any

confounders that may affect exposure and outcome; Genetic

variables can only influence outcomes through exposure. First of

all, Qualified IVs were selected based on strict selection criteria.

Genetic variants were selected as IVs based on their genome-wide

significance (GWAS p-value < 5×10−8) and linkage disequilibrium.

(LD, r2 = 0.001, clump window 5000 kilobases). For the selection of

qualified IVs, only summary-level GWAS data from European

ancestry were utilized. Secondly, SNPs (Single Nucleotide

Polymorphism) associated with obesity and T2D were excluded

from exposure by Phenoscanner (PhenoScanner (cam.ac.uk)). It is

known that obesity and type 2 diabetes are risk factors for NAFLD

(3), Inclusion of these SNPs would violate the second and third

assumptions (20) (Figure 1). Additionally, exposure and outcome

data were harmonized to ensure that each IV had the same effect

allele. Finally, MR analysis was performed on the eligible SNPs.
2.2 Data source for autoimmune diseases
and NAFLD

2.2.1 Celiac disease
The IEU Open GWAS project (mrcieu.ac.uk) provided

summary-level data for CeD (12), which included 12,041 cases

and 12,228 controls, identifying 38 SNPs associated with CeD. A

total of 35 exposure-related SNPs were found in the outcome, 3

SNPs associated with potential confounders (rs3184504, rs6457617,

rs13195040), and no SNPs were excluded through harmonization.
TABLE 1 Detailed information of data used for study.

Phenotype Ancestry Cases/Controls nSNP PMID

Celiac Disease European 12,041/12,228 38 22057235

Crohn’s Disease European 17,897/33,977 130 26192919

Multiple Sclerosis European 14,498/24,091 47 24076602

Rheumatoid Arthritis European 5,539/20,169 10 20453842

Type 1 Diabetes European 9,266/15,574 47 32005708

NAFLD European 8,434/770,180 – 34841290
fron
nSNP, the number of single nucleotide polymorphism; PMID, ID of publication in the PubMed; NAFLD, Nonalcoholic fatty liver disease.
tiersin.org

https://doi.org/10.3389/fimmu.2023.1229570
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1229570
2.2.2 Crohn’s disease
The IEU Open GWAS project (mrcieu.ac.uk) provided

summary-level data for CD (13), which included 17,897 cases and

33,977 controls, identifying 130 SNPs associated with CD. A total of

122 exposure-related SNPs were found in the outcome, and 12

SNPs associated with potential confounders (rs13109404,

rs13407913, rs17391694, rs2641348, rs2641348, rs26528,

rs3184504, rs3197999, rs56163845, rs6908425, rs77981966,

rs780094, rs9264942) and 7 SNPs palindromic with intermediate

allele frequencies (rs10878302, rs10956252, rs10995271, rs1927681,

rs2266961, rs2847293, rs35730213) were excluded.

2.2.3 Multiple sclerosis
The IEU Open GWAS project (mrcieu.ac.uk) provided

summary-level data for MS (14), which included 14,498 cases and

24,091 controls, identifying 47 SNPs associated with MS. A total of

45 exposure-related SNPs were found in the outcome, including two

potential confounders (rs11554159, rs3131283), and no SNPs were

excluded through harmonization.

2.2.4 Rheumatoid arthritis
The IEU Open GWAS project (mrcieu.ac.uk) provided

summary-level data for RA (mrcieu.ac.uk) (15). The GWAS

included 5,539 cases and 20,169 controls, identifying 10 SNPs

associated with RA. All of the exposure-related SNPs were found

in the outcome, one SNP associated with potential confounders

(rs497239), and no SNPs were excluded through harmonization.

2.2.5 Type 1 diabetes
The IEU Open GWAS project (mrcieu.ac.uk) provided

summary-level data for T1D (16). The GWAS included 9,266

cases and 15,574 controls, identifying 47 SNPs associated with

T1D. A total of 33 exposure-related SNPs were found in the

outcome, one SNP associated with potential confounders
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(rs8056814) and 6 SNPs palindromic with intermediate allele

frequencies (rs10865468, rs17125653, rs34296259, rs34536443,

rs55996894, rs689) were excluded.

2.2.6 NAFLD
Our study mainly focused on the association between CeD, CD,

MS, RA, and T1D. For the outcome data, we chose recent GWAS

summary data to date. The sources of datasets are listed in Table 1.

Summary-level data for NAFLD were acquired from the GWAS

Catalog (https://www.ebi.ac.uk/gwas/home), they performed 2 new

GWASs in the UK Biobank and Estonian Biobank and performed a

meta-analysis of 4 cohorts (UK Biobank, Estonian Biobank,

eMERGE, and FinnGen), totaling 8,434 NAFLD cases, all

identified through EHRs (electronic health records), with 770,180

controls (17). All the GWAS have been approved by corresponding

Ethics Committees.
2.3 Data reliability analysis

As mentioned above, obesity and T2D are important risk

factors for NAFLD (3), and epidemiological and animal

experimental evidence for these conclusions has been validated in

previous MR analyses (21), and both factors were excluded as

confounders in our IVs, so we selected these two factors to

validate the reliability of the NAFLD database.

Summary data for BMI, including 461,460 European ancestry

individuals, were obtained from the consortium of the MRC

Integrative Epidemiology Unit (MRC-IEU) (GWAS ID: ukb-b-

19953), and summary data of T2D were retrieved from the Meta-

analysis of three GWAS datasets of European ancestry in a very

large sample of T2D (62,892 cases and 596,424 controls) (22).

Multiple testing was controlled by the Benjamini-Hochberg

method. Results with an adjusted FDR less than 0.05 were

considered to be significantly causally related. In addition, results

at a threshold of FDR less than 0.1 were considered to imply an

significant association.
2.4 Statistic analysis and data visualization

To estimate the combined effect of all SNPs, the inverse-

variance-weighted (IVW) method was performed (23).

Additionally, as complementary MR methods, weighted median

(24), MR-Egger regression (25), simple mode, and weighted mode

(26), were performed.

As a result of differences in analysis platforms, experimental

conditions, inclusion populations, and SNPs, two-sample MR

analysis may have heterogeneity. Therefore, the Cochrane’s Q test

was performed to appraise heterogeneity, if the P-value > 0.05, it is

considered that there is no heterogeneity in the IVs, and the

influence of heterogeneity on the estimation of causal effects can

be ignored (27). Forest plots visualized the heterogeneity (28)., MR-

Egger regression analysis was used to calculate the intercept and P

value of the sensitive SNPs of horizontal pleiotropy.
FIGURE 1

Basic Mendelian randomization (MR) framework for investigating the
causal relationship between autoimmune diseases and NAFLD. T2D
is Type 2 diabetes; IV is instrumental variable; CeD is celiac disease;
CD is Crohn’s disease; MS is multiple sclerosis; RA is rheumatoid
arthritis; T1D is Type 1 diabetes; NAFLD is non-alcoholic fatty liver
disease.
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Statistic analysis and data visualization were performed using

TwoSampleMR package (version 0.5.6) (23) and MR-PRESSO

package (29) in R (version 4.2.2).
3 Result

Initially, neither CeD (OR=0.987, [0.971, 1.003], IVW p-

value=0.118, FDR=0.131) nor CD (OR=1.027, [0.997,1.058], IVW

p-value=0.082, FDR=0.103) was causally associated with NAFLD in

the preliminary analysis. After adjustment for BMI and T2D, there

was a significant negative association between CeD (OR= 0.973,

[0.949,0.997], IVW p-value=0.026, FDR=0.065) and NAFLD,

although there was still no causal association between CD

(OR=1.020, [0.990, 1.051], IVW p-value= 0.185, FDR=0.185) and

NAFLD (Figure 2). The results of other methods, such as IVW fixed

effect model, weighted median method,and MR-Egger method, show

consistent influence direction and significant association between

CeD and NAFLD. (Table 2, Supplementary Figures) Cochran’s Q

statistic (Q=24.508, p=0.789) suggested low heterogeneity, MR-Egger

regression showed non-horizontal pleiotropy (intercept=0.011,

p=0.061) and MR-PRESSO method did not find any outlier SNPs.

(Table 2) Crohn’s disease was also less probable to be influenced by

heterogeneity and horizontal pleiotropy (Q=113.068, p= 0.213;

intercept=0.006, p=0.279) (Table 2, Supplementary Figures).

The impact of genetic predisposition of MS (OR=1.047,

[1.012,1.083], IVW p-value=0.008, FDR=0.040), RA (OR=1.031,

[1.002,1.061], IVW p-value=0.034, FDR=0.066) and T1D

(OR=1.038, [1.001,1.076], IVW p-value=0.046, FDR=0.066) all

elevated the risk of NAFLD in IVW model. (Table 2) These

conclusions were still valid after adjusting confounders, including

MS (OR= 1.048, [1.012,1.085], IVW p-value= 0.008, FDR=0.040),

RA (OR=1.036, [1.006,1.066], IVW p-value=0.019, FDR=0.063),

T1D (OR= 1.039, [1.002,1.079], IVW p-value= 0.041, 0.066).

(Table 2, Figure 2).
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Sensitivity analysis indicated that the results were not biased by

heterogeneity or horizontal pleiotropy: MS (Q=31.997, p=0.868;

intercept=0.001, p=0.874), RA (Q=7.620, p=0.471; intercept=0.016,

p=0.235), T1D (Q=28.322, p=0.293; intercept=0.002, p=0.837),

MR-PRESSO method did not find any outlier SNPs (Table 2,

Supplementary Figures).

IVW method indicated causal effect between genetically

predicted BMI and NAFLD (OR= 1.715, [1.520,1.934], p-value=

1.701e-18). Genetically predicted T2D-NAFLD also revealed

significant association in IVW method (OR= 1.104, [1.009,1.209],

p-value= 0.032).
4 Discussion

Genetic susceptibility to all four diseases suggested a significant

association with NAFLD, except for CD, which was not associated with

NAFLD. CeD was negatively correlated with NAFLD. On the contrary,

MS, RA, and T1D all increased the incidence of NAFLD slightly.

Celiac disease, an autoimmune disorder, predominantly impacts

the small intestine and arises from the consumption of gluten in

genetically predisposed individuals. CeD is widely believed to elevate

the risk of NAFLD (7, 30). A cohort study indicated a 13.3 (95% CI

3.5-50.3) elevated risk of NAFLD in CeD patients compared to the

general population in the first year after diagnosis of CeD, and

continued to be significantly higher 15-year after diagnosis (HR =

2.5; 95% CI 1.0-5.9) (7). Another prospective cohort study showed

that CeD patients with gluten-free diet(GFD) were at significantly

increased risk of developing NAFLD (31), and that proton pump

inhibitors and initial HOMA-IR may be risk factors for developing

hepatic steatosis in this group of patients (32).

Previous studies found that CeD patients had a lower BMI than

the general population at the time of diagnosis (33), and that this

population was at a lower risk of metabolic syndromes such as T2D

and hyperlipidemia before GFD treatment was administered (34–

36). This may be related to the disruption of the intestinal barrier

and relevant malabsorption induced by gluten consumption in CeD

patients. NAFLD, on the other hand, is regarded as a fundamental

hepatic manifestation of the metabolic syndrome (6), and The

disease progression is associated with various risk factors,

including obesity, hyperlipidemia, IR, and T2D (37).

The pathogenesis of CeD (38) and NAFLD (39, 40) are both

correlated with gut microbiota. The spectrum of intestinal bacteria

presented by the two diseases is seldom the same (41, 42), so we

guess that the effects of intestinal flora disorders on organism

metabolism are different tendencies in these two diseases. Most of

the coexisting NAFLD in patients with CeD appear after GFD

treatment (7), so the observed coexistence of CeD and NAFLD

outcomes may be attributed to GFD treatment after CeD (7, 43). In

recent years probiotics and other medications have also started to be

utilized in most patients with intestinal diseases, and intestinal

probiotic medications have also shown benefit in hepatic steatosis,

the overall changes brought about by this new treatment still need

further observed. In conclusion, the mechanisms of interaction

between the two diseases still need to be further explored.
FIGURE 2

Forest plots of the causal effect of autoimmune diseases on NAFLD.
CeD, celiac disease; CD, Crohn’s disease; MS, multiple sclerosis; RA,
rheumatoid arthritis; T1D, Type 1 diabetes; NAFLD, non-alcoholic
fatty liver disease.
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TABLE 2 MR Results of main methods.

MR-Egger Simple mode Weighted mode
P-heteroge-

neity
P-pleiot-

ropyOR[95%
LCI,95%
UCI] P

OR[95%
LCI,95%
UCI] P

OR[95%
LCI,95%
UCI] P

0.980
[0.958,1.003] 0.098

0.990
[0.932,1.051] 0.735

0.998
[0.974,1.022] 0.853 0.595 0.384

0.944
[0.909,0.981] 0.007

0.990
[0.916,1.069] 0.791

0.953
[0.924,0.983] 0.004 0.789 0.061

0.980
[0.903,1.064] 0.634

1.027
[0.932,1.132] 0.591

0.987
[0.926,1.052] 0.693 0.053 0.234

0.979
[0.904,1.061] 0.608

1.024
[0.924,1.134] 0.652

0.989
[0.931,1.052] 0.735 0.213 0.279

1.038
[0.915,1.176] 0.569

1.068
[0.959,1.190] 0.238

1.025
[0.942,1.114] 0.575 0.888 0.884

1.038
[0.915,1.177] 0.565

1.073
[0.962,1.197] 0.211

1.029
[0.945,1.121] 0.508 0.868 0.874

1.005
[0.957,1.055] 0.853

1.032
[0.976,1.090] 0.298

1.032
[0.995,1.072] 0.129 0.460 0.234

1.009
[0.960,1.060] 0.734

1.045
[0.991,1.103] 0.146

1.036
[1.000,1.071] 0.089 0.471 0.235

1.030
[0.951,1.115] 0.470

1.060
[0.963,1.168] 0.246

1.060
[0.994,1.130] 0.085 0.322 0.844

1.032
[0.952,1.118] 0.457

1.063
[0.965,1.172] 0.225

1.062
[0.995,1.133] 0.082 0.293 0.837
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Exposure nSNP

IVW IVW-fixed effect
Weighted
median

OR[95%
LCI,95%
UCI] P

OR[95%
LCI,95%
UCI] P

OR[95%
LCI,95%
UCI] P

Celiac disease 35
0.987

[0.971,1.003] 0.118
0.987

[0.970,1.004] 0.133
1.006

[0.980,1.034] 0.635

*Celiac disease 32
0.973

[0.949,0.997] 0.026
0.973

[0.949,0.997] 0.026
0.962

[0.930,0.996] 0.026

Crohn’s
disease 115

1.027
[0.997,1.058] 0.082

1.027
[0.999,1.055] 0.054

1.012
[0.971,1.054] 0.576

*Crohn’s
disease 103

1.020
[0.990,1.051] 0.185

1.020
[0.992,1.050] 0.163

1.007
[0.963,1.053] 0.763

Multiple
sclerosis 44

1.047
[1.012,1.083] 0.008

1.047
[1.007,1.089] 0.022

1.037
[0.979,1.098] 0.219

*Multiple
sclerosis 43

1.048
[1.012,1.085] 0.008

1.048
[1.007,1.090] 0.020

1.038
[0.982,1.096] 0.187

Rheumatoid
arthritis 10

1.031
[1.002,1.061] 0.034

1.031
[1.002,1.061] 0.037

1.033
[0.997,1.069] 0.071

*Rheumatoid
arthritis 9

1.036
[1.006,1.066] 0.019

1.036
[1.005,1.067] 0.022

1.035
[0.998,1.073] 0.065

Type 1
diabetes 27

1.038
[1.001,1.076] 0.046

1.038
[1.003,1.074] 0.036

1.059
[1.004,1.118] 0.036

*Type 1
diabetes 26

1.039
[1.002,1.079] 0.041

1.039
[1.004,1.076] 0.029

1.060
[1.006,1.116] 0.029

*means dataset after adjusting confounders.
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Our results did not show a causal association in CD-NAFLD,

which is different from what we expected, but a previous MR study

had similar findings (20). The risk of metabolic disease is lower in

patients with CeD, which is the risk factor of NAFLD. The risk of

metabolic disease is also low in IBD patients (44), but similar

findings were not obtained in the causal association analysis of CD-

NAFLD, either with or without adjustment for obesity and T2D. In

clinical data, the prevalence of NAFLD in IBD patients varies

14.2%- 48% (8, 9, 45–47), and most studies had significantly

higher prevalence compared to healthy controls, and we

hypothesize that the treatment of IBD somehow influences the

occurrence of subsequent NAFLD.

Most studies have shown that in IBD population, obesity, and

diabetes remain risk factors for the development of NAFLD (9, 44,

46, 48), and a history of bowel resection, treatment of IBD with

glucocorticoids, methotrexate, and azathioprine are associated with

an increased incidence of NAFLD (8, 9, 44, 46), while the results of

the anti-tnf-a therapy in patients with NAFLD are inconsistent (44,

49). In addition to known metabolic risk factors, treatment of IBD

with glucocorticoids, azathioprine, methotrexate, and intestinal

surgery seems to contribute to NAFLD. Notably, glucocorticoids

and intestinal surgery may lead to hepatic steatosis or cholestasis

(50), although without IBD. Therefore, we still cannot rule out a

potential causal association of CD-NAFLD, and we still need to

discuss the causal association of CD-NAFLD in larger sample-size

GWAS studies and explore whether there are multiple factors

whose pleiotropic effects counteract each other.

In our MR study, all three non-intestinal autoimmune diseases

were associated with the presence of NAFLD, and the underlying

mechanism of their interaction with NAFLD is presumed to remain

closely related to the gut microbiota (51).

MS, idiopathic inflammatory demyelinating disease of the

central nervous system (CNS), where damage to the blood-brain

barrier is the initiating part of MS and is closely associated with

subsequent demyelination, axonal injury, neuronal degeneration,

and disease progression independent of relapse. Previous studies

have indicated that gut microbiota can be involved in regulating the

permeability of the blood-brain barrier, activating microglia

expressing myelin-forming genes (52). The proportion of elevated

intestinal permeability is significantly higher in MS patients than in

healthy population (53), while previous studies have also suggested

in animal models of MS that gut microbiota may regulate

inflammatory cells migrate to the CNS by regulating blood-brain

barrier integrity (54), thus we hypothesize that the MS-NAFLD

association arises through the gut-brain axis and that molecular

mimicry of gut microbiota may be a potential pathway of initiating

autoimmune responses and the development of MS (55).

The mucosal origin hypothesis (56) suggested that the mucosa

is the earliest site of RA-associated autoantibodies and that elevated

levels of various types of RA-associated IgA in RA patients precede

the onset of clinical arthritic symptoms (57, 58), while the

homologous immune cells were found in the gut and joints of RA

patients (59, 60), suggesting that gut-derived immunity in the

preclinical phase is relevant to the pathogenesis of RA. The recent

hypothesis of the gut-joint axis as a pathogenesis was then

formulated, which mainly emphasizes the interaction between the
Frontiers in Immunology 06
mucosal immune system and the abnormal microbiota (61).

Interestingly, gut dysbiosis has been shown to precede the onset

of arthritis symptoms in both preclinical models and clinical

samples and persist throughout the course of the disease (62),

which seems to support a persistent role of gut microbiota in

the disease.

T1D is characterized by pancreatic b-cell destruction leading to

hyperglycemia and lifelong insulin reliance. The current view is that

the presence of T1D exacerbates intrahepatic fat accumulation

mainly through acquired insulin resistance (IR) (63). IR is a hit in

the current multiple-hit theory of NAFLD (64), besides traditional

factors such as sedentary, high-calorie diet, insulin dynamics in the

portal circulation, genetic and epigenetic factors, and gut

microbiota may contribute to hepatic and peripheral IR in T1D

patients (65), leading to NAFLD.

Additionally, other factors may also contribute to NAFLD, such

as oxidative stress, decreased physical activity, and drugs used such

as corticosteroids. In NAFLD, intrahepatic lipid overload can

activate multiple ROS-generating pathways leading to excessive

production of oxidants, and high levels of ROS further affect

oxidative modifications of cellular macromolecules (DNA, lipids,

proteins, etc.), resulting in the accumulation of macromolecular

damage and causing liver injury. Oxidative stress and lipid

peroxidation are characteristic signs of NAFLD (66), while a

common feature of autoimmune diseases such as MS, RA, and

T1D is the increased production of ROS and RNS associated with

the inflammatory response (67, 68). Oxidative stress can generate

neoepitopes through oxidative modifications, and subsequently the

organism produces autoantibodies corresponding to the

neoepitopes (67), which could subsequently disrupt autoimmune

tolerance. Furthermore, Motor system disorders resulting from

different diseases such as MS and RA, which led to decreased

physical activity, long-term use of corticosteroids in RA, and

insulin use in T1D patients, can cause lipid metabolism disorders

and weight gain in patient. Reduced physical activity itself is an

important risk factor for NAFLD, and as mentioned above

corticosteroids themselves may cause hepatic steatosis. Weight

gain due to long-term insulin medication and IR itself are also

involved in the development of NAFLD. Thus, the role of these

factors either cannot be ignored.

The main strengths of our study include the elimination of

potential confounders and reverse causal associations by MR

analysis and control for heterogeneity and horizontal pleiotropy in

the analysis. The study fulfilled the three major assumptions of MR,

and the GWAS data related to outcomes were validated through

known causal associations. However, there are several limitations:

Firstly, all patients included in the GWAS data were Europeans, so it

is possible that the results are not available for other ancestors, which

means that our results need to be interpreted cautiously. Second, the

data of outcomes are aggregated from several different sources and

cases all identified through EHRs (electronic health records) (17), so

the possibility of misclassification of NAFLD cannot be excluded,

even if we validated the summary data. Furthermore, various

statistical methods cannot exclude horizontal pleiotropy induced by

biological mechanisms, so we should still be concerned about the

impact of horizontal pleiotropy on study results, especially null causal
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1229570
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2023.1229570
association results. Finally, only several autoimmune diseases were

analysed in this study due to the lack of support from epidemiological

studies of diseases such as SLE and GD with NAFLD.
5 Conclusion

In conclusion, there is a considerable association between gene-

driven autoimmune diseases and NAFLD, with CeD negatively

associated with NAFLD and MS, RA, T1D positively associated

with NAFLD. This result suggests that CeD itself may be a beneficial

for NAFLD, suggesting that previous observational studies may be

influenced by confounding factors, and patients with MS, RA, and

T1Dmay have slightly higher morbidity of NAFLD than the healthy

population, monitoring the prevalence of NAFLD in these

populations is considerable. In addition, causal association

between CD and NAFLD was ruled out.
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